Are Word Embedding-based Features Useful for Sarcasm Detection?

Aditya Joshi'?3

Vaibhav Tripathi'
Pushpak Bhattacharyya'

Kevin Patel!
Mark Carman?

Indian Institute of Technology Bombay, India
*Monash University, Australia
SIITB-Monash Research Academy, India

{adityaj, kevin.patel,pb}l@cse.iitb.ac.in, mark.carman@monash.edu

Abstract

This paper makes a simple increment to state-of-
the-art in sarcasm detection research. Existing ap-
proaches are unable to capture subtle forms of con-
text incongruity which lies at the heart of sarcasm.
We explore if prior work can be enhanced using se-
mantic similarity/discordance between word embed-
dings. We augment word embedding-based features
to four feature sets reported in the past. We also ex-
periment with four types of word embeddings. We
observe an improvement in sarcasm detection, irre-
spective of the word embedding used or the original
feature set to which our features are augmented. For
example, this augmentation results in an improve-
ment in F-score of around 4% for three out of these
four feature sets, and a minor degradation in case
of the fourth, when Word2Vec embeddings are used.
Finally, a comparison of the four embeddings shows
that Word2Vec and dependency weight-based fea-
tures outperform LSA and GloVe, in terms of their
benefit to sarcasm detection.

1 Introduction

Sarcasm is a form of verbal irony that is intended to ex-
press contempt or ridicule. Linguistic studies show that
the notion of context incongruity is at the heart of sar-
casm (Ivanko and Pexman, 2003). A popular trend in
automatic sarcasm detection is semi-supervised extrac-
tion of patterns that capture the underlying context in-
congruity (Davidov et al., 2010; Joshi et al., 2015; Riloff
et al., 2013). However, techniques to extract these pat-
terns rely on sentiment-bearing words and may not cap-
ture nuanced forms of sarcasm. Consider the sentence
‘With a sense of humor like that, you could make a liv-
ing as a garbage man anywhere in the country.” The
speaker makes a subtle, contemptuous remark about the

! All examples in this paper are actual instances from our dataset.

1006

sense of humor of the listener. However, absence of sen-
timent words makes the sarcasm in this sentence difficult
to capture as features for a classifier.

In this paper, we explore use of word embeddings to
capture context incongruity in the absence of sentiment
words. The intuition is that word vector-based sim-
ilarity/discordance is indicative of semantic similar-
ity which in turn is a handle for context incongruity.
In the case of the ‘sense of humor’ example above, the
words ‘sense of humor’ and ‘garbage man’ are seman-
tically dissimilar and their presence together in the sen-
tence provides a clue to sarcasm. Hence, our set of fea-
tures based on word embeddings aim to capture such se-
mantic similarity/discordance. Since such semantic simi-
larity is but one of the components of context incongruity
and since existing feature sets rely on sentiment-based
features to capture context incongruity, it is imperative
that the two be combined for sarcasm detection. Thus,
our paper deals with the question:

Can word embedding-based features when augmented to
features reported in prior work improve the performance
of sarcasm detection?

To the best of our knowledge, this is the first attempt
that uses word embedding-based features to detect sar-
casm. In this respect, the paper makes a simple increment
to state-of-the-art but opens up a new direction in sarcasm
detection research. We establish our hypothesis in case
of four past works and four types of word embeddings,
to show that the benefit of using word embedding-based
features holds across multiple feature sets and word em-
beddings.

