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Abstract

Though dialectal language is increasingly
abundant on social media, few resources exist
for developing NLP tools to handle such lan-
guage. We conduct a case study of dialectal
language in online conversational text by in-
vestigating African-American English (AAE)
on Twitter. We propose a distantly supervised
model to identify AAE-like language from de-
mographics associated with geo-located mes-
sages, and we verify that this language fol-
lows well-known AAE linguistic phenomena.
In addition, we analyze the quality of existing
language identification and dependency pars-
ing tools on AAE-like text, demonstrating that
they perform poorly on such text compared to
text associated with white speakers. We also
provide an ensemble classifier for language
identification which eliminates this disparity
and release a new corpus of tweets containing
AAE-like language.

Data and software resources are available at:
http://slanglab.cs.umass.edu/TwitterAAE

1 Introduction

Owing to variation within a standard language, re-
gional and social dialects exist within languages
across the world. These varieties or dialects differ
from the standard variety in syntax (sentence struc-
ture), phonology (sound structure), and the inven-
tory of words and phrases (lexicon). Dialect com-
munities often align with geographic and sociolog-
ical factors, as language variation emerges within
distinct social networks, or is affirmed as a marker
of social identity.
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As many of these dialects have traditionally ex-
isted primarily in oral contexts, they have histor-
ically been underrepresented in written sources.
Consequently, NLP tools have been developed from
text which aligns with mainstream languages. With
the rise of social media, however, dialectal language
is playing an increasingly prominent role in online
conversational text, for which traditional NLP tools
may be insufficient. This impacts many applica-
tions: for example, dialect speakers’ opinions may
be mischaracterized under social media sentiment
analysis or omitted altogether (Hovy and Spruit,
2016). Since this data is now available, we seek to
analyze current NLP challenges and extract dialectal
language from online data.

Specifically, we investigate dialectal language in
publicly available Twitter data, focusing on African-
American English (AAE), a dialect of Standard
American English (SAE) spoken by millions of peo-
ple across the United States. AAE is a linguistic
variety with defined syntactic-semantic, phonolog-
ical, and lexical features, which have been the sub-
ject of a rich body of sociolinguistic literature. In
addition to the linguistic characterization, reference
to its speakers and their geographical location or
speech communities is important, especially in light
of the historical development of the dialect. Not all
African-Americans speak AAE, and not all speakers
of AAE are African-American; nevertheless, speak-
ers of this variety have close ties with specific com-
munities of African-Americans (Green, 2002). Due
to its widespread use, established history in the soci-
olinguistic literature, and demographic associations,
AAE provides an ideal starting point for the devel-
opment of a statistical model that uncovers dialectal
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language. In fact, its presence in social media is at-
tracting increasing interest for natural language pro-
cessing (Jgrgensen et al., 2016) and sociolinguistic
(Stewart, 2014; Eisenstein, 2015; Jones, 2015) re-
search.! In this work we:

e Develop a method to identify
demographically-aligned text and lan-
guage from geo-located messages (§2), based
on distant supervision of geographic census
demographics through a statistical model
that assumes a soft correlation between
demographics and language.

e Validate our approach by verifying that text
aligned with African-American demographics
follows well-known phonological and syntac-
tic properties of AAE, and document the pre-
viously unattested ways in which such text di-
verges from SAE (§3).

e Demonstrate racial disparity in the efficacy
of NLP tools for language identification and
dependency parsing—they perform poorly on
this text, compared to text associated with
white speakers (§4, §5).

e Improve language identification for U.S. on-
line conversational text with a simple en-
semble classifier using our demographically-
based distant supervision method, aiming to
eliminate racial disparity in accuracy rates

(54.2).

e Provide a corpus of 830,000 tweets aligned
with African-American demographics.

2 Identifying AAE from Demographics

The presence of AAE in social media and the
generation of resources of AAE-like text for NLP
tasks has attracted recent interest in sociolinguis-
tic and natural language processing research; Jones
(2015) shows that nonstandard AAE orthography on
Twitter aligns with historical patterns of African-
American migration in the U.S., while Jgrgensen
et al. (2015) investigate to what extent it supports
well-known sociolinguistics hypotheses about AAE.

