
Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1183–1191,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Generating Topical Poetry

Marjan Ghazvininejad†, Xing Shi†, Yejin Choi‡, and Kevin Knight†
†Information Sciences Institute & Computer Science Department

University of Southern California
{ghazvini,xingshi,knight}@isi.edu

‡Computer Science & Engineering, University of Washington
yejin@cs.washington.edu

Abstract

We describe Hafez, a program that gener-
ates any number of distinct poems on a user-
supplied topic. Poems obey rhythmic and
rhyme constraints. We describe the poetry-
generation algorithm, give experimental data
concerning its parameters, and show its gener-
ality with respect to language and poetic form.

1 Introduction
Automatic algorithms are starting to generate in-
teresting, creative text, as evidenced by recent dis-
tinguishability tests that ask whether a given story,
poem, or song was written by a human or a com-
puter.1 In this paper, we describe Hafez, a program
that generates any number of distinct poems on a
user-supplied topic. Figure 1 shows an overview of
the system, which sets out these tasks:
• Vocabulary. We select a specific, large vocabu-

lary of words for use in our generator, and we
compute stress patterns for each word.
• Related words. Given a user-supplied topic, we

compute a large set of related words.
• Rhyme words. From the set of related words,

we select pairs of rhyming words to end lines.
• Finite-state acceptor (FSA). We build an FSA

with a path for every conceivable sequence
of vocabulary words that obeys formal rhythm
constraints, with chosen rhyme words in place.
• Path extraction. We select a fluent path through

the FSA, using a recurrent neural network
(RNN) for scoring.

1For example, in the 2016 Dartmouth test bit.ly/20WGLF3,
no automatic sonnet-writing system passed indistinguishability,
though ours was selected as the best of the submitted systems.

Figure 1: Overview of Hafez converting a user-supplied topic

word (wedding) into a four-line iambic pentameter stanza.

1183

Sections 3-7 describe how we address these tasks.
After this, we show results of Hafez generating 14-
line classical sonnets with rhyme scheme ABAB
CDCD EFEF GG, written in iambic pentameter (ten
syllables per line with alternating stress: “da-DUM
da-DUM da-DUM . . . ”). We then show experiments
on Hafez’s parameters and conclude by showing the
generality of the approach with respect to language
and poetic form.

2 Prior Work

Automated poem generation has been a popular but
challenging research topic (Manurung et al., 2000;
Gervas, 2001; Diaz-Agudo et al., 2002; Manurung,
2003; Wong and Chun, 2008; Jiang and Zhou, 2008;
Netzer et al., 2009). Recent work attempts to solve
this problem by applying grammatical and seman-
tic templates (Oliveira, 2009; Oliveira, 2012), or
by modeling the task as statistical machine trans-
lation, in which each line is a “translation” of the
previous line (Zhou et al., 2009; He et al., 2012).
Yan et al. (2013) proposes a method based on sum-
marization techniques for poem generation, retriev-
ing candidate sentences from a large corpus of po-
ems based on a user’s query and clustering the con-
stituent terms, summarizing each cluster into a line
of a poem. Greene et al. (2010) use unsupervised
learning to estimate the stress patterns of words in
a poetry corpus, then use these in a finite-state net-
work to generate short English love poems.

Several deep learning methods have recently been
proposed for generating poems. Zhang and Lapata
(2014) use an RNN model to generate 4-line Chi-
nese poems. They force the decoder to rhyme the
second and fourth lines, trusting the RNN to control
rhythm. Yi et al. (2016) also propose an attention-
based bidirectional RNN model for generating 4-
line Chinese poems. The only such work which tries
to generate longer poems is from Wang et al. (2016),
who use an attention-based LSTM model for gener-
ation iambic poems. They train on a small dataset
and do not use an explicit system for constraining
rhythm and rhyme in the poem.

Novel contributions of our work are:
• We combine finite-state machinery with deep

learning, guaranteeing formal correctness of
our poems, while gaining coherence of long-

distance RNNs.
• By using words related to the user’s topic as

rhyme words, we design a system that can gen-
erate poems with topical coherence. This al-
lows us to generate longer topical poems.
• We extend our method to other poetry formats

and languages.

