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Abstract

Essay scoring is a complicated processing re-
quiring analyzing, summarizing and judging
expertise. Traditional work on essay scoring
focused on automatic handcrafted features,
which are expensive yet sparse. Neural mod-
els offer a way to learn syntactic and semantic
features automatically, which can potentially
improve upon discrete features. In this pa-
per, we employ convolutional neural network
(CNN) for the effect of automatically learn-
ing features, and compare the result with the
state-of-art discrete baselines. For in-domain
and domain-adaptation essay scoring tasks,
our neural model empirically outperforms dis-
crete models.

1 Introduction

Automatic essay scoring (AES) is the task of build-
ing a computer-based grading system, with the aim
of reducing the involvement of human raters as far
as possible. AES is challenging since it relies not
only on grammars, but also on semantics, discourse
and pragmatics. Traditional approaches treat AES
as a classification (Larkey, 1998; Rudner and Liang,
2002), regression (Attali and Burstein, 2004; Phandi
et al., 2015), or ranking classification problem (Yan-
nakoudakis et al., 2011; Chen and He, 2013), ad-
dressing AES by supervised learning. Features are
typically bag-of-words, spelling errors and lengths,
such word length, sentence length and essay length,
etc. Some grammatical features are considered to
assess the quality of essays (Yannakoudakis et al.,
2011). A drawback is feature engineering, which
can be time-consuming, since features need to be
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carefully handcrafted and selected to fit the appro-
riate model. A further drawback of manual feature
templates is that they are sparse, instantiated by dis-
crete pattern-matching. As a result, parsers and se-
mantic analyzers are necessary as a preprocessing
step to offer syntactic and semantic patterns for fea-
ture extraction. Given variable qualities of student
essays, such analyzers can be highly unreliable.
Neural network approaches have been shown to
be capable of inducing dense syntactic and semantic
features automatcially, giving competitive results to
manually designed features for several tasks (Kalch-
brenner et al., 2014; Johnson and Zhang, 2014; dos
Santos and Gatti, 2014). In this paper, we empir-
ically investigate a neural network method to learn
features automatically for AES, without the need of
external pre-processing. In particular, we build a hi-
erarchical CNN model, with one lower layer repre-
senting sentence structures and one upper layer rep-
resenting essay structure based on sentence repre-
sentations. We compare automatically-induced fea-
tures by the model with state-of-art baseline hand-
crafted features. Empirical results show that neural
features learned by CNN are very effective in essay
scoring task, covering more high-level and abstract
information compared to manual feature templates.

2 Related Work

Following the first AES system Project Essay Grade
(PEG) been developed in 1966 (Page, 1994), a num-
ber of commercial systems have come out, such
as IntelliMetric 2, Intelligent Essay Assessor (IEA)
(Foltz et al., 1999) and e-rater system (Attali and
Burstein, 2004). The e-rater system now plays a
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second human rater’s role in the Test of English as
a Foreign Language (TOEFL) and Graduate Record
Examination (GRE). The e-rater extracts a number
of complex features, such as grammatical error and
lexical complexity, and uses stepwise linear regres-
sion. IEA uses Latent Semantic Analysis (LSA)
(Landauer et al., 1998) to create semantic vectors for
essays and measure the semantic similarity between
the vectors.

In the research literature, Larkey (1998) and Rud-
ner and Liang (2002) treat AES as classification us-
ing bag-of-words features. Other recent work for-
mulates the task as a preference ranking problem
(Yannakoudakis et al., 2011; Chen and He, 2013).
Yannakoudakis et al. (2011) formulated AES as a
pairwise ranking problem by ranking the order of
pair essays based on their quality. Features consist
of word, POS n-grams features, complex grammati-
cal features and so on. Chen and He (2013) formu-
lated AES into a listwise ranking problem by con-
sidering the order relation among the whole essays
and features contain syntactical features, grammar
and fluency features as well as content and prompt-
specific features. Phandi et al. (2015) use correlated
Bayesian Linear Ridge Regression (cBLRR) focus-
ing on domain-adaptation tasks. All these previous
methods use discrete handcrafted features.

Recently, Alikaniotis et al. (2016) also employ
a neural model to learn features for essay scor-
ing automatically, which leverages a score-specific
word embedding (SSWE) for word representations
and a two-layer bidirectional long-short term mem-
ory network (LSTM) to learn essay representations.
Alikaniotis et al. (2016) show that by combining
SSWE, LSTM outperforms traditional SVM model.
On the other hand, using LSTM alone does not give
significantly more accuracies compared to SVM.
This conforms to our preliminary experiments with
the LSTM structure. Here, we use CNN without
any specific embeddings and show that our neural
models could outperform baseline discrete models
on both in-domain and cross-domain senarios.