'Including a recent linguistics work-

shop: http://linguistlaura.blogspot.co.uk/2016/06/
using-twitter-for-linguistic-research.html
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Both, however, find AAE-like language on Twit-
ter through keyword searches, which may not yield
broad corpora reflective of general AAE use. More
recently, Jgrgensen et al. (2016) generated a large
unlabeled corpus of text from hip-hop lyrics, subti-
tles from The Wire and The Boondocks, and tweets
from a region of the southeast U.S. While this cor-
pus does indeed capture a wide variety of language,
we aim to discover AAE-like language by utiliz-
ing finer-grained, neighborhood-level demographics
from across the country.

Our approach to identifying AAE-like text is
to first harvest a set of messages from Twitter,
cross-referenced against U.S. Census demographics
(§2.1), then to analyze words against demograph-
ics with two alternative methods, a seedlist approach
(§2.2) and a mixed-membership probabilistic model

(§2.3).

2.1 Twitter and Census data

In order to create a corpus of demographically-
associated dialectal language, we turn to Twitter,
whose public messages contain large amounts of ca-
sual conversation and dialectal speech (Eisenstein,
2015). It is well-established that Twitter can be used
to study both geographic dialectal varieties® and mi-
nority languages.>

Some methods exist to associate messages with
authors’ races; one possibility is to use birth record
statistics to identify African-American-associated
names, which has been used in (non-social media)
social science studies (Sweeney, 2013; Bertrand and
Mullainathan, 2003). However, metadata about au-
thors is fairly limited on Twitter and most other so-
cial media services, and many supplied names are
obviously not real.

Instead, we turn to geo-location and induce a
distantly supervised mapping between authors and
the demographics of the neighborhoods they live
in (O’Connor et al., 2010; Eisenstein et al., 2011b;
Stewart, 2014). We draw on a set of geo-located
Twitter messages, most of which are sent on mo-
bile phones, by authors in the U.S. in 2013. (These
are selected from a general archive of the “Gar-
denhose/Decahose” sample stream of public Twit-

’For example, of American English (Huang et al., 2015;
Doyle, 2014).

3For example, Lynn et al. (2015) develop POS corpora and
taggers for Irish tweets; see also related work in §4.1.



ter messages (Morstatter et al.,, 2013)). Geo-
located users are a particular sample of the userbase
(Pavalanathan and Eisenstein, 2015), but we expect
it is reasonable to compare users of different races
within this group.

We look up the U.S. Census blockgroup geo-
graphic area that the message was sent in; block-
groups are one of the smallest geographic areas de-
fined by the Census, typically containing a popula-
tion of 600-3000 people. We use race and ethnic-
ity information for each blockgroup from the Cen-
sus’ 2013 American Community Survey, defining
four covariates: percentages of the population that
are non-Hispanic whites, non-Hispanic blacks, His-
panics (of any race), and Asian.* Finally, for each
user u, we average the demographic values of all

their messages in our dataset into a length-four vec-

tor w°™***) | Under strong assumptions, this could

be interpreted as the probability of which race the
user is; we prefer to think of it as a rough proxy for
likely demographics of the author and the neighbor-
hood they live in.

Messages were filtered in order to focus on ca-
sual conversational text; we exclude tweets whose
authors had 1000 or more followers, or that (a) con-
tained 3 or more hashtags, (b) contained the strings
“http”, “follow”, or “mention” (messages designed
to generate followers), or (c) were retweeted (ei-
ther containing the string “rt” or marked by Twitter’s
metadata as re-tweeted).

Our initial Gardenhose/Decahose stream archive
had 16 billion messages in 2013; 90 million were
geo-located with coordinates that matched a U.S.
Census blockgroup. 59.2 million tweets from 2.8
million users remained after pre-processing; each

user is associated with a set of messages and aver-

aged demographics m&census).

2.2 Direct Word-Demographic Analysis

Given a set of messages and demographics associ-
ated with their authors, a number of methods could
be used to infer statistical associations between lan-
guage and demographics.

Direct word-demographic analysis methods use
the w&census) quantities to calculate statistics at the
word level in a single pass. An intuitive approach

is to calculate the average demographics per word.