3 Vocabulary

To generate a line of iambic pentameter poetry, we
arrange words to form a sequence of ten syllables
alternating between stressed and unstressed. For ex-
ample:

010 1 0 10 101
Attending on his golden pilgramage

Following Ghazvininejad and Knight (2015), we
refer to unstressed syllables with 0 and stressed syl-
lables with 1, so that the form of a Shakespearean
sonnet is ((01)5)14. To get stress patterns for in-
dividual words, we use CMU pronunciation dictio-
nary,2 collapsing primary and secondary stresses.
For example:

CAFETERIA K AE2 F AH0 T IH1 R IY0 AH0

becomes

CAFETERIA 10100

The first two columns of Table 1 show other ex-
amples. From the 125,074 CMU dictionary word
types, we can actually only use words whose stress
pattern matches the iambic pattern (alternating 1s
and 0s). However, we make an exception for words
that end in ...100 (such as spatula). To mimic how
human poets employ such words, we convert all
“...100” patterns to “...101”. This leaves us with a
106,019 word types.

Words with multiple syllable-stress patterns
present a challenge. For example, our program
may use the word record in a “...10...” context,
but if it is a verb in that context, a human reader
will pronounce it as “01”, breaking the intended
rhythm. To guarantee that our poems scan properly,
we eject all ambiguous words from our vocabulary.
This problem is especially acute with monosyllabic
words, as most have a stress that depends on context.
Greene et al. (2010) apply the EM algorithm to align

2http://www.speech.cs.cmu.edu/cgi-bin/cmudict

1184

word stress pattern strict rhyme class slant rhyme class (coarse version)
needing 10 IY1 D IH0 NG IY1 * IH0 NG
ordinary 1010 EH1 R IY0 EH1 * IY0
obligate 101 EY1 T last syllable stressed, no slant rhyme

Table 1: Sample word analyses.

human-written sonnets with assumed meter, extract-
ing P(0|word) and P(1|word) probabilities. Using
their method, we eject all monosyllabic words ex-
cept those with P(0|word) > 0.9 or P(1|word) > 0.9.
A consequence is that our poetry generator avoids
the words to, it, in, and is, which actually forces
the system into novel territory. This yields 16,139
monosyllabic and 87,282 multisyllabic words.

Because our fluency module (Section 7) is re-
stricted to 20,000 word types, we further pare down
our vocabulary by removing words that are not
found in the 20k-most-frequent list derived from the
song lyrics corpus we use for fluency. After this step,
our final vocabulary contains 14,368 words (4833
monosyllabic and 9535 multisyllabic).

4 Topically Related Words and Phrases

After we receive a user-supplied topic, the first step
in our poem generation algorithm is to build a scored
list of 1000 words/phrases that are related to that
topic. For example:
• User-supplied input topic: colonel
• Output: colonel (1.00), lieutenant colonel

(0.77), brigadier general (0.73), commander
(0.67) ... army (0.55) ...

This problem is different from finding synonyms
or hypernyms in WordNet (Miller, 1995). For exam-
ple, while Banerjee and Pedersen (2003) use Word-
Net to assign a 1.0 similarity score between car and
automobile, they only give a 0.3 similarity between
car and gasoline.

A second method is to use pointwise mutual in-
formation (PMI). Let t be the topic/phrase, and let
w be a candidate related word. We collect a set of
sentences S that contain t, and sort candidates by

Proportion of sentences in S containing w

P(w) in general text

Table 2 shows that PMI has a tendency to assign a
high score to low frequency words (Bouma, 2009;
Role and Nadif, 2011; Damani, 2013).

A third method is word2vec (Mikolov et al.,
2013a), which provides distributed word represen-
tations. We train a continuous-bag-of-words model3

with window size 8 and 40 and word vector dimen-
sion 200. We score candidate related words/phrases
with cosine to topic-word vector. We find that a
larger window size works best (Pennington et al.,
2014; Levy and Goldberg, 2014).