2 Motivation

In our literature survey of sarcasm detection (Joshi et al.,
2016), we observe that a popular trend is semi-supervised
extraction of patterns with implicit sentiment. One such
work is by Riloff et al. (2013) who give a bootstrap-
ping algorithm that discovers a set of positive verbs and

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1006-1011,
Austin, Texas, November 1-5, 2016. (©)2016 Association for Computational Linguistics

negative/undesirable situations. However, this simplifi-
cation (of representing sarcasm merely as positive verbs
followed by negative situation) may not capture difficult
forms of context incongruity. Consider the sarcastic sen-
tence ‘A woman needs a man like a fish needs bicycle’>.
The sarcasm in this sentence is understood from the fact
that a fish does not need bicycle - and hence, the sentence
ridicules the target ‘a man’. However, this sentence does
not contain any sentiment-bearing word. Existing sar-
casm detection systems relying on sentiment incongruity
(as in the case of our past work reported as Joshi et al.
(2015)) may not work well in such cases of sarcasm.

To address this, we use semantic similarity as a han-
dle to context incongruity. To do so, we use word vector
similarity scores. Consider similarity scores (as given by
Word2Vec) between two pairs of words in the sentence
above:

similarity(man,woman) = 0.766
similarity(fish,bicycle) = 0.131

Words in one part of this sentence (‘man’ and ‘woman’)
are lot more similar than words in another part of the sen-
tence (‘fish’ and ‘bicycle’). This semantic discordance
can be a clue to presence of context incongruity. Hence,
we propose features based on similarity scores between
word embeddings of words in a sentence. In general, we
wish to capture the most similar and most dissimilar word
pairs in the sentence, and use their scores as features for
sarcasm detection.

3 Background: Features from prior work

We augment our word embedding-based features to the
following four feature sets that have been reported:

1. Liebrecht et al. (2013): They consider unigrams,
bigrams and trigrams as features.

2. Gonzalez-Ibanez et al. (2011a): They propose two
sets of features: unigrams and dictionary-based.
The latter are words from a lexical resource called
LIWC. We use words from LIWC that have been
annotated as emotion and psychological process
words, as described in the original paper.

3. Buschmeier et al. (2014): In addition to uni-
grams, they propose features such as: (a) Hy-
perbole (captured by three positive or negative
words in a row), (b) Quotation marks and ellipsis,
(c) Positive/Negative Sentiment words followed by
an exclamation mark or question mark, (d) Posi-
tive/Negative Sentiment Scores followed by ellipsis
(represented by a °...”), (e) Punctuation, (f) Interjec-
tions, and (g) Laughter expressions.

2This quote is attributed to Irina Dunn, an Australian writer
(https://en.wikipedia.org/wiki/Irina_Dunn

1007

4. Joshi et al. (2015): In addition to unigrams, they use
features based on implicit and explicit incongruity.
Implicit incongruity features are patterns with im-
plicit sentiment as extracted in a pre-processing step.
Explicit incongruity features consist of number of
sentiment flips, length of positive and negative sub-
sequences and lexical polarity.

4 Word Embedding-based Features

In this section, we now describe our word embedding-
based features. We reiterate that these features will be
augmented to features from prior works (described in
Section 3).

As stated in Section 2, our word embedding-based fea-
tures are based on similarity scores between word em-
beddings. The similarity score is the cosine similarity
between vectors of two words. To illustrate our features,
we use our example ‘A woman needs a man like a fish
needs a bicycle’. The scores for all pairs of words in this
sentence are given in Table 1.

man woman fish needs bicycle
man - 0.766 0.151 0.078 0.229
woman 0.766 - 0.084 0.060 0.229
fish 0.151 0.084 - 0.022 0.130
needs 0.078 0.060 0.022 - 0.060
bicycle 0.229 0.229 0.130 0.060 -

Table 1: Similarity scores for all pairs of content words in ‘A woman

needs a man like a fish needs bicycle’

Using these similarity scores, we compute two sets of
features:

1. Unweighted similarity features (S): We first com-
pute similarity scores for all pairs of words (except
stop words). We then return four feature values per
sentence.’:

Maximum score of most similar word pair
Minimum score of most similar word pair
Maximum score of most dissimilar word pair
Minimum score of most dissimilar word pair

For example, in case of the first feature, we consider
the most similar word to every word in the sentence,
and the corresponding similarity scores. These most
similar word scores for each word are indicated in
bold in Table 1. Thus, the first feature in case of our
example would have the value 0.766 derived from
the man-woman pair and the second feature would
take the value 0.078 due to the needs-man pair. The
other features are computed in a similar manner.