4See appendix for additional details.
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For a token in the corpus indexed by ¢ (across the
whole corpus), let u(t) be the author of the message
containing that token, and w; be the word token. The
average demographics of word type w is:’
¥ o = whnli™

> Hwy = w}

We find that terms with the highest m,, aa values (de-
noting high average African-American demograph-
ics of their authors’ locations) are very non-standard,
while Stewart (2014) and Eisenstein (2013) find
large m,, aa associated with certain AAE linguistic
features.

One way to use the m,, j, values to construct a cor-
pus is through a seedlist approach. In early experi-
ments, we constructed a corpus of 41,774 users (2.3
million messages) by first selecting the n = 100
highest-m,, aa terms occurring at least m = 3000
times across the data set, then collecting all tweets
from frequent authors who have at least 10 tweets
and frequently use these terms, defined as the case
when at least p = 20% of their messages contain
at least one of the seedlist terms. Unfortunately, the
n, m, p thresholds are ad-hoc.

(softcount)
T

2.3 Mixed-Membership
Demographic-Language Model

The direct word-demographics analysis gives use-
ful validation that the demographic information may
yield dialectal corpora, and the seedlist approach
can assemble a set of users with heavy dialectal
usage. However, the approach requires a number
of ad-hoc thresholds, cannot capture authors who
only occasionally use demographically-aligned lan-
guage, and cannot differentiate language use at the
message-level. To address these concerns, we de-
velop a mixed-membership model for demographics
and language use in social media.

The model directly associates each of the four de-
mographic variables with a topic; i.e. a unigram lan-
guage model over the vocabulary.® The model as-
sumes an author’s mixture over the topics tends to

5 7w i has the flavor of “soft counts” in multinomial EM.
By changing the denominator to Y, Wiiiysus), it calculates a
unigram language model that sums to one across the vocabulary.
This hints at a more complete modeling approach (§2.3).

5To build the vocabulary, we select all words used by at least
20 different users, resulting in 191,873 unique words; other
words are mapped to an out-of-vocabulary symbol.
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Figure 1: Mixed-membership model for users (u), messages
(m) and tokens (t). Observed variables have a double lined bor-
der.

be similar to their Census-associated demographic
weights, and that every message has its own topic
distribution. This allows for a single author to use
different types of language in different messages, ac-
commodating multidialectal authors. The message-

level topic probabilities 6,,, are drawn from an asym-

. « . census
metric Dirichlet centered on 7118 ), whose scalar

concentration parameter « controls whether authors’
language is very similar to the demographic prior, or
can have some deviation. A token t’s latent topic z;
is drawn from 6,,,, and the word itself is drawn from
¢, the language model for the topic (Figure 1).

Thus the model learns demographically-aligned
language models for each demographic category.
The model is much more tightly constrained than a
topic model—for example, if « — oo, 6 becomes
fixed and the likelihood is concave as a function of
¢—but it still has more joint learning than a direct
calculation approach, since the inference of a mes-
sages’ topic memberships 6,, is affected not just by
the Census priors, but also by the language used. A
tweet written by an author in a highly AA neigh-
borhood may be inferred to be non-AAE-aligned if
it uses non-A AE-associated terms; as inference pro-
ceeeds, this information is used to learn sharper lan-
guage models.

We fit the model with collapsed Gibbs sampling
(Griffiths and Steyvers, 2004) with repeated sample
updates for each token ¢ in the corpus,

ka +5/V Nmk + amyg

where N, is the number of tokens where word w
occurs under topic z = k, N,,; is the number of
tokens in the current message with topic k, etc.; all
counts exclude the current ¢ position. We observed

plze =k |w,z_4) x
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convergence of the log-likelihood within 100 to 200
iterations, and ran for 300 total.” We average to-
gether count tables from the last 50 Gibbs samples
for analysis of posterior topic memberships at the
word, message, and user level; for example, the pos-
terior probability a particular user v uses topic k,
P(z = k | u), can be calculated as the fraction of
tokens with topic k£ within messages authored by wu.

