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Abstract

Opinion mining from customer reviews has
become pervasive in recent years. Sentences
in reviews, however, are usually classified in-
dependently, even though they form part of a
review’s argumentative structure. Intuitively,
sentences in a review build and elaborate upon
each other; knowledge of the review struc-
ture and sentential context should thus in-
form the classification of each sentence. We
demonstrate this hypothesis for the task of
aspect-based sentiment analysis by modeling
the interdependencies of sentences in a review
with a hierarchical bidirectional LSTM. We
show that the hierarchical model outperforms
two non-hierarchical baselines, obtains results
competitive with the state-of-the-art, and out-
performs the state-of-the-art on five multilin-
gual, multi-domain datasets without any hand-
engineered features or external resources.

1 Introduction

Sentiment analysis (Pang and Lee, 2008) is used to
gauge public opinion towards products, to analyze
customer satisfaction, and to detect trends. With the
proliferation of customer reviews, more fine-grained
aspect-based sentiment analysis (ABSA) has gained
in popularity, as it allows aspects of a product or ser-
vice to be examined in more detail.

Reviews – just with any coherent text – have an
underlying structure. A visualization of the dis-
course structure according to Rhetorical Structure
Theory (RST) (Mann and Thompson, 1988) for the
example review in Figure 1 reveals that sentences

Elaboration
Background

that they cook
with only sim-
ple ingredients.

I am amazed at
the quality of
the food

I love this
restaurant.

Figure 1: RST structure of an example review.

and clauses are connected via different rhetorical re-
lations, such as Elaboration and Background.

Intuitively, knowledge about the relations and the
sentiment of surrounding sentences should inform
the sentiment of the current sentence. If a reviewer
of a restaurant has shown a positive sentiment to-
wards the quality of the food, it is likely that his
opinion will not change drastically over the course
of the review. Additionally, overwhelmingly posi-
tive or negative sentences in the review help to dis-
ambiguate sentences whose sentiment is equivocal.

Neural network-based architectures that have re-
cently become popular for sentiment analysis and
ABSA, such as convolutional neural networks (Sev-
eryn and Moschitti, 2015), LSTMs (Vo and Zhang,
2015), and recursive neural networks (Nguyen and
Shirai, 2015), however, are only able to consider
intra-sentence relations such as Background in Fig-
ure 1 and fail to capture inter-sentence relations, e.g.
Elaboration that rely on discourse structure and pro-
vide valuable clues for sentiment prediction.

We introduce a hierarchical bidirectional long
short-term memory (H-LSTM) that is able to lever-
age both intra- and inter-sentence relations. The
sole dependence on sentences and their structure
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within a review renders our model fully language-
independent. We show that the hierarchical model
outperforms strong sentence-level baselines for
aspect-based sentiment analysis, while achieving re-
sults competitive with the state-of-the-art and out-
performing it on several datasets without relying on
any hand-engineered features or sentiment lexica.

2 Related Work

Aspect-based sentiment analysis. Past approaches
use classifiers with expensive hand-crafted features
based on n-grams, parts-of-speech, negation words,
and sentiment lexica (Pontiki et al., 2014; Pontiki
et al., 2015). The model by Zhang and Lan (2015)
is the only approach we are aware of that considers
more than one sentence. However, it is less expres-
sive than ours, as it only extracts features from the
preceding and subsequent sentence without any no-
tion of structure. Neural network-based approaches
include an LSTM that determines sentiment towards
a target word based on its position (Tang et al., 2015)
as well as a recursive neural network that requires
parse trees (Nguyen and Shirai, 2015). In contrast,
our model requires no feature engineering, no posi-
tional information, and no parser outputs, which are
often unavailable for low-resource languages. We
are also the first – to our knowledge – to frame sen-
timent analysis as a sequence tagging task.

