Multi-Granularity Chinese Word Embedding

Rongchao Yin™#, Quan Wang'* , Rui Li'#, Peng Li'**, Bin Wang'*
Hnstitute of Information Engineering, Chinese Academy of Sciences, Beijing 100093, China
tUniversity of Chinese Academy of Sciences, Beijing 100049, China
{yinrongchao, wangquan, lirui, lipeng, wangbin}@iie.ac.cn

Abstract

This paper considers the problem of learning
Chinese word embeddings. In contrast to En-
glish, a Chinese word is usually composed of
characters, and most of the characters them-
selves can be further divided into components
such as radicals. While characters and radical-
s contain rich information and are capable of
indicating semantic meanings of words, they
have not been fully exploited by existing word
embedding methods. In this work, we propose
multi-granularity embedding (MGE) for Chi-
nese words. The key idea is to make full use of
such word-character-radical composition, and
enrich word embeddings by further incorpo-
rating finer-grained semantics from characters
and radicals. Quantitative evaluation demon-
strates the superiority of MGE in word sim-
ilarity computation and analogical reasoning.
Qualitative analysis further shows its capabili-
ty to identify finer-grained semantic meanings
of words.

1 Introduction

Word embedding, also known as distributed word
representation, is to represent each word as a real-
valued low-dimensional vector, through which the
semantic meaning of the word can be encoded. Re-
cent years have witnessed tremendous success of
word embedding in various NLP tasks (Bengio et al.,
2006; Mnih and Hinton, 2009; Collobert et al., 2011;
Zou et al., 2013; Kim, 2014; Liu et al., 2015; Iyyer
et al., 2015). The basic idea behind is to learn the
distributed representation of a word using its con-
text. Among existing approaches, the continuous
bag-of-words model (CBOW) and Skip-Gram mod-
el are simple and effective, capable of learning word
embeddings efficiently from large-scale text corpo-
ra (Mikolov et al., 2013a; Mikolov et al., 2013b).

*Corresponding author: Peng Li.
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Besides the success in English, word embedding
has also been demonstrated to be extremely useful
for Chinese language processing (Xu et al., 2015;
Yu et al., 2015; Zhou et al., 2015; Zou et al., 2013).
The work on Chinese generally follows the same
idea as on English, i.e., to learn the embedding of
a word on the basis of its context. However, in
contrast to English where words are usually taken
as basic semantic units, Chinese words may have a
complicated composition structure of their seman-
tic meanings. More specifically, a Chinese word is
often composed of several characters, and most of
the characters themselves can be further divided in-
to components such as radicals (F5E).! Both char-
acters and radicals may suggest the semantic mean-
ing of a word, regardless of its context. For exam-
ple, the Chinese word “Mz 1t (have a meal)” con-
sists of two characters “ 'z (eat)” and “iX (meal)”,
where “ Iz, (eat)” has the radical of “IJ (mouth)”,
and “YX (meal)” the radical of “ 7 (food)”. The se-
mantic meaning of “MZ %X can be revealed by the
constituent characters as well as their radicals.

Despite being the linguistic nature of Chinese and
containing rich semantic information, such word-
character-radical composition has not been fully ex-
ploited by existing approaches. Chen et al. (2015)
introduced a character-enhanced word embedding
model (CWE), which learns embeddings jointly for
words and characters but ignores radicals. Sun et al.
(2014) and Li et al. (2015) utilized radical informa-
tion to learn better character embeddings. Similarly,
Shi et al. (2015) split characters into small compo-
nents based on the Wubi method,? and took into ac-
count those components during the learning process.
In their work, however, embeddings are learned on-
ly for characters. For a word, the embedding is gen-
erated by simply combining the embeddings of the
constituent characters. Since not all Chinese word-

! https://en.wikipedia.org/wiki/Radical (Chinese_characters)
2 https://en.wikipedia.org/wiki/Wubi_method
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Figure 1: A simple illustration of MGE, where embeddings
are learned jointly for words, characters, and radicals. Given
a sequence of words {“ [H1 5% (go back home)”, “ "Z 1 (have a
meal)”, ** 2K (meet friends)”’}, MGE predicts the central word
“IZ 4> by using 1) the embedding composed by each context
word and its constituent characters, and 2) the embedding asso-

ciated with each radical detected in the target word.

s are semantically compositional (e.g., transliterated
words such as “754] (soda)”), embeddings obtained
in this way may be of low quality for these words.

