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Abstract

Lexical simplification of scientific terms rep-
resents a unique challenge due to the lack of a
standard parallel corpora and fast rate at which
vocabulary shift along with research. We in-
troduce SimpleScience, a lexical simplifica-
tion approach for scientific terminology. We
use word embeddings to extract simplification
rules from a parallel corpora containing sci-
entific publications and Wikipedia. To eval-
uate our system we construct SimpleSciGold,
a novel gold standard set for science-related
simplifications. We find that our approach out-
performs prior context-aware approaches at
generating simplifications for scientific terms.

1 Introduction

Lexical simplification, the process of reducing the
complexity of words by replacing them with sim-
pler substitutes (e.g., sodium in place of Na; insects
in place of lepidopterans) can make scientific texts
more accessible to general audiences. Human-in-
the-loop interfaces present multiple possible simpli-
fications to a reader (on demand) in place of jargon
and give the reader familiar access points to under-
standing jargon (Kim et al., 2015). Unfortunately,
simplification techniques are not yet of high enough
quality for fully automated scenarios.

Currently lexical simplification pipelines for sci-
entific texts are rare. The vast majority of prior
methods assume a domain independent context, and
rely on Wikipedia and Simple English Wikipedia, a
subset of Wikipedia using simplified grammar and
terminology, to learn simplifications (Biran et al.,

2011; Paetzold and Specia, 2015), with translation-
based approaches using an aligned version (Coster
and Kauchak, 2011; Horn et al., 2014; Yatskar
et al., 2010). However, learning simplifications
from Wikipedia is not well suited to lexical sim-
plification of scientific terms. Though generic or
established terms may appear in Wikipedia, novel
terms associated with new advances may not be re-
flected. Wikipedia’s editing rules also favor gener-
ality over specificity and eliminate redundancy, both
of which are problematic in providing a rich train-
ing set that matches simple and complex terms. Fur-
ther, some approaches work by detecting all pairs of
words in a corpus and filtering to isolate synonym or
hypernym-relationship pairs using WordNet (Biran
et al., 2011). Like Wikipedia, WordNet is a general
purpose semantic database (Miller, 1995), and does
not cover all branches of science nor integrate new
terminology quickly.

Word embeddings do not require the use of pre-
built ontologies to identify associated terms like
simplifications. Recent work indicates that they may
improve results for simplification selection: deter-
mining which simplifications for a given complex
word can be used without altering the meaning of
the text (Paetzold and Specia, 2015). Embeddings
have also been explored to extract hypernym rela-
tions from general corpora (Rei and Briscoe, 2014).
However, word embeddings have not been used for
generating lexical simplifications. We provide a
novel demonstration of how using embeddings on
a scientific corpus is better suited to learning scien-
tific term simplifications than prior approaches that
use WordNet as a filter and Wikipedia as a corpus.
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INPUT: Finally we show that the transient immune activation
that renders mosquitoes resistant to the human malaria parasite
has little to no effect on mosquito fitness as a measure of sur-
vival or fecundity under laboratory conditions.
CANDIDATE RULES:
{fecundity→fertility} {fecundity→productivity}
OUTPUT:
Finally we show that the transient immune activation that ren-
ders mosquitoes resistant to the human malaria parasite has lit-
tle to no effect on mosquito fitness as a measure of survival or
(fertility; productivity) under laboratory conditions.

Table 1: Input sentence, candidate rules and output sentence.

(Further examples provided as supplementary material.)

We introduce SimpleScience, a novel lexical sim-
plification pipeline for scientific terms, which we
apply to a scientific corpus of nearly 500k publi-
cations in Public Library of Science (PLOS) and
PubMed Central (PMC) paired with a general cor-
pus from Wikipedia. We validate our approach us-
ing SimpleSciGold, a gold standard set that we cre-
ate using crowdsourcing that contains 293 sentences
containing scientific terms with an average of 21
simplifications per term. We show how the Sim-
pleScience pipeline achieves better performance (F-
measure: 0.285) than the prior approach to simplifi-
cation generation applied to our corpus (F-measure:
0.136). We further find that the simplification se-
lection techniques used in prior work to determine
which simplifications are a good fit for a sentence
do not improve performance when our generation
pipeline is used. 1