3These feature values consider all words in the sentence, i.e., the
‘maximum’ is computed over all words

2. Distance-weighted similarity features (WS): Like
in the previous case, we first compute similarity
scores for all pairs of words (excluding stop-words).
For all similarity scores, we divide them by square
of distance between the two words. Thus, the simi-
larity between terms that are close in the sentence is
weighted higher than terms which are distant from
one another. Thus, for all possible word pairs, we
compute four features:

e Maximum distance-weighted score of most
similar word pair

e Minimum distance-weighted score of most
similar word pair

e Maximum distance-weighted score of most
dissimilar word pair

e Minimum distance-weighted score of most dis-
similar word pair

These are computed similar to unweighted similarity
features.

5 Experiment Setup

We create a dataset consisting of quotes on GoodReads *.
GoodReads describes itself as ‘the world’s largest site for
readers and book recommendations.” The website also
allows users to post quotes from books. These quotes are
snippets from books labeled by the user with tags of their
choice. We download quotes with the tag ‘sarcastic’ as
sarcastic quotes, and the ones with ‘philosophy’ as non-
sarcastic quotes. Our labels are based on these tags given
by users. We ensure that no quote has both these tags.
This results in a dataset of 3629 quotes out of which 759
are labeled as sarcastic. This skew is similar to skews
observed in datasets on which sarcasm detection experi-
ments have been reported in the past (Riloff et al., 2013).

We report five-fold cross-validation results on the
above dataset. We use SV M.,y by Joachims (2006)
with ¢ as 20, w as 3, and loss function as F-score opti-
mization. This allows SVM to be learned while optimiz-
ing the F-score.

As described above, we compare features given in prior
work alongside the augmented versions. This means that
for each of the four papers, we experiment with four con-
figurations:

1. Features given in paper X

2. Features given in paper X + unweighted similarity
features (S)

3. Features given in paper X + weighted similarity fea-
tures (WS)

4. Features given in paper X + S+WS (i.e., weighted
and unweighted similarity features)

1008

Features P R F
Baseline

Unigrams 67.2 78.8 72.53

S 64.6 75.2 69.49

WS 67.6 51.2 58.26

Both 67 52.8 59.05

Table 2: Performance of unigrams versus our similarity-based features
using embeddings from Word2Vec

We experiment with four types of word embeddings:

1. LSA: This approach was reported in Landauer and
Dumais (1997). We use pre-trained word em-
beddings based on LSAS. The vocabulary size is
100,000.

2. GloVe: We use pre-trained vectors avaiable from the
GloVe project®. The vocabulary size in this case is
2,195,904.

3. Dependency Weights: We use pre-trained vectors’
weighted using dependency distance, as given in
Levy and Goldberg (2014). The vocabulary size is
174,015.

4. Word2Vec: use pre-trained Google word vectors.
These were trained using Word2Vec tool 8 on the
Google News corpus. The vocabulary size for
Word2Vec is 3,000,000. To interact with these pre-
trained vectors, as well as compute various features,
we use gensim library (Rehtifek and Sojka, 2010).

To interact with the first three pre-trained vectors, we use
scikit library (Pedregosa et al., 2011).

