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Abstract

Even syntactically correct sentences are per-
ceived as awkward if they do not contain cor-
rect punctuation. Still, the problem of au-
tomatic generation of punctuation marks has
been largely neglected for a long time. We
present a novel model that introduces punc-
tuation marks into raw text material with
transition-based algorithm using LSTMs. Un-
like the state-of-the-art approaches, our model
is language-independent and also neutral with
respect to the intended use of the punctuation.
Multilingual experiments show that it achieves
high accuracy on the full range of punctuation
marks across languages.

1 Introduction

Although omnipresent in (language learner) gram-
mar books, punctuation received much less atten-
tion in linguistics and natural language processing
(Krahn, 2014). In linguistics, punctuation is gener-
ally acknowledged to possess different functions. Its
traditionally most studied function is that to encode
prosody of oral speech, i.e., the prosodic rhetori-
cal function; see, e.g., (Kirchhoff and Primus, 2014)
and the references therein. In particular the comma
is assumed to possess a strong rhetorical function
(Nunberg et al., 2002). Its other functions are the
grammatical function, which leads it to form a sep-
arate (along with semantics, syntax, and phonology)
grammatical submodule (Nunberg, 1990), and the
syntactic function (Quirk et al., 1972), which makes
it reflect the syntactic structure of a sentence.

The different functions of punctuation are also re-
flected in different tasks in natural language process-

ing (NLP): introduction of punctuation marks into a
generated sentence that is to be read aloud, restora-
tion of punctuation in speech transcripts, parsing un-
der consideration of punctuation, or generation of
punctuation in written discourse. Our work is cen-
tered in the last task. We present a novel punctuation
generation algorithm that is based on the transition-
based algorithm with long short-term memories
(LSTMs) by Dyer et al. (2015) and character-based
continuous-space vector embeddings of words using
bidirectional LSTMs (Ling et al., 2015b; Ballesteros
et al., 2015). The algorithm takes as input raw ma-
terial without punctuation and effectively introduces
the full range of punctuation symbols. Although in-
tended, first of all, for use in sentence generation, the
algorithm is function- and language-neutral, which
makes it different, compared to most of the state-
of-the-art approaches, which use function- and/or
language-specific features.

2 Related Work

The most prominent punctuation-related NLP task
has been so far introduction (or restoration) of punc-
tuation in speech transcripts. Most often, classifier
models are used that are trained on n-gram mod-
els (Gravano et al., 2009), on n-gram models en-
riched by syntactic and lexical features (Ueffing et
al., 2013) and/or by acoustic features (Baron et al.,
2002; Kolář and Lamel, 2012). Tilk and Alumäe
(2015) use a lexical and acoustic (pause duration)
feature-based LSTM model for the restoration of pe-
riods and commas in Estonian speech transcripts.
The grammatical and syntactic functions of punctu-
ation have been addressed in the context of written
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language. Some of the proposals focus on the gram-
matical function (Doran, 1998; White and Rajku-
mar, 2008), while others bring the grammatical and
syntactic functions together and design rule-based
grammatical resources for parsing (Briscoe, 1994)
and surface realization (White, 1995; Guo et al.,
2010). Guo et al. (2010) is one of the few works
that is based on a statistical model for the genera-
tion of punctuation in the context of Chinese sen-
tence generation, trained on a variety of syntactic
features from LFG f-structures, preceding punctu-
ation bigrams and cue words.

Our proposal is most similar to Tilk and Alumäe
(2015), but our task is more complex since we gen-
erate the full range of punctuation marks. Further-
more, we do not use any acoustic features. Com-
pared to Guo et al. (2010), we do not use any syn-
tactic features either since our input is just raw text
material.

3 Model

Our model is inspired by a number of recent works
on neural architectures for structure prediction:
Dyer et al. (2015)’s transition-based parsing model,
Dyer et al. (2016)’s generative language model and
phrase-structure parser, Ballesteros et al. (2015)’s
character-based word representation for parsing, and
Ling et al. (2015b)’s part-of-speech tagging .