2 Parallel corpora: Scientific and General

We assembled a scientific corpus of papers from the
entire catalog of PLOS articles and the National Li-
brary of Medicine’s Pubmed Central (PMC) archive
(359,324 fulltext articles). The PLOS corpus of
125,378 articles includes articles from PLOS One
and each speciality PLOS journal (e.g., Pathogens,
Computational Biology). Our general corpus in-
cludes all 4,776,093 articles from the Feb. 2015 En-
glish Wikipedia snapshot. We chose Wikipedia as
it covers many scientific concepts and usually con-
tains descriptions of those concepts using simpler
language than the research literature. We obtained
all datasets from DeepDive (Ré and Zhang, 2015).

1Data and source code are available at:
https://github.com/yeaseulkim/SimpleScience

3 SimpleScience Design

3.1 Generating Simplifications

Our goal is to learn simplification rules in the form
complex word→simple word. One approach identi-
fies all pairwise permutations of ‘content’ terms and
then applies semantic (i.e., WordNet) and simplic-
ity filters to eliminate pairs that are not simplifica-
tions(Biran et al., 2011). We adopt a similar pipeline
but leverage distance metrics on word embeddings
and a simpler frequency filter in place of WordNet.
Embeddings identify words that share context in an
unsupervised, scalable way and are more efficient
than constructing co-occurrence matrices (Biran et
al., 2011). As our experiments demonstrate, our ap-
proach improves performance on a scientific test set
over prior work.

3.1.1 Step 1: Generating Word Embeddings
We used the Word2Vec system (Mikolov et al.,

2013) to learn word vectors for each content word in
the union of vocabulary of the scientific and general
corpus. While other approaches exist (Pennington
et al., 2014; Levy and Goldberg, 2014), Word2Vec
has been shown to produce both fast and accurate
results (Mikolov et al., 2013). We set the embed-
ding dimension to 300, the context-window to 10,
and use the skip-gram architecture with negative-
sampling,which is known to produce quality results
for rare entities (Mikolov et al., 2013).

3.1.2 Step 2: Filtering Pairs
Given the set of all pairwise permutations of

words, we retain a simplification rule of two words
w1, w2 if the cosine similarity cos(w1, w2) between
the word vectors is greater than a threshold a. We
use grid search, described below, to parameterize a.

We then apply additional filtering rules. To avoid
rules comprised of words with the same stem (e.g.,
permutable, permutation) we stem all words (us-
ing the Porter stemmer in the Python NLTK li-
brary (Bird et al., 2009)). The POS of each word
is determined by Morphadorner (Burns, 2013) and
pairs that differ in POS are omitted (e.g., permu-
tation (noun), change(d) (verb)); Finally, we omit
rules where one word is a prefix of the other and the
suffix is one of s, es, ed, ly, er, or ing.

To retain only rules of the form complex word→
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simple word we calculate the corpus complexity, C
(Biran et al., 2011) of each word w as the ratio be-
tween the frequency (f ) in the scientific versus gen-
eral corpus: Cw = fw,scientific/fw,general. The lex-
ical complexity, L, of a word is calculated as the
word’s character length, and the final complexity of
the word as Cw×Lw. We require that the final com-
plexity score of the first word in the rule be greater
than the second.

While this simplicity filter has been shown to
work well in general corpora (Biran et al., 2011), it
is sensitive to very small differences in the frequen-
cies with which both words appear in the corpora.
This is problematic given the distribution of terms in
our corpora, where many rarer scientific terms may
appear in small numbers in both corpora.

We introduce an additional constraint that re-
quires that the second (simple) word in the rule oc-
cur in the general corpus at least k times. This helps
ensure that we do not label words that are at a simi-
lar complexity level as simplifications. We note that
this filter aligns with prior work that suggests that
features of the hypernym in hypernym-hyponym re-
lations influence performance more than features of
the hyponym (Rei and Briscoe, 2014).