In this paper, aiming at making full use of the se-
mantic composition in Chinese, we propose multi-
granularity embedding (MGE) which learns embed-
dings jointly for words, characters, and radicals. The
framework of MGE is sketched in Figure 1. Given a
word, we learn its embedding on the basis of 1) the
context words (blue bars in the figure), 2) their con-
stituent characters (green bars), and 3) the radicals
found in the target word (orange bars). Compared
to utilizing context words alone, MGE enriches the
embeddings by further incorporating finer-grained
semantics from characters and radicals. Similar
ideas of adaptively using multiple levels of embed-
dings have also been investigated in English recent-
ly (Kazuma and Yoshimasa, 2016; Miyamoto and
Cho, 2016).

We evaluate MGE with the benchmark tasks of
word similarity computation and analogical reason-
ing, and demonstrate its superiority over state-of-
the-art metods. A qualitative analysis further shows
the capability of MGE to identify finer-grained se-
mantic meanings of words.

2  Multi-Granularity Word Embedding

This section introduces MGE based on the contin-
uous bag-of-words model (CBOW) (Mikolov et al.,
2013b) and the character-enhanced word embedding
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model (CWE) (Chen et al., 2015).

MGE aims at improving word embedding by
leveraging both characters and radicals. We denote
the Chinese word vocabulary as W, the character vo-
cabulary as C, and the radical vocabulary as R. Each
word w; € VW is associated with a vector embedding
w;, each character ¢; € C a vector embedding c;,
and each radical r; € R a vector embedding r;. Giv-
en a sequence of words D = {wy,--- ,wy}, MGE
predicts each word w; € D conditioned on 1) con-
text words in a sliding window with size ¢, denoted
as WZ = {wi_g, e Wi—1y Wig-1y -eey wi_,_g}, 2) charac-
ters in each context word w; € W;, denoted as Cj,
and 3) radicals in the target word w;, denoted as R;;.
See Figure 1 for a simple illustration.

More specifically, given the corpus D, MGE max-
imizes the overall log likelihood as follows:

L(D) = Z log p(w;|h;).
w; €D

6]

Here h; is a hidden vector composed by the embed-
dings of context words, constituent characters, and
radicals, defined as:

b [Wthgv(wj@lé;:%}%;rk] e

7

For each context word w; € W;, a word-character
composition (w; @& |Cflj\ > cec; c) is first generated
by the embeddings of w; and its constituent charac-
ters C;. These word-character compositions are then
combined with the radical embeddings in R; to pre-
dict the target word. |W;|/|R;|/|C;| is the cardinality
of W;/R;/Cj, and @ is the composition operation.?
Given h;, the conditional probability p(w;|h;) is de-
fined by a softmax function:

exp(h;rwi)
Zwi/EW exp(h:wi/) .

p(wilh;) = 3)

We use negative sampling and stochastic gradient
descent to solve the optimization problem.

Note that 1) Not all Chinese words are semantical-
ly compositional, e.g., transliterated words and enti-
ty names. For such words we use neither characters
nor radicals. 2) A Chinese character usually plays

3There are a variety of options for @, e.g., addition and con-
catenation. This paper follows (Chen et al., 2015) and uses the
addition operation.



different roles when it appears at different positions
within a word. We follow (Chen et al., 2015) and
design a position-based MGE model (MGE+P). The
key idea of MGE+P is to keep three embeddings for
each character, corresponding to its appearance at
the positions of “begin”, “middle”, and “end”. For
details, please refer to (Chen et al., 2015).

3 Experiments

We evaluate MGE with the tasks of word similarity
computation and analogical reasoning.

3.1 Experimental Setups

We select the Chinese Wikipedia Dump* for embed-
ding learning. In preprocessing, we use the THU-
LAC tool’ to segment the corpus. Pure digit word-
s, non-Chinese words, and words whose frequencies
are less than 5 in the corpus are removed. We further
crawl from an online Chinese dictionary® and build
a character-radical index with 20,847 characters and
269 radicals. We use this index to detect the radical
of each character in the corpus. As such, we get a
training set with 72,602,549 words, 277,200 unique
words, 8,410 unique characters, and 256 unique rad-
icals. Finally, we use THULAC to perform Chinese
POS tagging on the training set and identify all enti-
ty names. For these entity names, neither characters
nor radicals are considered during learning. Actual-
ly, Chen et al. (2015) categorized non-compositional
Chinese words into three groups, i.e., transliterat-
ed words, single-morpheme multi-character words,
and entity names. In their work, they used a human-
annotated corpus, manually determining each word
to be split or not. Since human annotation could be
time-consuming and labor intensive, we just consid-
er automatically identified entity names.