We considered « to be a fixed control parameter;
setting it higher increases the correlations between
P(z = k| u) and Wifzns“s). We view the selec-
tion of o as an inherently difficult problem, since
the correlation between race and AAE usage is al-
ready complicated and imperfect at the author-level,
and census demographics allow only for rough as-
sociations. We set « = 10 which yields posterior
user-level correlations of P(z = AA | u) against
Tu,AA 10 be approximately 0.8.

This model has broadly similar goals as non-
latent, log-linear generative models of text that con-
dition on document-level covariates (Monroe et al.,
2008; Eisenstein et al., 2011a; Taddy, 2013). The
formulation here has the advantage of fast inference
with large vocabularies (since the partition function
never has to be computed), and gives probabilistic
admixture semantics at arbitrary levels of the data.
This model is also related to topic models where
the selection of 6 conditions on covariates (Mimno
and McCallum, 2008; Ramage et al., 2011; Roberts
et al., 2013), though it is much simpler without full
latent topic learning.

In early experiments, we used only two classes
(AA and not AA), and found Spanish terms being
included in the AA topic. Thus we turned to four
race categories in order to better draw out non-AAE
language. This removed Spanish terms from the
AA topic; interestingly, they did not go to the His-
panic topic, but instead to Asian, along with other
foreign languages. In fact, the correlation between
users’ Census-derived proportions of Asian popu-
lations, versus this posterior topic’s proportions, is
only 0.29, while the other three topics correlate
to their respective Census priors in the range 0.83
to 0.87. This indicates the “Asian” topic actually
functions as a background topic (at least in part).
Better modeling of demographics and non-English

"Our straightforward single core implementation (in Julia)
spends 80 seconds for each iteration over 586 million tokens.



language interactions is interesting potential future
work.

By fitting the model to data, we can directly ana-
lyze unigram probabilities within the model param-
eters ¢, but for other analyses, such as analyzing
larger syntactic constructions and testing NLP tools,
we require an explicit corpus of messages.

To generate a user-based AA-aligned corpus, we
collected all tweets from users whose posterior
probability of using AA-associated terms under the
model was at least 80%, and generated a correspond-
ing white-aligned corpus as well. In order to remove
the effects of non-English languages, and given un-
certainty about what the model learned in the His-
panic and Asian-aligned demographic topics, we fo-
cused only on AA- and white-aligned language by
imposing the additional constraint that each user’s
combined posterior proportion of Hispanic or Asian
language was less than 5%. Our two resulting user
corpora contain 830,000 and 7.3 million tweets, for
which we are making their message IDs available
for further research (in conformance with the Twit-
ter API’s Terms of Service). In the rest of the work,
we refer to these as the AA- and white-aligned cor-
pora, respectively.

3 Linguistic Validation

Because validation by manual inspection of our AA-
aligned text is impractical, we turn to the well-
studied phonological and syntactic phenomena that
traditionally distinguish AAE from SAE. We val-
idate our model by reproducing these phenomena,
and document a variety of other ways in which our
AA-aligned text diverges from SAE.

3.1 Lexical-Level Variation

We begin by examining how much AA- and white-
aligned lexical items diverge from a standard dictio-
nary. We used SCOWL’s largest wordlist with level
1 variants as our dictionary, totaling 627,685 words.3

We calculated, for each word w in the model’s
vocabulary, the ratio

_ plwlz = k)
(W) = Ll £ Ry

where the p(.|.) probabilities are posterior infer-
ences, derived from averaged Gibbs samples of the

8http://wordlist.aspell.net/
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sufficient statistic count tables NV,

We selected heavily AA- and white-aligned words
as those where r44(w) > 2 and 7ypie(w) > 2,
respectively. We find that while 58.2% of heav-
ily white-aligned words were not in our dictionary,
fully 79.1% of heavily AA-aligned words were not.
While a high number of out-of-dictionary lexical
items is expected for Twitter data, this disparity
suggests that the AA-aligned lexicon diverges from
SAE more strongly than the white-aligned lexicon.