Table 2 shows examples. The training corpus for
word2vec has a crucial effect on the quality of the re-
lated words. We train word2vec models on the En-
glish Gigaword corpus,4 a song lyrics corpus, and
the first billion characters from Wikipedia.5 The Gi-
gaword corpus produces related words that are too
newsy, while the song lyrics corpus does not cover
enough topics. Hence, we train on Wikipedia. To
obtain related phrases as well as words, we apply the
method of Mikolov et al. (2013b) to the Wikipedia
corpus, which replaces collocations like Los Ange-
les with single tokens like Los Angeles. Word2vec
then builds vectors for phrases as well as words.
When the user supplies a multi-word topic, we use
its phrase vector if available. Otherwise, we cre-
ate the vector topic by element wise addition of its
words’ vectors.

5 Choosing Rhyme Words

We next fill in the right-hand edge of our poem by
selecting pairs of rhyming words/phrases and as-
signing them to lines. In a Shakespearean sonnet
with rhyme scheme ABAB CDCD EFEF GG, there
are seven pairs of rhyme words to decide on.

5.1 Strict Rhyme

The strict definition of English rhyme is that the
sounds of two words must match from the last
stressed vowel onwards. In a masculine rhyme,

3https://code.google.com/archive/p/word2vec/
4https://catalog.ldc.upenn.edu/LDC2011T07
5http://mattmahoney.net/dc/enwik9.zip

1185

Method Window Corpus Phrases? Related words
PMI n/a Gigaword no croquet, Romai, Carisbo, NTTF, showcourts ...
CBOW 8 Gigaword no squash, badminton, golf, soccer, racquetball ...
CBOW 40 Gigaword no singles, badminton, squash, ATP, WTA ...
CBOW 40 Song Lyrics no high-heel, Reebok, steel-toed, basketball, Polos ...
CBOW 40 Wikipedia no volleyball, racquet, Wimbledon, athletics, doubles ...
CBOW 40 Wikipedia yes singles titles, grass courts, tennis club, hardcourt ...

Table 2: Different methods for extracting words related to the topic tennis.

the last syllable is stressed; in a feminine rhyme,
the penultimate syllable is stressed. We collect
phoneme and stress information from the CMU pro-
nunciation dictionary. We pre-compute strict rhyme
classes for words (see Table 1) and hash the vocab-
ulary into those classes.

5.2 Slant Rhyme

In practice, human poets do not always use strict
rhymes. To give ourselves more flexibility in choos-
ing rhyme pairs, we allow for slant (or half) rhymes.
By inspecting human rhyming data, we develop this
operational definition of slant rhyme:

1. Let s1 and s2 be two potentially-rhyming
phoneme sequences.

2. Replace ER with UH R in both sequences.
3. Let v1 and v2 be the last stressed vowels in s1

and s2.
4. Let w1 and w2 be last vowels in s1 and s2.
5. Let s1 = a1 v1 x1 w1 c1. Likewise, let s2 = a2

v2 x2 w2 c2.
6. Output NO under any of these circumstances:

(a) v1 6= v2, (b) w1 6= w2, (c) c1 6= c2, (d) a1
6= NULL and a2 6= NULL and a1 = a2.

7. If x1 and x2 are single phonemes:
(a) If x1 ∼ x2, then output YES.6

(b) Otherwise, output NO.
8. If x1 and x2 contain different numbers of vow-

els, output NO.
9. Let p1 and q1 be the first and last phonemes of

x1. Let p2 and q2 be the same for x2.
10. If (p1 = p2) and (q1 ∼ q2), output YES.
11. If (p1 ∼ p2) and (q1 = q1), output YES.
12. Otherwise, output NO.

6x ∼ y if phonemes x and y are similar. Two phonemes are
similar if their pairwise score according to (Hirjee and Brown,
2010) is greater than -0.6. This includes 98 pairs, such as L/R,
S/SH, and OY/UH.

Words whose last syllable is stressed do not partici-
pate in slant rhymes.