We compare MGE with CBOW (Mikolov et al.,
2013b)” and CWE (Chen et al., 2015)%. Both CWE
and MGE are extensions of CBOW, with the for-
mer taking into account characters and the latter fur-
ther incorporating radical information. We further
consider position-based CWE and MGE, denoted as
CWEAP and MGE+P, respectively.We follow (Chen

4http://clownload.wikipedia.(:om/zhwiki
5 http://thulac.thunlp.org/
6http://zd.diyifanwen.corn/zidian/bs/
7https ://code.google.com/p/word2vec/
8https ://github.com/Leonard-Xu/CWE
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Method WordSim-239 WordSim-293
k=100 k=200 k=100 k=200
CBOW 0.4917 0.4971 0.5667 0.5723
CWE 0.5121  0.5197 0.5511  0.5655
CWE+P | 04989 0.5026 0.5427 0.5545
MGE 0.5670 0.5769 0.5555 0.5659
MGE+P | 0.5511 0.5572 0.5530 0.5692

Table 1: Results on word similarity computation.

et al., 2015) and use the same hyperparameter set-
ting. For all the methods, we set the context window
size to 3, and select the embedding dimension & in
{100, 200}. During optimization, we use 10-word
negative sampling and fix the initial learning rate to
0.025.

3.2 Word Similarity Computation

This task is to evaluate the effectiveness of embed-
dings in preserving semantic relatedness between t-
wo words. We use the WordSim-240 and WordSim-
296 datasets® provided by Chen et al. (2015) for e-
valuation, both containing Chinese word pairs with
human-labeled similarity scores. On WordSim-240
there is a pair containing new words (i.e., words
that have not appeared in the training set), and on
WordSim-296 there are 3 such pairs. We remove
these pairs from both datasets, and accordingly get
WordSim-239 and WordSim-293.

We compute the Spearman correlation coefficient
(Myers et al., 2010) between the similarity scores
given by the embedding models and those given by
human annotators. For the embedding models, the
similarity score between two words is calculated as
the cosine similarity between their embeddings. The
Spearman correlation coefficient is a nonparametric
measure of rank correlation, assessing how well the
relationship between two variables can be described.
The results are shown in Table 1.

From the results, we can see that 1) On WordSim-
239, MGE(+P) performs significantly better than
CWE(+P), which in turn outperforms CBOW. This
observation demonstrates the superiority of incor-
porating finer-grained semantics, particularly from
radicals. For example, MGE performs much better
on word pairs such as “#R1T (bank)” and * £% (mon-
ey)”, in which the two words share the same radi-
cal of “% (gold)”. 2) On WordSim-293, MGE(+P)

9https ://github.com/Leonard-Xu/CWE/tree/master/data
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Figure 2: Word similarity computation results with different
context window sizes on WordSim-239 (k = 200).

performs equally well as CWE(+P), but both are s-
lightly worse than CBOW. The reason may be that
WordSim-293 contains a great many of word pairs in
which the two words belonging to different domain-
s, e.2., “A% (rooster)” and “fjifE (flying range)”.
These pairs usually get low human-labeled similari-
ty scores. However, splitting the words in such pairs
into characters, and further the characters into radi-
cals will not help to effectively identify the dissimi-
larity between them.!”

We further investigate the influence of the context
window size in word similarity computation. Fig-
ure 2 gives the results of CBOW, CWE, and MGE
on WordSim-239, with the context window size set
in {3,4, 5,6, 7}. The results indicate that MGE per-
forms consistently better than CBOW and CWE on
this dataset, unaffected by varying the context win-
dow size.

3.3 Word Analogical Reasoning

This task evaluates the effectiveness of embeddings
in capturing linguistic regularities between pairs of
words, in the form of “ {&%{ (London) : J<[E (Eng-
land) ~ %2 (Paris) : 7£[E (France)”. We use the
dataset provided by Chen et al. (2015) for evalua-
tion. It contains 1,124 analogies categorized into 3
types: 1) capitals of countries (677 groups); 2) s-
tates/provinces of cities (175 groups); and 3) family
relations (272 groups). All the words in this dataset

10This observation is inconsistent with that reported in (Chen
et al., 2015), which shows that CWE outperforms CBOW on
WordSim-296. The reason may be that Chen et al. (2015) used a
human-annotated corpus for embedding learning, and manually
determined each word to be split or not. In contrast, we use the
publicly available Chinese Wikipedia data, and automatically
segment the corpus and identify entity names (words that are
not to be split), without human annotation.
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Method | Total Capital State  Family
CBOW | 0.7498 0.8109 0.8400 0.5294
CWE 0.7248 0.8375 0.8541 0.3566
CWE+P | 0.7391 0.8065 0.8114 0.5147
MGE 0.7524 0.8804 0.8686 0.3529
MGE+P | 0.7720 0.8685 0.8857 0.4485

Table 2: Results on word analogical reasoning (k = 200).

are covered by the training set.