3.2 Internet-Specific Orthographic Variation

We performed an “open vocabulary” unigram anal-
ysis by ranking all words in the vocabulary by
r44(w) and browsed them and samples of their us-
age. Among the words with high r4 4, we observe a
number of Internet-specific orthographic variations,
which we separate into three types: abbreviations
(e.g. llh, kmsl), shortenings (e.g. dwn, dnt), and
spelling variations which do not correlate to the
word’s pronunciation (e.g. axx, bxtch). These varia-
tions do not reflect features attested in the literature;
rather, they appear to be purely orthographic vari-
ations highly specific to AAE-speaking communi-
ties online. They may highlight previously unknown
linguistic phenomena; for example, we observe that
thoe (SAE though) frequently appears in the role of
a discourse marker instead of its standard SAE us-
age (e.g. Girl Madison outfit THOE). This new use
of though as a discourse marker, which is difficult
to observe using the SAE spelling amidst many in-
stances of the SAE usage, is readily identifiable in
examples containing the thoe variant. Thus, non-
standard spellings provide valuable windows into a
variety of linguistic phenomena.

In the next section, we turn to variations which do
appear to arise from known phonological processes.

3.3 Phonological Variation

Many phonological features are closely associated
with AAE (Green, 2002). While there is not a per-
fect correlation between orthographic variations and
people’s pronunciations, Eisenstein (2013) shows
that some genuine phonological phenomena, includ-
ing a number of AAE features, are accurately re-
flected in orthographic variation on social media.
We therefore validate our model by verifying that
spellings reflecting known AAE phonological fea-
tures align closely with the AA topic.



AAE Ratio SAE
sholl 1802.49 sure
iont 930.98 Idon’t
wea 870.45 where
talmbout | 809.79 | talking about
sumn 520.96 something

Table 1: Of 31 phonological variant words, top five by ratio

raa(w). SAE translations are shown for reference.

We selected 31 variants of SAE words from
previous studies of AAE phonology on Twitter
(Jgrgensen et al., 2015; Jones, 2015). These varia-
tions display a range of attested AAE phonological
features, such as derhotacization (e.g. brotha), dele-
tion of initial g and d (e.g. iont), and realization of
voiced th as d (e.g. dey) (Rickford, 1999).

Table 1 shows the top five of these words by their
ra4(w) ratio. For 30 of the 31 words, » > 1, and
for 13 words, » > 100, suggesting that our model
strongly identifies words displaying AAE phonolog-
ical features with the AA topic. The sole excep-
tion is the word brotha, which appears to have been
adopted into general usage as its own lexical item.

3.4 Syntactic Variation

We further validate our model by verifying that it re-
produces well-known AAE syntactic constructions,
investigating three well-attested AAE aspectual or
preverbal markers: habitual be, future gone, and
completive done (Green, 2002). Table 2 shows ex-
amples of each construction.

To search for the constructions, we tagged the cor-
pora using the ARK Twitter POS tagger (Gimpel
etal.,2011; Owoputi et al., 201 3),? which Jgrgensen
etal. (2015) show has similar accuracy rates on both
AAE and non-AAE tweets, unlike other POS tag-
gers. We searched for each construction by search-
ing for sequences of unigrams and POS tags char-
acterizing the construction; e.g. for habitual be we
searched for the sequences O-be-V and O-b-V. Non-
standard spellings for the unigrams in the patterns
were identified from the ranked analysis of §3.2.

We examined how a message’s likelihood of us-
ing each construction varies with the message’s pos-
terior probability of AA. We split all messages into
deciles based on the messages’ posterior probabil-

Version 0.3.2: http://www.cs.cmu.edu/~ark/TweetNLP/
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Construction Example Ratio

O-be/b-V 1 be tripping bruh 11.94

gone/gne/gon-V | Then she gon be | 14.26
single Af

done/dne-V I done laughed so | 8.68
hard that I'm weak

Table 2: AAE syntactic constructions and the ratios of their

occurrences in the AA- vs. white-aligned corpora (§2.3).

—— O-be-V
-|—=— gone-V r
—A— done-V

0.002 0.004
I I I
T T T
0.002 0.004

1
T

Proportion of Tweets with Construction

0.000
0.000

T T T T T T T T T T
02 03 04 05 06 07 08 09 10

Posterior Probability of AA

Figure 2: Proportion of tweets containing AAE syntactic con-
structions by messages’ posterior probability of AA. On the x-
axis, 0.1 refers to the decile [0, 0.1).

ity of AA. From each decile, we sampled 200,000
messages and calculated the proportion of messages
containing the three syntactic constructions.