6 Results

Table 2 shows performance of sarcasm detection when
our word embedding-based features are used on their own
i.e, not as augmented features. The embedding in this
case is Word2Vec. The four rows show baseline sets
of features: unigrams, unweighted similarity using word
embeddings (S), weighted similarity using word embed-
dings (WS) and both (i.e., unweighted plus weighted sim-
ilarities using word embeddings). Using only unigrams
as features gives a F-score of 72.53%, while only un-
weighted and weighted features gives F-score of 69.49%

and 58.26% respectively. This validates our intuition
4www.goodreads . com
Shttp://www.lingexp.uni-tuebingen.de/z2/
LSAspaces/
Shttp://nlp.stanford.edu/projects/glove/
7 https://levyomer.wordpress.com/2014/04/25/
dependency-based-word-embeddings/
8https://code.google.com/archive/p/Word2Vec/

| LSA GloVe Dependency Weights Word2Vec

| P R F P R F P R F P R F
L 73 79 75.8 73 79 75.8 73 79 75.8 73 79 75.8
+S 81.8 78.2 79.95 81.8 79.2 80.47 81.8 78.8 80.27 804 80 80.2
+WS 762 798 779 762 79.6 77.86 814 80.8 81.09 80.8 78.6 79.68
+S+WS | 77.6 79.8 78.68 74 794 76.60 82 80.4 81.19 81.6 78.2 79.86
G 84.8 73.8 17891 84.8 73.8 7891 84.8 73.8 7891 84.8 73.8 7891
+S 842 744 79 84 72.6 778 844 72 77.7 84 72.8 78
+WS 844 73.6 78.63 84 752 79.35 844 72,6 178.05 83.8 70.2 764
+S+WS | 842 73.6 78.54 84 74 78.68 842 722 7173 84 72.8 78
B 81.6 722 76.61 81.6 722 76.61 81.6 722 76.61 81.6 722 76.61
+S 782 75.6 76.87 804 76.2 78.24 81.2 74.6 71.76 814 72.6 76.74
+WS 75.8 772 76.49 76.6 77 76.79 76.2 764 76.29 81.6 734 77.28
+S+WS | 748 774 76.07 76.2 782 77.18 75.6 78.8 77.16 81 754 178.09
J 852 744 17943 852 744 17943 852 744 17943 852 744 7943
+S 84.8 73.8 17891 85.6 74.8 79.83 854 744 7952 854 74.6 79.63
+WS 85.6 752 80.06 854 72.6 78.48 854 734 7894 856 734 79.03
+S+WS | 84.8 73.6 78.8 85.8 754 80.26 85.6 744 179.6 852 732 78.74

Table 3: Performance obtained on augmenting word embedding features to features from four prior works, for four word embeddings; L: Liebrecht
et al. (2013), G: Gonzilez-Ibanez et al. (2011a), B: Buschmeier et al. (2014) , J: Joshi et al. (2015)

that word embedding-based features alone are not
sufficient, and should be augmented with other fea-
tures.

Following this, we show performance using features
presented in four prior works: Buschmeier et al. (2014),
Liebrecht et al. (2013), Joshi et al. (2015) and Gonzalez-
Ibédnez et al. (2011a), and compare them with augmented
versions in Table 3.

Table 3 shows results for four kinds of word embed-
dings. All entries in the tables are higher than the sim-
ple unigrams baseline, i.c., F-score for each of the four
is higher than unigrams - highlighting that these are bet-
ter features for sarcasm detection than simple unigrams.
Values in bold indicate the best F-score for a given prior
work-embedding type combination. In case of Liebrecht
et al. (2013) for Word2Vec, the overall improvement in
F-score is 4%. Precision increases by 8% while recall re-
mains nearly unchanged. For features given in Gonzélez-
Ibanez et al. (2011a), there is a negligible degradation of
0.91% when word embedding-based features based on
Word2Vec are used. For Buschmeier et al. (2014) for
Word2Vec, we observe an improvement in F-score from
76.61% to 78.09%. Precision remains nearly unchanged
while recall increases. In case of Joshi et al. (2015) and
Word2Vec, we observe a slight improvement of 0.20%
when unweighted (S) features are used. This shows that
word embedding-based features are useful, across four
past works for Word2 Vec.