Example slant rhymes taken from our gener-
ated poems include Viking/fighting, snoopy/spooky,
baby/crazy and comic/ironic. We pre-compute a
coarse version of slant rhyme classes (Table 1) with
the pattern “vi * wi ci”. If two words hash to the
same coarse class, then we subsequently accept or
reject depending on the similarity of the intermedi-
ate phonemes.

5.3 Non-Topical Rhyming Words

For rare topics, we may not have enough related
words to locate seven rhyming pairs. For exam-
ple, we generate 1000 related words for the topic
Viking, but only 32 of them are found in our 14,368-
word vocabulary. To give a chance for all topical
words/phrases to be used as rhyme words, for each
strict rhyme class, we add the most common word in
our song lyric corpus to the list of related words. In
addition, we add words from popular rhyme pairs7

(like do/you and go/know) to the list of related words
with a low topic similarity score.

5.4 Rhyme word selection

We first hash all related words/phrases into rhyme
classes. Each collision generates a candidate rhyme
pair (s1, s2), which we score with the maximum
of cosine(s1, topic) and cosine(s2, topic). So that
we can generate many different sonnets on the same
topic, we choose rhyme pairs randomly with prob-
ability proportional to their score. After choosing a
pair (s1, s2), we remove it, along with any other can-
didate pair that contains s1 or s2. Because a poem’s
beginning and ending are more important, we assign
the first rhyme pair to the last two lines of the sonnet,

7http://slate.me/OhTKCA

1186

Figure 2: An FSA compactly encoding all word sequences that obey formal sonnet constraints, and dictating the right-hand edge

of the poem via rhyming, topical words delight, chance, ... and joy.

then assign other pairs from beginning of the sonnet
towards the end.

6 Constructing FSA of Possible Poems

After choosing rhyme words, we create a large
finite-state acceptor (FSA) that compactly encodes
all word sequences that use these rhyme words and
also obey formal sonnet constraints:
• Each sonnet contains 14 lines.
• Lines are in iambic pentameter, with stress pat-

tern (01)5. Following poetic convention, we
also use (01)50, allowing feminine rhyming.
• Each line ends with the chosen rhyme

word/phrase for that line.
• Each line is punctuated with comma or period,

except for the 4th, 8th, 12th, and 14th lines,
which are punctuated with period.

To implement these constraints, we create FSA
states that record line number and syllable count.
For example, FSA state L2-S3 (Figure 2) signifies
“I am in line 2, and I have seen 3 syllables so far”.
From each state, we create arcs for each feasible
word in the vocabulary. For example, we can move
from state L1-S1 to state L1-S3 by consuming any
word with stress pattern 10 (such as table or active).
When moving between lines (e.g., from L1-S10 to
L2-S1), we employ arcs labeled with punctuation
marks.

To fix the rhyme words at the end of each line,
we delete all arcs pointing to the line-final state, ex-
cept for the arc labeled with the chosen rhyme word.
For speed, we pre-compute the entire FSA; once we
receive the topic and choose rhyme words, we only
need to carry out the deletion step.

In the resulting FSA, each path is formally a son-
net. However, most of the paths through the FSA are
meaningless. One FSA generated from the topic nat-
ural language contains 10229 paths, including this
randomly-selected one:

Of pocket solace ammunition grammar.
An tile pretenders spreading logical.
An stories Jackie gallon posing banner.
An corpses Kato biological ...

Hence, we need a way to search and rank this large
space.

7 Path extraction through FSA with RNN

To locate fluent paths, we need a scoring function
and a search procedure. For example, we can build a
n-gram word language model (LM)—itself a large
weighted FSA. Then we can take a weighted in-
tersection of our two FSAs and return the highest-
scoring path. While this can be done efficiently with
dynamic programming, we find that n-gram models
have a limited attention span, yielding poor poetry.

Instead, we use an RNN language model (LM).
We collect 94,882 English songs (32m word tokens)
as our training corpus,8 and train9 a two-layer recur-
rent network with long short-term memory (LSTM)
units (Hochreiter and Schmidhuber, 1997).10

When decoding with the LM, we employ a beam

8http://www.mldb.org/
9We use the toolkit: https://github.com/isi-nlp/Zoph RNN

10We use a minibatch of 128, a hidden state size of 1000, and
a dropout rate of 0.2. The output vocabulary size is 20,000. The
learning rate is initially set as 0.7 and starts to decay by 0.83
once the perplexity on a development set starts to increase. All
parameters are initialized within range [−0.08,+0.08], and the
gradients are re-scaled when the global norm is larger than 5.