Parameterization: We use a grid search anal-
ysis to identify which measures of the set in-
cluding cos(w1, w2), fw1,scientific, fw2,scientific,
fw1,general, and fw2,general most impact the F-
measure when we evaluate our generation approach
against our scientific gold standard set (Sec. 4), and
to set the specific parameter values. Using this
method we identify a=0.4 for cosine similarity and
k=3,000 for the frequency of the simple term in the
general corpus. Full results are available in supple-
mentary material.

3.2 Applying Simplifications
In prior context-aware simplification systems, the
decision of whether to apply a simplification rule
in an input sentence is complex, involving several
similarity operations on word co-occurrence matri-
ces (Biran et al., 2011) or using embeddings to
incorporate co-occurrence context for pairs gener-
ated using other means (Paetzold and Specia, 2015).
However, the SimpleScience pipline already consid-
ers the context of appearance for each word in de-
riving simplifications via word embeddings learned

from a large corpus. We see no additional improve-
ments in F-measure when we apply two variants of
context similarity thresholds to decide whether to
apply a rule to an input sentence. The first is the
cosine similarity between the distributed represen-
tation of the simple word and the sum of the dis-
tributed representations of all words within a win-
dow l surrounding the complex word in the input
sentence (Paetzold and Specia, 2015). The second is
the cosine similarity of a minimum shared frequency
co-occurrence matrix for the words in the pair and
the co-occurrence matrix for the input sentence (Bi-
ran et al., 2011).

In fully automated applications, the top rule from
the ranked candidate rules is used. We find that rank-
ing by the cosine similarity between the word em-
beddings for the complex and simple word in the
rule leads to the best performance at the top slot (full
results in supplementary material).

4 Evaluation

4.1 SimpleSciGold Test Set

To evaluate our pipeline, we develop Sim-
pleSciGold, a scientific gold standard set of sen-
tences containing complex scientific terms which is
modeled after the general purpose gold standard set
created by Horn et al. (2014).

To create SimpleSciGold, we start with scientific
terms from two sources: we utilized all 304 com-
plex terms from unigram rules by (Vydiswaran et
al., 2014), and added another 34,987 child terms
from rules found by mining direct parent-child rela-
tions for unigrams in the Medical Subject Headings
(MeSH) ontology (United States National Library of
Medicine, 2015). We chose complex terms with pre-
existing simplifications as it provided a means by
which we could informally check the crowd gener-
ated simplifications for consistency.

To obtain words in context, we extracted 293
sentences containing unique words in this set from
PLOS abstracts from PLOS Biology, Pathology, Ge-
netics, and several other journals. We present 10
MTurk crowdworkers with a task (“HIT”) show-
ing one of these sentences with the complex word
bolded. Workers are told to read the sentence, con-
sult online materials (we provide direct links to a
Wikipedia search, a standard Google search, and
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SimpleSciGold

Method Corpus
(Complex, Simple)

Number of
Simplifications Pot. Prec. F

Biran et al. 2011 Wikipedia, SEW 17 0.059 0.036 0.044
PLOS/PMC, Wikip. 588 0.352 0.084 0.136

SimpleScience
(cos ≥ .4, fw,simple ≥ 3000) PLOS/PMC, Wikip. 2,322 0.526 0.196 0.285

SimpleScience
(cos ≥ .4, fw,simple ≥ 0) PLOS/PMC, Wikip. 10,910,536 0.720 0.032 0.061

Table 2: Simplification Generation Results. SimpleScience achieves the highest F-measure with a cosine threshold of 0.4 and a

frequency of the simple word in the general corpus of 3000.

a Google “define” search on the target term), and
add their simplification suggestions. Crowdworkers
first passed a multiple choice practice qualification
in which they were presented with sentences con-
taining three complex words in need of simplifica-
tion along with screenshots of Wikipedia and dictio-
nary pages for the terms. The workers were asked
to identify which of 5 possible simplifications listed
for each complex word would preserve the mean-
ing while simplifying. 108 workers took part in the
gold standard set creation task, completing an aver-
age of 27 HITs each. The resulting SimpleSciGold
standard set consists of an average of 20.7 simplifi-
cations for each of the 293 complex words in corre-
sponding sentences.