Table 3 also shows that the improvement holds across
the four word embedding types as well. The maxi-

1009

mum improvement is observed in case of Liebrecht et
al. (2013). It is around 4% in case of LSA, 5% in case
of GloVe, 6% in case of Dependency weight-based and
4% in case of Word2Vec. These improvements are not
directly comparable because the four embeddings have
different vocabularies (since they are trained on different
datasets) and vocabulary sizes, their results cannot be di-
rectly compared.

Therefore, we take an intersection of the vocabulary
(i.e., the subset of words present in all four embeddings)
and repeat all our experiments using these intersection
files. The vocabulary size of these intersection files (for
all four embeddings) is 60,252. Table 4 shows the av-
erage increase in F-score when a given word embed-
ding and a word embedding-based feature is used, with
the intersection file as described above. These gain val-
ues are lower than in the previous case. This is be-
cause these are the values in case of the intersection
versions - which are subsets of the complete embed-
dings. Each gain value is averaged over the four prior
works. Thus, when unweighted similarity (+S) based
features computed using LSA are augmented to fea-
tures from prior work, an average increment of 0.835%
is obtained over the four prior works. The values al-
low us to compare the benefit of using these four kinds
of embeddings. In case of unweighted similarity-based
features, dependency-based weights give the maximum
gain (0.978%). In case of weighted similarity-based
features and ‘+S+WS’, Word2Vec gives the maximum
gain (1.411%). Table 5 averages these values over the

Word2Vec LSA GloVe Dep.
Wt.
+S 0.835 0.86 0.918 0.978
+WS 1411 0.255 0.192 1.372
+S+WS 1.182 0.24 0.845 0.795

Table 4: Average gain in F-Scores obtained by using intersection of the
four word embeddings, for three word embedding feature-types, aug-
mented to four prior works; Dep. Wt. indicates vectors learned from
dependency-based weights

Word Embedding Average F-score Gain

LSA 0.452
Glove 0.651
Dependency 1.048
Word2Vec 1.143

Table 5: Average gain in F-scores for the four types of word embed-
dings; These values are computed for a subset of these embeddings

consisting of words common to all four

three types of word embedding-based features. Using
Dependency-based and Word2Vec embeddings results in
a higher improvement in F-score (1.048% and 1.143%
respectively) as compared to others.

7 Error Analysis
Some categories of errors made by our system are:

1. Embedding issues due to incorrect senses: Be-
cause words may have multiple senses, some em-
beddings lead to error, as in ‘Great. Relationship
advice from one of America’s most wanted.’ .

2. Contextual sarcasm: Consider the sarcastic quote
‘Oh, and I suppose the apple ate the cheese’. The
similarity score between ‘apple’ and ‘cheese’ is
0.4119. This comes up as the maximum similar pair.
The most dissimilar pair is ‘suppose’ and ‘apple’
with similarity score of 0.1414. The sarcasm in this
sentence can be understood only in context of the
complete conversation that it is a part of.

3. Metaphors in non-sarcastic text: Figurative lan-
guage may compare concepts that are not directly re-
lated but still have low similarity. Consider the non-
sarcastic quote ‘Oh my love, I like to vanish in you
like a ripple vanishes in an ocean - slowly, silently
and endlessly’. Our system incorrectly predicts this
as sarcastic.

8 Related Work

Early sarcasm detection research focused on speech (Tep-
perman et al., 2006) and lexical features (Kreuz and
Caucci, 2007). Several other features have been proposed