3.1 Algorithm

We define a transition-based algorithm that intro-
duces punctuation marks into sentences that do not
contain any punctuation. In the context of NLG, the
input sentence would be the result of the surface re-
alization task (Belz et al., 2011). As in transition-
based parsing (Nivre, 2004), we use two data struc-
tures: Nivre’s queue is in our case the input buffer
and his stack is in our case the output buffer. The al-
gorithm starts with an input buffer full of words and
an empty output buffer. The two basic actions of
the algorithm are SHIFT, which moves the first word
from the input buffer to the output buffer, and GEN-
ERATE, which introduces a punctuation mark after
the first word in the output buffer. Figure 1 shows an
example of the application of the two actions.

At each stage t of the application of the algorithm,
the state, which is defined by the contents of the out-

Transition Output Input
[ ] [No it was not]

SHIFT [No] [it was not]
GENERATE(“,”) [No ,] [it was not]
SHIFT [No , it] [was not]
SHIFT [No , it was ] [not]
SHIFT [No , it was not] [ ]
GENERATE(“.”) [No, it was not .] [ ]

Figure 1: Transition sequence for the input sequence No it was

not – with the output No, it was not.

put and input buffers, is encoded in terms of a vector
st; see Section 3.3 for different alternatives of state
representation. As Dyer et al. (2015), we use st to
compute the probability of the action at time t as:

p(zt | st) =
exp

(
g>ztst + qzt

)
∑

z′∈A exp
(
g>z′st + qz′

) (1)

where gz is a vector representing the embedding
of the action z, and qz is a bias term for action
z. The set A represents the actions (either SHIFT

or GENERATE(p)).1 st encodes information about
previous actions (since it may include the history
with the actions taken and the generated punctua-
tion symbols are introduced in the output buffer, see
Section 3.3), thus the probability of a sequence of
actions z given the input sequence is:

p(z | w) =

|z|∏

t=1

p(zt | st). (2)

As in (Dyer et al., 2015), the model greedily
chooses the best action to take given the state with
no backtracking.2

3.2 Word Embeddings
Following the tagging model of Ling et al. (2015b)
and the parsing model of Ballesteros et al. (2015),
we compute character-based continuous-space vec-
tor embeddings of words using bidirectional LSTMs
(Graves and Schmidhuber, 2005) to learn similar
representation for words that are similar from an or-
thographic/morphological point of view.

1Note that GENERATE(p) includes all possible punctuations
that the language in question has, and thus the number of classes
the classifier predicts in each time step is #punctuations + 1.

2For further optimization, the model could be extended, for
instance, by beam-search.
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The character-based representations may be also
concatenated with a fixed vector representation from
a neural language model. The resulting vector is
passed through a component-wise rectifier linear
unit (ReLU). We experiment with and without pre-
trained word embeddings. To pretrain the fixed vec-
tor representations, we use the skip n-gram model
introduced by Ling et al. (2015a).

3.3 Representing the State

We work with two possible representations of the
input and output buffers (i.e, the state st): (i) a look-
ahead model that takes into account the immediate
context (two embeddings for the input and two em-
beddings for the output), which we use as a base-
line, and (ii) the LSTM model, which encodes the
entire input sequence and the output sentence with
LSTMs.

3.3.1 Baseline: Look-ahead Model
The look-ahead model can be interpreted as a 4-

gram model in which two words belong to the input
and two belong to the output. The representation
takes the average of the two first embeddings of the
output and the two first embeddings at the front of
the input. The word embeddings contain all the rich-
ness provided by the character-based LSTMs and the
pretrained skip n-gram model embeddings (if used).
The resulting vector is passed through a component-
wise ReLU and a softmax transformation to obtain
the probability distribution over the possible actions
given the state st; see Section 3.1.

3.3.2 LSTM Model
The baseline look-ahead model considers only

the immediate context for the input and output se-
quences. In the proposed model, we apply recur-
rent neural networks (RNNs) that encode the entire
input and output sequences in the form of LSTMs.
LSTMs are a variant of RNNs designed to deal with
the vanishing gradient problem inherent in RNNs
(Hochreiter and Schmidhuber, 1997; Graves, 2013).
RNNs read a vector xt at each time step and com-
pute a new (hidden) state ht by applying a linear
map to the concatenation of the previous time step’s
state ht−1 and the input, passing then the outcome
through a logistic sigmoid non-linearity.