CNN has been used in many NLP applications,
such as sequence labeling (Collobert et al., 2011) ,
sentences modeling (Kalchbrenner et al., 2014), sen-
tences classification (Kim, 2014), text categorization
(Johnson and Zhang, 2014; Zhang et al., 2015) and
sentimental analysis (dos Santos and Gatti, 2014),
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Feature Type | Feature Description

Length Number of characters, words,
sentences, etc.

POS Relative and absolute number of
bad POS n-grams

Prompt Relative and absolute number of

words and their synonyms in the
essay appearing in the prompt
Count of useful unigrams and
bigrams (unstemmed, stemmed
and spell corrected)

Table 1: Feature description used by EASE.

Bag-of-words

etc. In this paper, we explore CNN representa-
tion ability for AES tasks on both in-domain and
domain-adaptation settings.

3 Baseline

Bayesian Linear Ridge Regression (BLRR) and
Support Vector Regression (SVR) (Smola and Vap-
nik, 1997) are chosen as state-of-art baselines. Fea-
ture templates follow (Phandi et al., 2015), extracted
by EASE!, which are briefly listed in Table 1. “Use-
ful n-grams” are determined using the Fisher test to
separate the good scoring essays and bad scoring es-
says. Good essays are essays with a score greater
than or equal to the average score, and the remainder
are considered as bad scoring essays. The top 201 n-
grams with the highest Fisher values are chosen as
the bag of features and these top 201 n-grams consti-
tute useful n-grams. Correct POS tags are generated
using grammatically correct texts, which is done by
EASE. The POS tags that are not included in the
correct POS tags are treated as bad POS tags, and
these bad POS tags make up the “bad POS n-grams”
features.

The features tend to be highly useful for the
in-domain task since the discrete features of same
prompt data share the similar statistics. However,
for different prompts, features statistics vary signif-
icantly. This raises challenges for discrete feature
patterns.

ML-p (Phandi et al., 2015) was proposed to ad-
dress this issue. It is based on feature augmentation,
incorporating explicit correlation into augmented
feature spaces. In particular, it expands baseline fea-
ture vector x to be ®°(x) = (px, (1 — p?)"/?x) and
®'(x) = (x,0p) for source and target domain data

"https://github.com/edx/ease
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Figure 1: Hierarchical CNN structure

in R?P respectively, with p being the correlation be-
tween source and target domain data. Then BLRR
and maximum likelihood estimation are used to the
optimize correlation. All the baseline models re-
quire POS-tagging as a pre-processing step, extract-
ing syntactic features based on POS-tags.

4 Model

Word Representations We use word embedding
with an embedding matrix E,, € R%*Vw where
d,, is the embedding dimension, and V,, represents
words vocabulary size. A word vector z; is repre-
sented by z; = F,w; where w; is the ¢-th word in
a sentence. In contrast to the baseline models, our
CNN model does not rely on POS-tagging or other
pre-processing.

CNN Model We take essay scoring as a regression
task and employ a two-layer CNN model, in which
one convolutional layer is used to extract sentences
representations, and the other is stacked on sentence
vectors to learn essays representations. The archi-
tecture is depicted in Figure 1. Given an input sen-
tence z1, 22, ..., Zn, a convolution layer with a filter
w € RM* is applied to a window of h words to
produce n-grams features. For instance, a feature c;
is generated from a window of words 2;.,4x—1 by
¢i = f(W- zjirn_1 +b), b € R is the bias term
and f is the non-linear activation function rectified
linear unit (ReLU).

The filter is applied to the all possible win-
dows in a sentence to produce a feature map c
[c1,€2, <oy Cm—p+1). For ¢ of the j-th sentence in
an essay, max-pooling and average pooling func-
tion are used to produce the sentence vector s/ =
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Set | #Essays | Genre | Avg Len. | Range | Med
1 1783 ARG | 350 2-12 8

2 1800 ARG | 350 1-6 3

3 1726 RES 150 0-3 1

4 1772 RES 150 0-3 1

5 1805 RES 150 0-4 2

6 1800 RES 150 0-4 2

7 1569 NAR | 250 0-30 16

8 723 NAR | 650 0-60 36

Table 2: Details of the ASAP data; the last two columns
are score range and median scores. For genre, ARG spec-
ifies argumentative essays, RES means response essays
and NAR denotes narrative essays.

max{c¢’} ® avg{e’}. The second convolutional
layer takes s', s,..., s as inputs, followed by pool-
ing layer (max-pooling and average-pooling) and a
fully-connected hidden layer. The hidden layer di-
rectly connects to output layer which generates a
score.