4.2 Simplification Generation

We compare our word embedding generation pro-
cess (applied to our corpora) to Biran et al.’s (2011)
approach (applied to the Wikipedia and Simple En-
glish Wikipedia corpus as well as our scientific cor-
pora). Following the evaluation method used in
Paetzold and Specia (2015), we calculate potential
as the proportion of instances for which at least one
of the substitutions generated is present in the gold
standard set, precision as the proportion of generated
instances which are present in the gold standard set,
and F-measure as their harmonic mean.

Our SimpleScience approach outperforms the
original approach by Biran et al. (2011) applied to
the Wikipedia and SEW corpus as well as to the sci-
entific corpus (Table 1).

4.3 Applying Simplifications

We find that neither prior selection approaches yield
performance improvements over our generation pro-

cess. We evaluate the performance of ranking can-
didate rules by cosine similarity (to find the top rule
for a fully automated application), and achieve pre-
cision of 0.389 at the top slot. In our supplementary
materials, we provide additional results for poten-
tial, precision and F-measure at varying numbers of
slots (up to 5), where we test ranking by cosine sim-
ilarity of embeddings as well as by the second filter
used in our pair generation step: the frequency of the
simple word in the simple corpus.

4.4 Antonym Prevalence Analysis

A risk of using Word2Vec in place of WordNet
is that the simpler terms generated by our ap-
proach may represent terms with opposite mean-
ings (antonyms). While a detailed analysis is be-
yond the scope of this paper, we compared the like-
lihood of seeing antonyms in our results using a
gold standard set of antonyms for biology, chem-
istry, and physics terms from WordNik (Wordnik,
2009). Specifically, we created an antonym set con-
sisting of the 304 terms from the biology, chemistry,
and physics categories in Wictionary for which at
least one antonym is listed in WordNik. We com-
pared antonym pairs with rules that produced by
the SimpleScience pipeline (Fig. 1). We observed
that 14.5% of the time (44 out of 304 instances),
an antonym appeared at the top slot among results.
51.3% of the time (156 out of 304 instances), no
antonyms in the list appeared within the top 100
ranked results. These results suggest that further
filters are necessary to ensure high enough quality
results for fully automated applications of scientific
term simplification.
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Figure 1: Probability of an antonym in our test set occurring

as a suggested simpler term in the top 100 slots in the Simple-

Science pipeline.

5 Limitations and Future Work

A risk of using Word2Vec to find related terms,
rather than querying a lexical database like Word-
Net, is that generated rules may include antonyms.
Adding techniques to filter antonym rules, such as
using co-reference chains (Adel and Schütze, 2014),
is important in future work.

We achieve a precision of 0.389 at the top slot
on our SimpleSciGold standard set when we ap-
ply our generation method and rank candidates by
cosine similarity. This level of precision is higher
than that achieved by various prior ranking meth-
ods used in Lexenstein (Paetzold and Specia, 2015),
with the exception of using machine learning tech-
niques like SVM (Paetzold and Specia, 2015). Fu-
ture work should explore how much the precision
of our SimpleScience pipeline can be improved by
adopting more sophisticated ranking methods. How-
ever, we suspect that even the highest precision ob-
tained on general corpora and gold standard sets in
prior work is not sufficient for fully automated sim-
plification. An exciting area for future work is in
applying the SimpleScience pipeline in interactive
simplification suggestion interfaces for those read-
ing or writing about science (Kim et al., 2015).

6 Conclusion

In this work, we introduce SimpleScience, a lexical
simplification approach to address the unique chal-
lenges of simplifying scientific terminology, includ-
ing a lack of parallel corpora, shifting vocabulary,
and mismatch with using general purpose databases
for filtering. We use word embeddings to extract
simplification rules from a novel parallel corpora
that contains scientific publications and Wikipedia.

Using SimpleSciGold, a gold standard set that we
created using crowdsourcing, we show that using
embeddings and simple frequency filters on a sci-
entific corpus outperforms prior approaches to sim-
plification generation, and renders the best prior ap-
proach to simplification selection unnecessary.
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