Hierarchical models. Hierarchical models have
been used predominantly for representation learn-
ing and generation of paragraphs and documents:
Li et al. (2015) use a hierarchical LSTM-based au-
toencoder to reconstruct reviews and paragraphs of
Wikipedia articles. Serban et al. (2016) use a hier-
archical recurrent encoder-decoder with latent vari-
ables for dialogue generation. Denil et al. (2014) use
a hierarchical ConvNet to extract salient sentences
from reviews, while Kotzias et al. (2015) use the
same architecture to learn sentence-level labels from
review-level labels using a novel cost function. The
model of Lee and Dernoncourt (2016) is perhaps the
most similar to ours. While they also use a sentence-
level LSTM, their class-level feed-forward neural
network is only able to consider a limited number of
preceding texts, while our review-level bidirectional
LSTM is (theoretically) able to consider an unlim-
ited number of preceding and successive sentences.

3 Model

In the following, we will introduce the different
components of our hierarchical bidirectional LSTM
architecture displayed in Figure 2.

3.1 Sentence and Aspect Representation

Each review consists of sentences, which are padded
to length l by inserting padding tokens. Each review
in turn is padded to length h by inserting sentences
containing only padding tokens. We represent each
sentence as a concatentation of its word embeddings
x1:l where xt ∈ Rk is the k-dimensional vector of
the t-th word in the sentence.

Every sentence is associated with an aspect. As-
pects consist of an entity and an attribute, e.g.
FOOD#QUALITY. Similarly to the entity represen-
tation of Socher et al. (2013), we represent every
aspect a as the average of its entity and attribute em-
beddings 1

2(xe + xa) where xe, xa ∈ Rm are the
m-dimensional entity and attribute embeddings re-
spectively1.

3.2 LSTM

We use a Long Short-Term Memory (LSTM)
(Hochreiter and Schmidhuber, 1997), which adds
input, output, and forget gates to a recurrent cell,
which allow it to model long-range dependencies
that are essential for capturing sentiment.

For the t-th word in a sentence, the LSTM takes
as input the word embedding xt, the previous output
ht−1 and cell state ct−1 and computes the next out-
put ht and cell state ct. Both h and c are initialized
with zeros.

3.3 Bidirectional LSTM

Both on the review and on the sentence level, senti-
ment is dependent not only on preceding but also
successive words and sentences. A Bidirectional
LSTM (Bi-LSTM) (Graves et al., 2013) allows us to
look ahead by employing a forward LSTM, which
processes the sequence in chronological order, and
a backward LSTM, which processes the sequence in
reverse order. The output ht at a given time step is
then the concatenation of the corresponding states of
the forward and backward LSTM.

1Averaging embeddings produced slightly better results than
using a separate embedding for every aspect.
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Food is great. Service is top notch.FOOD#
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GENERAL
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Figure 2: The hierarchical bidirectional LSTM (H-LSTM) for aspect-based sentiment analysis. Word embeddings are fed into

a sentence-level bidirectional LSTM. Final states of forward and backward LSTM are concatenated together with the aspect em-

bedding and fed into a bidirectional review-level LSTM. At every time step, the output of the forward and backward LSTM is

concatenated and fed into a final layer, which outputs a probability distribution over sentiments.

3.4 Hierarchical Bidirectional LSTM
Stacking a Bi-LSTM on the review level on top
of sentence-level Bi-LSTMs yields the hierarchical
bidirectional LSTM (H-LSTM) in Figure 2.

The sentence-level forward and backward LSTMs
receive the sentence starting with the first and last
word embedding x1 and xl respectively. The final
output hl of both LSTMs is then concatenated with
the aspect vector a2 and fed as input into the review-
level forward and backward LSTMs. The outputs of
both LSTMs are concatenated and fed into a final
softmax layer, which outputs a probability distribu-
tion over sentiments3 for each sentence.

4 Experiments

4.1 Datasets
For our experiments, we consider datasets in five
domains (restaurants, hotels, laptops, phones, cam-

2We experimented with other interactions, e.g. rescaling the
word embeddings by their aspect similarity, an attention-like
mechanism, as well as summing and multiplication, but found
that simple concatenation produced the best results.