For all three constructions, we observed the clear
pattern that as messages’ posterior probabilities of
AA increase, so does their likelihood of contain-
ing the construction. Interestingly, for all three
constructions, frequency of usage peaks at approx-
imately the [0.7, 0.8) decile. One possible reason
for the decline in higher deciles might be tendency
of high-AA messages to be shorter; while the mean
number of tokens per message across all deciles in
our samples is 9.4, the means for the last two deciles
are 8.6 and 7.1, respectively.

Given the important linguistic differences be-
tween our demographically-aligned subcorpora, we
hypothesize that current NLP tools may behave dif-
ferently. We investigate this hypothesis in §4 and §5.

4 Lang ID Tools on AAE

4.1 Evaluation of Existing Classifiers

Language identification, the task of classifying the
major world language in which a message is writ-
ten, is a crucial first step in almost any web or social



AAE  White-Aligned
langid.py | 13.2% 7.6%
Twitter-1 | 8.4% 5.9%
Twitter-2 | 24.4% 17.6%

Table 3: Proportion of tweets in AA- and white-aligned corpora
classified as non-English by different classifiers. (§4.1)

media text processing pipeline. For example, in or-
der to analyze the opinions of U.S. Twitter users, one
might throw away all non-English messages before
running an English sentiment analyzer.

Hughes et al. (2006) review language identifica-
tion methods; social media language identification
is challenging since messages are short, and also
use non-standard and multiple (often related) lan-
guages (Baldwin et al., 2013). Researchers have
sought to model code-switching in social media lan-
guage (Rosner and Farrugia, 2007; Solorio and Liu,
2008; Maharjan et al., 2015; Zampieri et al., 2013;
King and Abney, 2013), and recent workshops have
focused on code-switching (Solorio et al., 2014)
and general language identification (Zubiaga et al.,
2014). For Arabic dialect classification, work has
developed corpora in both traditional and Roman-
ized script (Cotterell et al., 2014; Malmasi et al.,
2015) and tools that use n-gram and morphological
analysis to identify code-switching between dialects
and with English (Elfardy et al., 2014).

We take the perspective that since AAE is a di-
alect of American English, it ought to be classi-
fied as English for the task of major world language
identification. Lui and Baldwin (2012) develop
langid.py, one of the most popular open source lan-
guage identification tools, training it on over 97 lan-
guages from texts including Wikipedia, and evalu-
ating on both traditional corpora and Twitter mes-
sages. We hypothesize that if a language identifica-
tion tool is trained on standard English data, it may
exhibit disparate performance on AA- versus white-
aligned tweets. Since language identifiers are typi-
cally based on character n-gram features, they may
get confused by the types of lexical/orthographic di-
vergences seen in §3. To evaluate this hypothesis,
we compare the behavior of existing language iden-
tifiers on our subcorpora.

We test langid.py as well as the output of Twitter’s
in-house identifier, whose predictions are included
in a tweet’s metadata (from 2013, the time of data
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collection); the latter may give a language code or
a missing value (unk or an empty/null value). We
record the proportion of non-English predictions by
these systems; Twitter-1 does not consider missing
values to be a non-English prediction, and Twitter-2
does.

We noticed emojis had seemingly unintended
consequences on langid.py’s classifications, so re-
moved all emojis by characters from the relevant
Unicode ranges. We also removed @-mentions.

User-level analysis We begin by comparing the
classifiers’ behavior on the AA- and white-aligned
corpora. Of the AA-aligned tweets, 13.2% were
classified by langid.py as non-English; in contrast,
7.6% of white-aligned tweets were classified as
such. We observed similar disparities for Twitter-1
and Twitter-2, illustrated in Table 3.

It turns out these “non-English” tweets are, for the
most part, actually English. We sampled and anno-
tated 50 tweets from the tweets classified as non-
English by each run. Of these 300 tweets, only 3
could be unambiguously identified as written in a
language other than English.

Message-level analysis We examine how a mes-
sage’s likelihood of being classified as non-English
varies with its posterior probability of AA. As in
§3.4, we split all messages into deciles based on
the messages’ posterior probability of AA, and pre-
dicted language identifications on 200,000 sampled
messages from each decile.