S Experiments

5.1 Setup

Data We use the Automated Student Assessment
Prize (ASAP)? dataset as evaluation data for our
task, which contains 8 prompts of different genres
as listed in Table 2. The essay scores are scaled into
the range from O to 1. The settings of data prepara-
tion follow (Phandi et al., 2015). We use quadratic
weighted kappa (QWK) as the metric. For domain-
adaptation (cross-domain) experiments, we follow
(Phandi et al., 2015), picking four pairs of essay
prompts, namely, 1—2, 3—4, 5—6 and 7—8, where
1—2 denotes prompt 1 as source domain and prompt

“https://www.kaggle.com/c/asap-aes/data



Parameter | Parameter Name Value Model | BLRR | SVR CNN Human
dy Word embedding dimension 100 Avg 0.725 ] 0.682 | 0.734 | 0.754
hwrd Word context window size 5 Std dev | 0.0025 | 0.0033 | 0.0029 | —
hsent Sentence context window size | 3 Table 4: Indomain average kappa value and standard de-
kwrd ‘Word convolution units 50 viation over all 8 prompts.
ksent Sentence convolution units 50
P Hidden size 50 Pairs | Method n; =10 25 50 100
drop_rate Dropout rate 0.5 1-2 | ML-p  0.365 0.437 0.521 0.559
batch_size | Batch size 4 CNN  0.546 0.569 0.563 0.559
A Learning rate 0.01 3—4 | ML-p 0.435 0.540 0.590 0.619
Table 3: Neural Model Hyper-parameters CNN  0.628 0.656  0.659  0.662
5—6 | ML-p 0415 0.600 0.678 0.718
09 CNN  0.647 0.700 0.714 0.750
- 7—8 [ ML-p 0328 0438 0496 0.551
- CNN  0.570 0.590 0.568 0.587

0.7
0.65
0.6
0.55

0.5
1 2 3 4 5 6 7 8

BLRR MSVR MCNN Human

Figure 2: In-domain results

2 as target domain. All source domain essays are
used as training data. Target domain data are ran-
domly divided into 5 folds, where one fold is used
as test data, and other 4 folds are collected together
to sub-sample target domain train data. The sub-
sampled sizes are 10, 25, 50, 100, with the larger
sampled sets containing the smaller ones. And we
repeated sub-sampling 5 times for each target train-
ing number to alleviate bias.

Hyper-parameters We use Adagrad for optimiza-
tion. Word embeddings are randomly initialized and
the hyper-parameter settings are listed in Table 3.

5.2 Results

In-domain The in-domain results are shown in
Figure 2. The average values of all 8 prompt sets
are listed in Table 4. For the in-domain task, CNN
outperforms the baseline model SVR on all prompts
of essay sets, and is competitive to BLRR. For the
statistical significance, neural model is significantly
better than baseline models with the p-value less
than 10° at the confidence level of 95%. The av-
erage kappa value over 8 prompts is close to that of
human raters.

Cross-domain The domain-adaptation results are
shown in Table 5. It can be seen that our CNN
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Table 5: Cross-domain results.

model outperforms ML-p on almost all pairs of
adaptation experiments. ML-p domain-adaptation
method’s performance improves as the size of tar-
get domain training data increases. However, com-
pared to ML-p, target training data size has less im-
pact on our neural model. Even if the target train-
ing size is small, the neural model still gives strong
performance. This results from the fact that neu-
ral model could learn more high-level and abstract
features compared to traditional models with hand-
crafted discrete features. We plot the confusion ma-
trix between truth and model prediction on test data
in Figure 4, which shows that prediction scores of
neural model tend to be closer to true values, which
is very important in our task.

5.3 Feature Analysis

To visualize the features learned by our model, we
use t-distributed stochastic neighbor embedding (t-
SNE) (Van der Maaten and Hinton, 2008), pro-
jecting 50-dimensional features into 2-dimensional
space. We take two domain pairs 3—4 and 5—6
as examples on the cross-domain task, extracting
fully-connected hidden-layer features for target do-
main data using model trained on source domain
data. The results are showed in Figure 3. The base-
line discrete features are more concentrated, which
shows that patterns on source prompt are weak in
differentiating target prompt essays. By using ML-p
and leveraging 100 target prompt training examples,
the discrete features patterns are more scattered, in-
creasing the differentiating power. In contrast, CNN
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Figure 3: Visualization of discrete and neural features using t-SNE (each value represents an essay of the correspond-
ing score). Top: Set 4 (3—4), Bottom: Set 6 (5—6). (a) discrete features; (b) ML-p features, n; = 100; (c) neural
features; (d) discrete features; (e) ML-p features, n, = 100; (f) neural features.
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Figure 4: Confusion matrix of true and prediction scores
by two different models on test data when target training
size n; = 10. (a) ML-p on 1—=2; (b) CNN model on
1—2; (c) ML-p on 5—6; (d) CNN model on 5—6.
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features trained on source prompt are sparse when
used directly on the target prompt. This shows that
neural features learned by the CNN model can better
differentiate essays of different qualities. Without
manual templates, such features automatically cap-
ture subtle and complex information that is relevant
to the task.

6 Conclusion

We empirically investigated a hierarchical CNN
model for automatic essay scoring, showing au-
tomatically learned features competitive to dis-
crete handcrafted features for both in-domain and
domain-adaptation tasks. The results demonstrate
large potential for deep learning in AES.
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