We use a simplified version of the stack LSTM

model of Dyer et al. (2015). The input buffer is en-
coded as a stack LSTM, into which we PUSH the en-
tire sequence at the beginning and POP words from
it at each time step. The output buffer is a sequence,
encoded by an LSTM, into which we PUSH the fi-
nal output sequence. As in (Dyer et al., 2015), we
include a third sequence with the history of actions
taken, which is encoded by another LSTM. As al-
ready mentioned above, the three resulting vectors
are passed through a component-wise ReLU and a
softmax transformation to obtain the probability dis-
tribution over the possible actions that can be taken
(either to shift or to generate a punctuation mark),
given the current state st; see Section 3.1.

4 Experiments

To test our models, we carried experiments on
five languages: Czech, English, French, German,
and Spanish. English, French and Spanish are
generally assumed to be characterized by prosodic
punctuation, while for German the syntactic punc-
tuation is more dominant (Kirchhoff and Primus,
2014). Czech punctuation also leans towards syn-
tactic punctuation (Kolář et al., 2004), but due to its
rather free word order we expect it to reflect prosodic
punctuation as well.

The punctuation marks that the models attempt to
predict (and that also occur in the training sets) for
each language are listed in Table 1.3 Commas rep-
resent around 55% and periods around 30% of the
total number of marks in the datasets.

Czech ‘.’, ‘,’, ‘–’, ‘(’, ‘)’, ‘:’, ‘/’, ‘?’, ‘%’, ‘*’, ‘=’, ‘|’, ‘”, ‘+’,
‘;’, ‘!’, ‘o’, ‘”’, ‘&’, ‘[’, ‘]’, ‘§’

English ‘–’, ‘(’, ‘)’, ‘,’, ‘ ” ’, ‘.’, ‘. . . ’, ‘:’, ‘;’, ‘?’, ‘ “ ’, ‘}’, ‘{’
French ‘ ” ’, ‘,’, ‘–’, ‘:’, ‘?’, ‘(’, ‘)’, ‘.’, ‘!’, ‘. . . ’
German ‘ ” ’, ‘(’, ‘)’, ‘,’, ‘.’, ‘/’, ‘:’, ‘–’, ‘. . . ’, ‘?’, ‘ “ ’
Spanish ‘ ” ’, ‘(’, ‘)’, ‘,’, ‘–’, ‘.’, ‘:’, ‘?’, ‘¿’, ‘!’, ‘¡’

Table 1: Punctuation marks covered in our experiments.

4.1 Setup

The stack LSTM model uses two layers, each of di-
mension 100 for each input sequence. For both the

3The consideration of some of the symbols listed in Table 1
as punctuation marks may be questioned (see, e.g., ‘+’ or ‘§’ for
Czech). However, all of them are labeled as punctuation marks
in the corresponding tag sets, such that we include them.
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Commas
Czech English French German Spanish

P R F P R F P R F P R F P R F
LookAhead 78.79 43.54 56.09 75.60 38.52 51.04 54.00 22.76 32.02 68.87 32.89 44.52 63.17 19.15 29.39
LookAhead + Pre – – – 75.94 40.81 53.09 – – – 71.30 39.62 50.94 58.03 26.67 36.54
LSTM 80.79 68.30 74.02 78.88 70.02 74.19 61.73 44.52 51.73 73.78 65.45 69.37 64.01 42.73 51.25
LSTM + Pre – – – 80.83 74.81 77.70 – – – 76.56 69.19 72.69 65.65 45.33 53.63

Periods
Czech English French German Spanish

P R F P R F P R F P R F P R F
LookAhead 82.62 95.64 88.65 88.51 97.76 92.91 71.34 94.61 81.34 77.10 97.76 86.21 73.13 99.13 84.17
LookAhead + Pre – – – 87.44 97.71 92.29 – – – 78.26 95.93 86.20 73.16 99.29 84.25
LSTM 89.39 93.66 91.48 93.07 98.31 95.62 76.38 95.47 84.86 84.75 98.18 90.97 74.70 98.65 85.02
LSTM + Pre – – – 94.44 98.06 96.22 – – – 85.65 98.39 91.58 74.24 98.57 84.69