For all three systems, the proportion of messages
classified as non-English increases steadily as the
messages’ posterior probabilities of AA increase.
As before, we sampled and annotated from the
tweets classified as non-English, sampling 50 tweets
from each decile for each of the three systems. Of
the 1500 sampled tweets, only 13 (~0.87%) could
be unambiguously identified as being in a language
other than English.

4.2 Adapting Language Identification for AAE

Natural language processing tools can be improved
to better support dialects; for example, Jgrgensen
et al. (2016) use domain adaptation methods to im-
prove POS tagging on AAE corpora. In this sec-
tion, we contribute a fix to language identification to
correctly identify AAE and other social media mes-
sages as English.
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Figure 3: Proportion of tweets classified as non-English by
messages’ posterior probability of AA. On the x-axis, 0.1 refers
to the decile [0, 0.1).

4.2.1 Ensemble Classifier

We observed that messages where our model in-
fers a high probability of AAE, white-aligned,
or “Hispanic”-aligned language almost always are
written in English; therefore we construct a simple
ensemble classifier by combining it with langid.py.

For a new message w, we predict its
demographic-language proportions 6 via poste-
rior inference with our trained model, given a
symmetric « prior over demographic-topic pro-
portions (see appendix for details). The ensemble
classifier, given a message, is as follows:

e Calculate langid.py’s prediction 7.
o If ¢ is English, accept it as English.

e If § is non-English, and at least one of the
message’s tokens are in demographic model’s
vocabulary: Infer 6 and return English only if
the combined AA, Hispanic, and white poste-
rior probabilities are at least 0.9. Otherwise
return the non-English 4 decision.

Another way to view this method is that we are ef-
fectively training a system on an extended Twitter-
specific English language corpus softly labeled by
our system’s posterior inference; in this respect, it
is related to efforts to collect new language-specific
Twitter corpora (Bergsma et al., 2012) or minority
language data from the web (Ghani et al., 2001).

4.2.2 Evaluation

Our analysis from §4.1 indicates that this method
would correct erroneous false negatives for AAE
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Message set | langid.py | Ensemble
High AA 80.1% 99.5%

High White 96.8% 99.9%
General 88.0% 93.4%

Table 4: Imputed recall of English messages in 2014 messages.
For the General set these are an approximation; see text.

messages in the training set for the model. We fur-
ther confirm this by testing the classifier on a sample
of 2.2 million geolocated tweets sent in the U.S. in
2014, which are not in the training set.

In addition to performance on the entire sample,
we examine our classifier’s performance on mes-
sages whose posterior probability of using AA- or
white-associated terms was greater than 0.8 within
the sample, which in this section we will call high
AA and high white messages, respectively. Our clas-
sifier’s precision is high across the board, at 100%
across manually annotated samples of 200 messages
from each sample.'® Since we are concerned about
the system’s overall recall, we impute recall (Ta-
ble 4) by assuming that all high AA and high white
messages are indeed English. Recall for langid.py
alone is calculated by -, where n is the number
of messages predicted to be English by langid.py,
and N is the total number of messages in the set.
(This is the complement of Table 3, except evalu-
ated on the test set.) We estimate the ensemble’s re-
call as £, where m = (n ;) P(English | flip)
is the expected number of correctly changed classifi-
cations (from non-English to English) by the ensem-
ble and the second term is the precision (estimated
as 1.0). We observe the baseline system has consid-
erable difference in recall between the groups which
is solved by the ensemble.

We also apply the same calculation to the general
set of all 2.2 million messages; the baseline classifies
88% as English. This is a less accurate approxima-
tion of recall since we have observed a substantial
presence of non-English messages. The ensemble
classifies an additional 5.4% of the messages as En-
glish; since these are all (or nearly all) correct, this

0We annotated 600 messages as English, not English, or not
applicable, from 200 sampled each from general, high AA, and
high white messages. Ambiguous tweets which were too short
(e.g. ”’Gm”) or contained only named entities (e.g. "Tennessee”)
were excluded from the final calculations. The resulting sam-
ples have 197/197, 198/198, and 200/200 correct English clas-
sifications, respectively.



reflects at least a 5.4% gain to recall.