1010

(Kreuz and Caucci, 2007; Joshi et al., 2015; Khattri et
al., 2015; Liebrecht et al., 2013; Gonzalez-Ibanez et al.,
2011a; Rakov and Rosenberg, 2013; Wallace, 2015; Wal-
lace et al., 2014; Veale and Hao, 2010; Gonzalez-Ibanez
et al., 2011b; Reyes et al., 2012). Of particular relevance
to our work are papers that aim to first extract patterns
relevant to sarcasm detection. Davidov et al. (2010) use a
semi-supervised approach that extracts sentiment-bearing
patterns for sarcasm detection. Joshi et al. (2015) extract
phrases corresponding to implicit incongruity i.e. the sit-
uation where sentiment is expressed without use of sen-
timent words. Riloff et al. (2013) describe a bootstrap-
ping algorithm that iteratively discovers a set of positive
verbs and negative situation phrases, which are later used
in a sarcasm detection algorithm. Tsur et al. (2010) also
perform semi-supervised extraction of patterns for sar-
casm detection. The only prior work which uses word
embeddings for a related task of sarcasm detection is by
Ghosh et al. (2015). They model sarcasm detection as a
word sense disambiguation task, and use embeddings to
identify whether a word is used in the sarcastic or non-
sarcastic sense. Two sense vectors for every word are
created: one for literal sense and one for sarcastic sense.
The final sense is determined based on the similarity of
these sense vectors with the sentence vector.

9 Conclusion

This paper shows the benefit of features based on word
embedding for sarcasm detection. We experiment with
four past works in sarcasm detection, where we augment
our word embedding-based features to their sets of fea-
tures. Our features use the similarity score values re-
turned by word embeddings, and are of two categories:
similarity-based (where we consider maximum/minimum
similarity score of most similar/dissimilar word pair re-
spectively), and weighted similarity-based (where we
weight the maximum/minimum similarity scores of most
similar/dissimilar word pairs with the linear distance
between the two words in the sentence). We experi-
ment with four kinds of word embeddings: LSA, GloVe,
Dependency-based and Word2Vec. In case of Word2Vec,
for three of these past feature sets to which our features
were augmented, we observe an improvement in F-score
of at most 5%. Similar improvements are observed in
case of other word embeddings. A comparison of the
four embeddings shows that Word2Vec and dependency
weight-based features outperform LSA and GloVe.

This work opens up avenues for use of word embed-
dings for sarcasm classification. Our word embedding-
based features may work better if the similarity scores are
computed for a subset of words in the sentence, or using
weighting based on syntactic distance instead of linear
distance as in the case of our weighted similarity-based
features.

References

Konstantin Buschmeier, Philipp Cimiano, and Roman Klinger.
2014. An impact analysis of features in a classification ap-
proach to irony detection in product reviews. In Proceedings
of the 5th Workshop on Computational Approaches to Sub-
Jjectivity, Sentiment and Social Media Analysis, pages 42—49.

Dmitry Davidov, Oren Tsur, and Ari Rappoport. 2010. Semi-
supervised recognition of sarcastic sentences in twitter and
amazon. In Proceedings of the Fourteenth Conference on
Computational Natural Language Learning, pages 107-116.
Association for Computational Linguistics.

Debanjan Ghosh, Weiwei Guo, and Smaranda Muresan. 2015.
Sarcastic or not: Word embeddings to predict the literal or
sarcastic meaning of words. In EMNLP.

Roberto Gonzélez-Ibdnez, Smaranda Muresan, and Nina Wa-
cholder. 2011a. Identifying sarcasm in twitter: a closer look.
In Proceedings of the 49th Annual Meeting of the Association
for Computational Linguistics: Human Language Technolo-
gies: short papers-Volume 2, pages 581-586. Association for
Computational Linguistics.

Roberto Gonzélez-Ibdnez, Smaranda Muresan, and Nina Wa-
cholder. 2011b. Identifying sarcasm in twitter: a closer look.
In Proceedings of the 49th Annual Meeting of the Association
for Computational Linguistics: Human Language Technolo-
gies: short papers-Volume 2, pages 581-586. Association for
Computational Linguistics.

Stacey L Ivanko and Penny M Pexman. 2003. Context
incongruity and irony processing. Discourse Processes,
35(3):241-279.

Thorsten Joachims. 2006. Training linear svms in linear time.
In Proceedings of the 12th ACM SIGKDD international con-
ference on Knowledge discovery and data mining, pages
217-226. ACM.