3The sentiment classes are positive, negative, and neutral.

eras) and eight languages (English, Spanish, French,
Russian, Dutch, Turkish, Arabic, Chinese) from
the recent SemEval-2016 Aspect-based Sentiment
Analysis task (Pontiki et al., 2016), using the pro-
vided train/test splits. In total, there are 11 domain-
language datasets containing 300-400 reviews with
1250-6000 sentences4. Each sentence is annotated
with none, one, or multiple domain-specific aspects
and a sentiment value for each aspect.

4.2 Training Details

Our LSTMs have one layer and an output size of 200
dimensions. We use 300-dimensional word embed-
dings. We use pre-trained GloVe (Pennington et al.,
2014) embeddings for English, while we train em-
beddings on frWaC5 for French and on the Leipzig
Corpora Collection6 for all other languages.7 Entity

4Exact dataset statistics can be seen in (Pontiki et al., 2016).
5http://wacky.sslmit.unibo.it/doku.php?

id=corpora
6http://corpora2.informatik.uni-leipzig.

de/download.html
7Using 64-dimensional Polyglot embeddings (Al-Rfou et

al., 2013) yielded generally worse performance.
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Language Domain Best XRCE IIT-TUDA CNN LSTM H-LSTM HP-LSTM
English Restaurants 88.1 88.1 86.7 82.1 81.4 83.0 85.3
Spanish Restaurants 83.6 - 83.6 79.6 75.7 79.5 81.8
French Restaurants 78.8 78.8 72.2 73.2 69.8 73.6 75.4
Russian Restaurants 77.9 - 73.6 75.1 73.9 78.1 77.4
Dutch Restaurants 77.8 - 77.0 75.0 73.6 82.2 84.8
Turkish Restaurants 84.3 - 84.3 74.2 73.6 76.7 79.2
Arabic Hotels 82.7 - 81.7 82.7 80.5 82.8 82.9
English Laptops 82.8 - 82.8 78.4 76.0 77.4 80.1
Dutch Phones 83.3 - 82.6 83.3 81.8 81.3 83.6
Chinese Cameras 80.5 - - 78.2 77.6 78.6 78.8
Chinese Phones 73.3 - - 72.4 70.3 74.1 73.3

Table 1: Results of our system with randomly initialized word embeddings (H-LSTM) and with pre-trained embeddings

(HP-LSTM) for ABSA for each language and domain in comparison to the best system for each pair (Best), the best two sin-

gle systems (XRCE, IIT-TUDA), a sentence-level CNN (CNN), and our sentence-level LSTM (LSTM).

and attribute embeddings of aspects have 15 dimen-
sions and are initialized randomly. We use dropout
of 0.5 after the embedding layer and after LSTM
cells, a gradient clipping norm of 5, and no l2 regu-
larization.

We unroll the aspects of every sentence in the re-
view, e.g. a sentence with two aspects occurs twice
in succession, once with each aspect. We remove
sentences with no aspect8 and ignore predictions for
all sentences that have been added as padding to a re-
view so as not to force our model to learn meaning-
less predictions, as is commonly done in sequence-
to-sequence learning (Sutskever et al., 2014). We
segment Chinese data before tokenization.

We train our model to minimize the cross-entropy
loss, using stochastic gradient descent, the Adam
update rule (Kingma and Ba, 2015), mini-batches of
size 10, and early stopping with a patience of 10.

4.3 Comparison models

We compare our model using random (H-LSTM)
and pre-trained word embeddings (HP-LSTM)
against the best model of the SemEval-2016 Aspect-
based Sentiment Analysis task (Pontiki et al., 2016)
for each domain-language pair (Best) as well as
against the two best single models of the competi-
tion: IIT-TUDA (Kumar et al., 2016), which uses
large sentiment lexicons for every language, and
XRCE (Brun et al., 2016), which uses a parser aug-

8Labeling them with a NONE aspect and predicting neutral
slightly decreased performance.

mented with hand-crafted, domain-specific rules. In
order to ascertain that the hierarchical nature of our
model is the deciding factor, we additionally com-
pare against the sentence-level convolutional neural
network of Ruder et al. (2016) (CNN) and against a
sentence-level Bi-LSTM (LSTM), which is identical
to the first layer of our model.9

5 Results and Discussion

We present our results in Table 1. Our hierarchi-
cal model achieves results superior to the sentence-
level CNN and the sentence-level Bi-LSTM base-
lines for almost all domain-language pairs by taking
the structure of the review into account. We high-
light examples where this improves predictions in
Table 2.