For each analogy “a : b ~ ¢ : d”, we create a
question “a : b~ c: ? 7, and predict the answer as:
d* = arg max,eyy cos (b—a-+c,w). Here a, b, c,
w are the word embeddings, and cos(, -) the cosine
similarity. The question is considered to be correctly
answered if d* = d. We use accuracy as the evalua-
tion metric, and report the results in Table 2.

The results indicate that 1) MGE(+P) substantial-
ly outperforms the baseline methods on almost all
types of analogies (except for the Family type). This
again demonstrates the superiority of incorporating
radical information. 2) For the Capital and State
types, all the words are entity names for which nei-
ther characters nor radicals are used. MGE(+P) still
outperforms the baselines on these two types, show-
ing its capability to learn better embeddings even for
non-compositional words. 3) On the Family type,
both MGE(+P) and CWE(+P) perform worse than
CBOW. This may be caused by the inappropriate de-
composition of family words into characters. Con-
sider, for example, the question ““ FU (uncle) : Bif
4 (aunt) ~ £F (prince) : ? . If we split “ £F
into “F (king)” and “7¥ (son)”, we will more likely
to predict “ % T (queen)” rather than the correc-
t answer “/~ 3 (princess)”, since “Z¢ T contains
the character “ % (daughter)” which is usually the
antonym of “ = (son)”.

3.4 Case Study

Besides quantitative evaluation, this section further
provides qualitative analysis to show in what man-
ner the semantic meaning of a radical, character and
word can be captured by their embeddings.

Take the word “Jf#¥K (swimming)” as an example.
Table 3 presents the words that are most similar to it
(with the highest cosine similarity between their em-
beddings), discovered by MGE, CWE, and CBOW.
The results show that 1) By incorporating the char-
acter information, MGE and CWE are capable of



7K (underwater swimming), % ¥k (swimming happily)
€3 (front crawl swimming), ¥k F-(swimmer)

¥k A (swimming skill), 4 ¥k (winter swimming)

K (swimming skill), F 4% (track and field)

7&K (underwater swimming), %k (swimming happily)
JI€3K (front crawl swimming), FH4%(track and field)

¥k F-(swimmer), > ¥k (learn to swim)

2Kk (winter swimming), ¥k K (swimming skill)

FH 4% (track and field), Bk =i (high jump)

B/K (diving), Bk%H (rope skipping)

XM (boating), £ 5¥k(pole vaulting)

JZ Kl (canoeing), 1A15:(gymnastics)

Table 3: The most similar words to “Ji#¥K (swimming)”.

MGE

CWE

CBOW

Radical |[J (illness)
ffi] (rickets) Jii (chronic disease)
Closest | f%(bending one’s back) J/i(epidemic disease)

characters | %35 (tuberculosis) #(quenching)

#r (scabies) % (hemorrhoids)

fi) & (rickets) J8# 7T (ringworm scabies)

J5J8 (pock) & 777 (communicable subtropical disease)
593 (traumata) J&JE (scar)

Jit ¥ (measles) JfHx(pemphigus)

Table 4: The most similar characters/words to *J (illness)”.

Closest
words

capturing finer-grained semantics that are more spe-
cific to the word. The top words discovered by them
are semantically related to “Jj# ¥k (swimming)” it-
self, e.g., “V& VK (underwater swimming)” and *[€
¥k (front crawl swimming)”. But the top words dis-
covered by CBOW are just other types of sports in
parallel with “ Jj#¥K (swimming)”, e.g., “ Bk (high
jump)” and “ k7K (diving)”. 2) MGE performs even
better than CWE by further incorporating the radical
information. The less relevant word “ H 4% (track
and field)” is ranked 4th by CWE. But after introduc-
ing the radical “7 (water)”, MGE can successfully
rank “JkF (swimmer)”, “Vk AR (swimming skill)”,
and “ 4K (winter swimming)” before it. All these
words contain the radical “y (water)” and are more
relevant to “Ji#¥K (swimming)”.