1187

search that is further guided by the FSA. Each beam
state Ct,i is a tuple of (h, s, word, score), where h is
the hidden states of LSTM at step t in ith state, and
s is the FSA state at step t in ith state. The model
generates one word at each step.

At the beginning, h0,0 is the initial hidden state
of LSTM, s0,0 is the start state of FSA, word0,0 =
<START> and score0,0 = 0. To expand a beam
state Ct,i, we first feed ht,i and word into the LM
and get an updated hidden state hnext. The LM
also returns a probability distribution P (V) over
the entire vocabulary V for next word. Then, for
each succeeding state ssuc of st,i in the FSA and
the word wnext over each edge from st,i to ssuc,
we form a new state (hnext, ssuc, wnext, scoret,i +
log(P (wnext))) and push it into next beam.

Because we fix the rhyme word at the end of
each line, when we expand the beam states immedi-
ately before the rhyme word, the FSA states in those
beam states have only one succeeding state—LN-
S10, where N = [1, 14], and only one succeeding
word, the fixed rhyme word. For our beam size b
= 50, the chance is quite low that in those b words
there exists any suitable word to precede that rhyme
word. We solve this by generating the whole sonnet
in reverse, starting from the final rhyme word. Thus,
when we expand the state L1-S8, we can choose
from almost every word in vocabulary instead of just
b possible words. The price to pay is that at the
beginning of each line, we need to hope in those b
words there exists some that are suitable to succeed
comma or period.

Because we train on song lyrics, our LM tends to
generate repeating words, like never ever ever ever
ever. To solve this problem, we apply a penalty to
those words that already generated in previous steps
during the beam search.

To create a poem that fits well with the pre-
determined rhyme words at the end of each line, the
LM model tends to choose “safe” words that are fre-
quent and suitable for any topic, such as pronouns,
adverbs, and articles. During decoding, we apply a
reward on all topically related words (generated in
Section 4) in the non-rhyming portion of the poem.

Finally, to further encourage the system to follow
the topic, we train an encoder-decoder sequence-to-
sequence model (Sutskever et al., 2014). For train-
ing, we select song lyric rhyme words and assemble

Bipolar Disorder

Existence enters your entire nation.
A twisted mind reveals becoming manic,
An endless modern ending medication,
Another rotten soul becomes dynamic.

Or under pressure on genetic tests.
Surrounded by controlling my depression,
And only human torture never rests,
Or maybe you expect an easy lesson.

Or something from the cancer heart disease,
And I consider you a friend of mine.
Without a little sign of judgement please,
Deliver me across the borderline.

An altered state of manic episodes,
A journey through the long and winding roads.

Figure 3: Sample sonnet generated from the topic phrase bipo-

lar disorder.

them in reverse order (encoder side), and we pair this
with the entire reversed lyric (decoder side). At gen-
eration time, we put all the selected rhyme words on
the source side, and let the model to generate the
poem conditioned on those rhyme words. In this
way, when the model tries to generate the last line
of the poem, it already knows all fourteen rhyme
words, thus possessing better knowledge of the re-
quested topic. We refer to generating poems using
the RNN LM as the “generation model” and to this
model as the “translation model”.

8 Results and Analysis

Sample outputs produced by our best system are
shown in Figures 3 and 4. We find that they gen-
erally stay on topic and are fairly creative. If we re-
quest a poem on the topic Vietnam, we may see the
phrase Honky Tonkin Resolution; a different topic
leads the system to rhyme Dirty Harry with Bloody
Mary. In this section, we present experiments we
used to select among different versions of our poem
generator.