In addition, our model shows results competi-
tive with the best single models of the competi-
tion, while requiring no expensive hand-crafted fea-
tures or external resources, thereby demonstrating
its language and domain independence. Overall,
our model compares favorably to the state-of-the-art,
particularly for low-resource languages, where few
hand-engineered features are available. It outper-
forms the state-of-the-art on four and five datasets
using randomly initialized and pre-trained embed-
dings respectively.

9To ensure that the additional parameters do not account for
the difference, we increase the number of layers and dimensions
of LSTM, which does not impact the results.
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Id Sentence LSTM H-LSTM
1.1 No Comparison negative positive

1.2
It has great sushi and

positive positive
even better service.

2.1
Green Tea creme

positive positive
brulee is a must!

2.2
Don’t leave the

negative positive
restaurant without it.

Table 2: Example sentences where knowledge of other sen-

tences in the review (not necessarily neighbors) helps to dis-

ambiguate the sentiment of the sentence in question. For the

aspect in 1.1, the sentence-level LSTM predicts negative, while

the context of the service and food quality in 1.2 allows the

H-LSTM to predict positive. Similarly, for the aspect in 2.2,

knowledge of the quality of the green tea crème brulée helps

the H-LSTM to predict the correct sentiment.

5.1 Pre-trained embeddings
In line with past research (Collobert et al., 2011), we
observe significant gains when initializing our word
vectors with pre-trained embeddings across almost
all languages. Pre-trained embeddings improve our
model’s performance for all languages except Rus-
sian, Arabic, and Chinese and help it achieve state-
of-the-art in the Dutch phones domain. We release
our pre-trained multilingual embeddings so that they
may facilitate future research in multilingual senti-
ment analysis and text classification10.

5.2 Leveraging additional information
As annotation is expensive in many real-world appli-
cations, learning from only few examples is impor-
tant. Our model was designed with this goal in mind
and is able to extract additional information inherent
in the training data. By leveraging the structure of
the review, our model is able to inform and improve
its sentiment predictions as evidenced in Table 2.

The large performance differential to the state-of-
the-art for the Turkish dataset where only 1104 sen-
tences are available for training and the performance
gaps for high-resource languages such as English,
Spanish, and French, however, indicate the limits of
an approach such as ours that only uses data avail-
able at training time.

While using pre-trained word embeddings is an
10https://s3.amazonaws.com/aylien-main/

data/multilingual-embeddings/index.html

effective way to mitigate this deficit, for high-
resource languages, solely leveraging unsupervised
language information is not enough to perform on-
par with approaches that make use of large exter-
nal resources (Kumar et al., 2016) and meticulously
hand-crafted features (Brun et al., 2016).

Sentiment lexicons are a popular way to inject ad-
ditional information into models for sentiment anal-
ysis. We experimented with using sentiment lexi-
cons by Kumar et al. (2016) but were not able to sig-
nificantly improve upon our results with pre-trained
embeddings11. In light of the diversity of domains in
the context of aspect-based sentiment analysis and
many other applications, domain-specific lexicons
(Hamilton et al., 2016) are often preferred. Find-
ing better ways to incorporate such domain-specific
resources into models as well as methods to inject
other forms of domain information, e.g. by con-
straining them with rules (Hu et al., 2016) is thus
an important research avenue, which we leave for
future work.

6 Conclusion

In this paper, we have presented a hierarchical model
of reviews for aspect-based sentiment analysis. We
demonstrate that by allowing the model to take into
account the structure of the review and the senten-
tial context for its predictions, it is able to outper-
form models that only rely on sentence information
and achieves performance competitive with mod-
els that leverage large external resources and hand-
engineered features. Our model achieves state-of-
the-art results on 5 out of 11 datasets for aspect-
based sentiment analysis.
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