Aditya Joshi, Vinita Sharma, and Pushpak Bhattacharyya.
2015. Harnessing context incongruity for sarcasm detec-
tion. In Proceedings of the 53rd Annual Meeting of the As-
sociation for Computational Linguistics and the 7th Inter-
national Joint Conference on Natural Language Processing,
volume 2, pages 757-762.

Aditya Joshi, Pushpak Bhattacharyya, and Mark James Car-
man. 2016. Automatic sarcasm detection: A survey. arXiv
preprint arXiv:1602.03426.

Anupam Khattri, Aditya Joshi, Pushpak Bhattacharyya, and
Mark James Carman. 2015. Your sentiment precedes you:
Using an authors historical tweets to predict sarcasm. In
6th Workshop on Computational Approaches to Subjectivity,
Sentiment and Social Media Analysis (WASSA), page 25.

Roger J Kreuz and Gina M Caucci. 2007. Lexical influences on
the perception of sarcasm. In Proceedings of the Workshop
on computational approaches to Figurative Language, pages
1-4. Association for Computational Linguistics.

Thomas K Landauer and Susan T. Dumais. 1997. A solution
to platos problem: The latent semantic analysis theory of ac-
quisition, induction, and representation of knowledge. PSY-
CHOLOGICAL REVIEW, 104(2):211-240.

Omer Levy and Yoav Goldberg. 2014. Dependency-based
word embeddings. In Proceedings of the 52nd Annual Meet-
ing of the Association for Computational Linguistics, ACL

1011

2014, June 22-27, 2014, Baltimore, MD, USA, Volume 2:
Short Papers, pages 302-308.

CC Liebrecht, FA Kunneman, and APJ van den Bosch. 2013.
The perfect solution for detecting sarcasm in tweets# not.
Fabian Pedregosa, Gaél Varoquaux, Alexandre Gramfort, Vin-
cent Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blon-
del, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al.
2011. Scikit-learn: Machine learning in python. The Journal

of Machine Learning Research, 12:2825-2830.

Rachel Rakov and Andrew Rosenberg. 2013. ” sure, i did the
right thing”: a system for sarcasm detection in speech. In
INTERSPEECH, pages 842-846.

Radim Rehiifek and Petr Sojka. 2010. Software Framework
for Topic Modelling with Large Corpora. In Proceedings
of the LREC 2010 Workshop on New Challenges for NLP
Frameworks, pages 45-50, Valletta, Malta, May. ELRA.
http://is.muni.cz/publication/884893/en.

Antonio Reyes, Paolo Rosso, and Davide Buscaldi. 2012.
From humor recognition to irony detection: The figurative
language of social media. Data & Knowledge Engineering,
74:1-12.

Ellen Riloff, Ashequl Qadir, Prafulla Surve, Lalindra De Silva,
Nathan Gilbert, and Ruihong Huang. 2013. Sarcasm as con-
trast between a positive sentiment and negative situation. In
EMNLP, pages 704-714.

Joseph Tepperman, David R Traum, and Shrikanth Narayanan.
2006. ” yeah right”: sarcasm recognition for spoken dia-
logue systems. In INTERSPEECH. Citeseer.

Oren Tsur, Dmitry Davidov, and Ari Rappoport. 2010. Icwsm-
a great catchy name: Semi-supervised recognition of sarcas-
tic sentences in online product reviews. In ICWSM.

Tony Veale and Yanfen Hao. 2010. Detecting ironic intent in
creative comparisons. In ECAI, volume 215, pages 765-770.

Byron C Wallace, Laura Kertz Do Kook Choe, and Eugene
Charniak. 2014. Humans require context to infer ironic in-
tent (so computers probably do, too). In Proceedings of the
Annual Meeting of the Association for Computational Lin-
guistics (ACL), pages 512-516.

Byron C Wallace. 2015. Sparse, contextually informed models
for irony detection: Exploiting user communities,entities and
sentiment. In ACL.