Average
Czech English French German Spanish

P R F P R F P R F P R F P R F
LookAhead 80.90 58.57 67.95 82.72 52.72 64.40 60.67 32.33 42.18 75.82 52.58 62.10 67.50 33.88 45.12
LookAhead + Pre – – – 81.83 53.90 64.99 – – – 75.75 54.57 63.65 64.80 38.58 48.36
LSTM 82.42 69.11 75.18 84.89 71.23 77.46 65.34 45.52 53.66 80.03 65.90 72.28 67.78 47.80 56.06
LSTM + Pre – – – 83.72 74.56 78.87 – – – 81.60 67.47 73.87 68.09 49.21 57.13

Table 2: Results of the LSTM model and the Baseline (Look-ahead model) for precision, recall and F score for commas, periods

and micro average for all punctuation symbols (including commas and periods) listed in Table 1. +Pre refers to models that include

pretrained word embeddings.

look-ahead and the stack LSTM models, character-
based embeddings, punctuation embeddings and
pretrained embeddings (if used) also have 100 di-
mensions. Both models are trained to maximize
the conditional log-likelihood (Eq. 2) of output sen-
tences, given the input sequences.

For Czech, English, German, and Spanish, we use
the wordforms from the treebanks of the CoNLL
2009 Shared Task (Hajič et al., 2009); the French
dataset is by Candito et al. (2010). Development
sets are used to optimize the model parameters; the
results are reported for the held-out test sets.

4.2 Results and Discussion
Table 2 displays the outcome of the experiments for
periods and commas in all five languages and sum-
marizes the overall performance of our algorithm
in terms of the micro-average figures. In order to
test whether pretrained word embeddings provide
further improvements, we incorporate them for En-
glish, Spanish and German.4

The figures show that the LSTMs that encode
the entire context of a punctuation mark are better
than a strong baseline that takes into account a 4-

4Word embeddings for English, Spanish and German are
trained using the AFP portion of the English Gigaword cor-
pus (version 5), the German monolingual training data from the
2010 Machine Translation Workshop, and the Spanish Giga-
word version 3 respectively.

gram sliding window of tokens. They also show
that character-based representations are already use-
ful for the punctuation generation task on their own,
but when concatenated with pretrained vectors, they
are even more useful.

The model is capable of providing good results
for all languages, being more consistent for En-
glish, Czech and German. Average sentence length
may indicate why the model seems to be worse for
Spanish and French, since sentences are longer in
the Spanish (29.8) and French (27.0) datasets, com-
pared to German (18.0), Czech (16.8) or English
(24.0). The training set is also smaller in Spanish
and French compared to the other languages. It is
worth noting that the results across languages are
not directly comparable since the datasets are differ-
ent, and as shown in Table 1, the sets of punctuation
marks that are to be predicted diverge significantly.

The figures in Table 2 cannot be directly com-
pared with the figures reported by Tilk and Alumäe
(2015) for their LSTM-model on period and comma
restoration in speech transcripts: the tasks and
datasets are different.

Our results prove that the state representation
(through LSTMs, which have already been shown to
be effective for syntax (Dyer et al., 2015; Dyer et al.,
2016)) and character-based representations (which
allow similar embeddings for words that are mor-
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phologically similar (Ling et al., 2015b; Ballesteros
et al., 2015)) are capturing strong linguistic clues to
predict punctuation.

5 Conclusions

We presented an LSTM-based architectured that is
capable of adding punctuation marks to sequences of
tokens as produced in the context of surface realiza-
tion without punctuation with high quality and lin-
ear time.5 Compared to other proposals in the field,
the architecture has the advantage to operate on se-
quences of word forms, without any additional syn-
tactic or acoustic features. This tool could be used
for ASR (Tilk and Alumäe, 2015) and grammatical
error correction (Ng et al., 2014). In the future, we
plan to create cross-lingual models by applying mul-
tilingual word embeddings (Ammar et al., 2016).
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