S Dependency Parser Evaluation

Given the lexical and syntactic variation of AAE
compared to SAE, we hypothesize that syntac-
tic analysis tools also have differential accuracy.
Jgrgensen et al. (2015) demonstrate this for part-of-
speech tagging, finding that SAE-trained taggers had
disparate accuracy on AAE versus non-AAE tweets.

We assess a publicly available syntactic depen-
dency parser on our AAE and white-aligned corpora.
Syntactic parsing for tweets has received some re-
search attention; Foster et al. (2011) create a cor-
pus of constituent trees for English tweets, and Kong
et al. (2014)’s Tweeboparser is trained on a Twitter
corpus annotated with a customized unlabeled de-
pendency formalism; since its data was uniformly
sampled from tweets, we expect it may have low dis-
parity between demographic groups.

We focus on widely used syntactic representa-
tions, testing the SyntaxNet neural network-based
dependency parser (Andor et al., 2016),'! which re-
ports state-of-the-art results, including for web cor-
pora. We evaluate it against a new manual an-
notation of 200 messages, 100 randomly sampled
from each of the AA- and white-aligned corpora de-
scribed in §2.3.

SyntaxNet outputs grammatical relations con-
forming to the Stanford Dependencies (SD) system
(de Marneffe and Manning, 2008), which we used to
annotate messages using Brat,'> comparing to pre-
dicted parses for reference. Message order was ran-
domized and demographic inferences were hidden
from the annotator. To increase statistical power rel-
ative to annotation effort, we developed a partial an-
notation approach to only annotate edges for the root
word of the first major sentence in a message. Gen-
erally, we found that that SD worked well as a de-
scriptive formalism for tweets’ syntax; we describe
handling of AAE and Internet-specific non-standard
issues in the appendix. We evaluate labeled recall
of the annotated edges for each message set:

Parser AA Wh. Difference
SyntaxNet 64.0 250 80.4 22 16334
CoreNLP 50.02.7 71.025 21.03.7

"Using the publicly available mcparseface model: https:/
github.com/tensorflow/models/tree/master/syntaxnet
Zhttp://brat.nlplab.org/
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Bootstrapped standard errors (from 10,000 message
resamplings) are in parentheses; differences are sta-
tistically significant (p < 10~% in both cases).

The white-aligned accuracy rate of 80.4% is
broadly in line with previous work (compare to the
parser’s unlabeled accuracy of 89% on English Web
Treebank full annotations), but parse quality is much
worse on AAE tweets at 64.0%. We test the Stanford
CoreNLP neural network dependency parser (Chen
and Manning, 2014) using the english_.SD model
that outputs this formalism;'? its disparity is worse.
Soni et al. (2014) used a similar parser14 on Twitter
text; our analysis suggests this approach may suffer
from errors caused by the parser.

6 Discussion and Conclusion

We have presented a distantly supervised probabilis-
tic model that employs demographic correlations of
a dialect and its speaker communities to uncover di-
alectal language on Twitter. Our model can also
close the gap between NLP tools’ performance on
dialectal and standard text.

This represents a case study in dialect identifica-
tion, characterization, and ultimately language tech-
nology adaptation for the dialect. In the case of
AAE, dialect identification is greatly assisted since
AAE speakers are strongly associated with a demo-
graphic group for which highly accurate governmen-
tal records (the U.S. Census) exist, which we lever-
age to help identify speaker communities. The no-
tion of non-standard dialectal language implies that
the dialect is underrepresented or underrecognized
in some way, and thus should be inherently diffi-
cult to collect data on; and of course, many other
language communities and groups are not necessar-
ily officially recognized. An interesting direction
for future research would be to combine distant su-
pervision with unsupervised linguistic models to au-
tomatically uncover such underrecognized dialectal
language.

Acknowledgments: We thank Jacob Eisenstein, Taylor Jones,
Anna Jgrgensen, Dirk Hovy, and the anonymous reviewers for
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Bpos,depparse options in version 2015-04-20, using tok-
enizations output by SyntaxNet.

4The older Stanford englishPCFG model with dependency
transform (via pers. comm.).
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