The first experiment tests the effect of encourag-
ing topical words in the body of the poem, via a
direct per-word bonus. For 40 different topics, we
generate 2 sonnets with and without encouragement,
using the same set of rhyme words. Then we ask
23 human judges to choose the better sonnet. Each
judge compares sonnets for 10 different topics. Ta-
ble 3 shows that using topical words increases the

1188

Love at First Sight

An early morning on a rainy night,
Relax and make the other people happy,
Or maybe get a little out of sight,
And wander down the streets of Cincinnati.

Girlfriend

Another party started getting heavy.
And never had a little bit of Bobby,
Or something going by the name of Eddie,
And got a finger on the trigger sloppy.

Noodles

The people wanna drink spaghetti alla,
And maybe eat a lot of other crackers,
Or sit around and talk about the salsa,
A little bit of nothing really matters.

Civil War

Creating new entire revolution,
An endless nation on eternal war,
United as a peaceful resolution,
Or not exist together any more.

Figure 4: Sample stanzas generated from different topic

phrases.

Preference Encourages Does Not Cannot
Encourage Decide

Sonnets 54% 18% 28%
Table 3: Users prefer the system that encourages the use of

related words in the body (non-rhyme) portion of the poem. 40

poems are tested with 23 judges.

quality of the sonnets.
Next, we compare the translation model with gen-

eration model. For each of 40 topics, we gener-
ate one poem with generation model and one poem
with translation model, using the same set of rhyme
words. We ask 25 human judges to chose the bet-
ter poem. Each judge compares sonnets for 10 dif-
ferent topics. This experiment is run separately for
sonnets and stanzas. Table 4 shows how the trans-
lation model generates better poems, and Figure 5
compares two stanzas.

We check for plagiarism, as it is common for
optimal-searching RNNs to repeat large sections of
the training data. We hypothesize that strong condi-
tions on rhyme, meter, repetition, and ambiguously-
stressed words will all mitigate against plagiarism.

Gen Another tiny thousand ashes scattered.
And never hardly ever really own,
Or many others have already gathered,
The only human being left alone.

Trans Being buried under ashes scattered,
Many faces we forgotten own,
About a hundred thousand soldiers gathered,
And I remember standing all alone.

Figure 5: Stanzas generated with and without a encoder-

decoder translation model for topic death.

Preference Generation Translation Cannot
Model Model Decide

Stanzas 26% 43% 31%
Sonnets 21% 57% 22%

Table 4: Users prefer poems created with the encoder-decoder

translation model over those that use only the RNN language

model in generation mode. 40 poems are tested with 25 judges.

We find that on average, each sonnet copies only
1.2 5-grams from the training data. If we relax
the repeated-word penalty and the iambic meter,
this number increases to 7.9 and 10.6 copied 5-
grams, respectively. Considering the lack of copy-
ing, we find the RNN-generated grammar to be
quite good. The most serious—and surprisingly
common—grammatical error is the wrong use of a
and an, which we fix in a post-processing step.

9 Other Languages and Formats

To show the generality of our approach, we mod-
ify our system to generate Spanish-language poetry
from a Spanish topic. We use these resources:
• A song lyric corpus for training our RNN.

We download 97,775 Spanish song lyrics from
LyricWikia,11 which amounts to 20m word to-
kens and 219k word types.
• A Spanish Wikipedia dump12 consisting of

885m word tokens, on which we run word2vec
to find words and phrases related to the topic.

Our vocabulary consists of the 20k most frequent
lyric words. For each word, we compute its syllable-
stress pattern and its rhyme class (see Figure 6). Be-
cause Spanish writing is quite phonetic, we can re-
trieve this from the letter strings of the vocabulary.

11http://lyrics.wikia.com/wiki/Category:Language/Spanish
12https://dumps.wikimedia.org/eswiki/20160305/eswiki-

20160305-pages-meta-current.xml.bz2

1189

word stress rhyme v- -v
consultado 0010 -ado yes
aduciendo 0010 -endo yes yes
régimen 100 -egimen
hospital 001 -al yes

Figure 6: Sample word analyses needed to construct Spanish

Hafez. v- and -v indicate whether the word starts and/or ends

with a vowel sound.

For any given vocabulary word:13

1. We remove silent h, and convert y into i.
2. We count the number of syllables by isolat-

ing vowel groups. In such groups, weak vow-
els (i, u) attached to strong vowels (a, e, o) do
not form separate syllables, unless they are ac-
cented (dı́-as versus dios). Strong clusters are
broken into separate syllables (eg, ca-er).

3. We determine which vowel (and therefore syl-
lable) is stressed. If any vowel is accented, it is
stressed. If the word is accent-free, then the
second-to-last syllable is stressed, unless the
word ends in a consonant other than n or s, in
which case the last syllable is stressed.

4. We form the word’s rhyme class by breaking
off a letter suffix starting at the last stressed
vowel (as in English). Weak vowels do not par-
ticipate (e.g., tienda→ -enda, not -ienda). We
remove h from the rhyme, so búho rhymes with
continúo. Because rhyming is easier in Spanish
than English, we do not need slant rhyme.

Most Spanish poetic formats enforce some num-
ber of syllables per line, without meter. However,
there are two caveats when counting syllables:

1. Sinalefa merges vowels across word bound-
aries. Thus, la obra is counted as two syllables
instead of three, and va a hacer is counted as
two syllables instead of four. A line may there-
fore have more words than syllables.

2. For the last word of a line (only), we count up
to its last stressed syllable, then add one. This
means that even though iambic meter is not em-
ployed, we still need stress patterns to correctly
count syllables.

We implement these constraints in the FSA
framework, now with separate states for “I have seen
M syllables, and the last word ended in a vowel
sound” and “I have seen M syllables, and the last

13http://community.dur.ac.uk/m.p.thompson/verse.htm

Mariposa

Quieres saber dónde está el escorpión,
Ni ayer ni antes vos sos corona dorada.
Ya os ves más tal cual tortuga pintada,
A él nos gusta andar con cola marrón.

Ella es quién son las alas de algún gorrión.
Si al fin podés ver tu imagen manchada,
O hoy vas bajo un cielo azul plateada,
Por qué estás tan lejos del aguijón.

No hay luz que al sol se enreda en tus palmera.
Ay por qué eres vı́bora venenosa,
Sin querer igual a un enredadera.

Y si aún sueñas con ser mariposa,
En vez de abrir los ojos y espera,
Sabes muy bien que el amor no es gran cosa.

Figure 7: Sample Spanish poem generated in classical soneta

form, on the topic mariposa (butterfly).

word ended in a consonant sound.” Technically
speaking, the FSA includes single-state cycles for
the Spanish word a, due to sinalefa. Line-ending
states can only be reached by words that have their
syllable count adjusted as in point 2 above.

Figure 7 shows a sample Spanish output. The for-
mat is the classical Spanish soneta, which consists
of 14 eleven-syllable lines under the rhyme scheme
ABBA ABBA CDC DCD. This scheme requires us
to choose up to four words with the same rhyme.

Overall, we also find Spanish outputs to be flu-
ent, fairly creative, and on topic. Grammatical prob-
lems are a bit more common than in our English
generator—for example, adjacent words sometimes
disagree in number or gender. The RNN generaliza-
tions that permit these errors no doubt also permit
creative phrasings.

10 Conclusion

We have described Hafez, a poetry generation sys-
tem that combines hard format constraints with a
deep-learning recurrent network. The system uses
special techniques, such as rhyme-word choice and
encoder-decoder modeling, to keep the poem on
topic. We hope that future work will provide more
discourse structure and function to automatic poetry,
while maintaining the syntax, semantics, and cre-
ative phrasing we observe.

1190

Acknowledgments

We would like to thank the anonymous reviewers
for their helpful comments. This work was sup-
ported by DARPA (W911NF-15-1-0543) and NSF
(IIS-1524371).

References
Satanjeev Banerjee and Ted Pedersen. 2003. Extended

gloss overlaps as a measure of semantic relatedness.
In Proc. IJCAI.

Gerlof Bouma. 2009. Normalized (pointwise) mutual in-
formation in collocation extraction. In Proc. Biennial
GSCL Conference.

Om P. Damani. 2013. Improving pointwise mutual
information (PMI) by incorporating significant co-
occurrence. In Proc. ACL.

Belen Diaz-Agudo, Pablo Gervas, and Pedro Gonzalez-
Calero. 2002. Poetry generation in COLIBRI. In
Proc. ECCBR.

Pablo Gervas. 2001. An expert system for the composi-
tion of formal Spanish poetry. Knowledge-Based Sys-
tems, 14(3).

Marjan Ghazvininejad and Kevin Knight. 2015. How to
memorize a random 60-bit string. In Proc. NAACL.

Erica Greene, Tugba Bodrumlu, and Kevin Knight. 2010.
Automatic analysis of rhythmic poetry with applica-
tions to generation and translation. In Proc. EMNLP.

Jing He, Ming Zhou, and Long Jiang. 2012. Generat-
ing Chinese classical poems with statistical machine
translation models. In Proc. AAAI.

Hussein Hirjee and Daniel Brown. 2010. Using auto-
mated rhyme detection to characterize rhyming style
in rap music. In Empirical Musicology Review.

Sepp Hochreiter and Jurgen Schmidhuber. 1997. Long
short-term memory. Neural Computation, 9(8).

Long Jiang and Ming Zhou. 2008. Generating Chinese
couplets using a statistical MT approach. In Proc.
COLING.

Omer Levy and Yoav Goldberg. 2014. Dependency-
based word embeddings. In Proc. ACL.

Hisar Manurung, Graeme Ritchie, and Henry Thompson.
2000. Towards a computational model of poetry gen-
eration. In Proc. AISB Symposium on Creative and
Cultural Aspects and Applications of AI and Cognitive
Science.

Hisar Manurung. 2003. An evolutionary algorithm ap-
proach to poetry generation. Ph.D. thesis, University
of Edinburgh.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013a. Efficient estimation of word representa-
tions in vector space. In Proc. NIPS.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado,
and Jeff Dean. 2013b. Distributed representations of
words and phrases and their compositionality. In Proc.
NIPS.

George Miller. 1995. WordNet: A lexical database for
English. Communications of the ACM.

Yael Netzer, David Gabay, Yoav Goldberg, and Michael
Elhadad. 2009. Gaiku: Generating haiku with word
associations norms. In Proc. NAACL Workshop on
Computational Approaches to Linguistic Creativity.

Hugo Oliveira. 2009. Automatic generation of poetry:
an overview. In Proc. 1st Seminar of Art, Music, Cre-
ativity and Artificial Intelligence.

Hugo Oliveira. 2012. PoeTryMe: a versatile platform for
poetry generation. Computational Creativity, Concept
Invention, and General Intelligence, 1.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proc. EMNLP.

Franois Role and Mohamed Nadif. 2011. Handling
the impact of low frequency events on co-occurrence
based measures of word similarity—a case study of
pointwise mutual information. In Knowledge Discov-
ery and Information Retrieval.

I. Sutskever, O. Vinyals, and Q. V. Le. 2014. Sequence
to sequence learning with neural networks. In Proc.
NIPS.

Qixin Wang, Tianyi Luo, Dong Wang, and Chao Xing.
2016. Chinese song iambics generation with neural
attention-based model. arXiv:1604.06274.

Martin Wong and Andy Chun. 2008. Automatic haiku
generation using VSM. In Proc. ACACOS.

Rui Yan, Han Jiang, Mirella Lapata, Shou-De Lin, Xue-
qiang Lv, and Xiaoming Li. 2013. I, Poet: Automatic
Chinese poetry composition through a generative sum-
marization framework under constrained optimization.
In Proc. IJCAI.

Xiaoyuan Yi, Ruoyu Li, and Maosong Sun. 2016. Gen-
erating chinese classical poems with RNN encoder-
decoder. arXiv:1604.01537.

Xingxing Zhang and Mirella Lapata. 2014. Chinese
poetry generation with recurrent neural networks. In
Proc. EMNLP.

Ming Zhou, Long Jiang, and Jing He. 2009. Generat-
ing Chinese couplets and quatrain using a statistical
approach. In Proc. Pacific Asia Conference on Lan-
guage, Information and Computation.

1191