We further take the radical “J " (illness)” as an ex-
ample, and list the most similar characters and words
discovered by MGE in Table 4. The similarity be-
tween a radical and a character/word is also defined
as the cosine similarity between their embeddings.
From the results, we can see that almost all the char-
acters and words are disease-related, e.g., “f] (rick-
ets)”, “5 (tuberculosis)”, and “JEJr (ringworm s-
cabies)”, and most of them share the same radical
“J” (illness)”. This observation demonstrates the ra-
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tionality of embedding Chinese words, characters,
and radicals into the same vector space, and measur-
ing their similarities directly in that space. Note that
this operation might be problematic for English. For
example, it could be hard to figure out what kind of
similarity there is between the character “i” and the
word “ill”. But for Chinese, this problem might be
alleviated since characters and radicals themselves
contain rich semantic information.

4 Conclusion and Future Work

In this paper we propose a new approach to Chinese
word embedding, referred to as multi-granularity
embedding (MGE). MGE improves word embed-
ding by further leveraging both characters and radi-
cals, and hence makes full use of the word-character-
radical semantic composition. Experimental results
on word similarity computation and analogical rea-
soning demonstrate the superiority of MGE over
state-of-the-art methods. A qualitative analysis fur-
ther shows that by incorporating radical information
MGE can identify finer-grained semantic meanings
of words.

As future work, we would like to 1) Investigate
more complicate composition manners among radi-
cals, characters, and words, e.g., a hierarchical struc-
ture of them. 2) Explore the semantic composition
of higher level language units such as phrases, sen-
tences, and even documents.

5 Acknowledgement

We would like to thank the anonymous reviewers
for their insightful comments and suggestions. This
research is supported by the National Natural Sci-
ence Foundation of China (grant No. 61402465 and
No. 61402466) and the Strategic Priority Research
Program of the Chinese Academy of Sciences (grant
No. XDA06030200).

References

Yoshua Bengio, Holger Schwenk, Jean-Sébastien
Senécal, Fréderic Morin, and Jean-Luc Gauvain.
2006. Neural probabilistic language models. In
Innovations in Machine Learning, pages 137-186.

Xinxiong Chen, Lei Xu, Zhiyuan Liu, Maosong Sun, and

Huanbo Luan. 2015. Joint learning of character and



word embeddings. In Proceedings of the 24th Inter-
national Conference on Artificial Intelligence, pages
1236-1242.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa. 2011.
Natural language processing (almost) from scratch.
The Journal of Machine Learning Research, 12:2493—
2537.

Mohit Iyyer, Varun Manjunatha, Jordan Boyd-Graber,
and Hal Daumé III. 2015. Deep unordered compo-
sition rivals syntactic methods for text classification.
In Proceedings of the 53rd Annual Meeting of the As-
sociation for Computational Linguistics and the 7th
International Joint Conference on Natural Language
Processing, pages 1681-1691.

Hashimoto Kazuma and Tsuruoka Yoshimasa. 2016.
Adaptive joint learning of compositional and non-
compositional phrase embeddings. In Proceedings of
the 54th Annual Meeting of the Association for Com-
putational Linguistics.

Yoon Kim. 2014. Convolutional neural networks for sen-
tence classification. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1746-1751.

Yanran Li, Wenjie Li, Fei Sun, and Sujian Li. 2015.
Component-enhanced chinese character embeddings.
In Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, pages 829—
834.

Xiaodong Liu, Jianfeng Gao, Xiaodong He, Li Deng,
Kevin Duh, and Ye-Yi Wang. 2015. Representation
learning using multi-task deep neural networks for se-
mantic classification and information retrieval. In Pro-
ceedings of the 2015 Conference of the North Ameri-
can Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, pages 912—
921.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corra-
do, and Jeff Dean. 2013a. Distributed representations
of words and phrases and their compositionality. In
Advances in Neural Information Processing Systems
26, pages 3111-3119.

Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig.
2013b. Linguistic regularities in continuous space
word representations. In Proceedings of the 2013 Con-
ference of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language
Technologies, pages 746-751.

Yasumasa Miyamoto and Kyunghyun Cho. 2016. Gat-
ed word-character recurrent language model. arXiv
preprint arXiv:1606.01700.

Andriy Mnih and Geoffrey E. Hinton. 2009. A scalable
hierarchical distributed language model. In Advances

986

in Neural Information Processing Systems 21, pages
1081-1088.

Jerome L. Myers, Arnold Well, and Robert Frederick
Lorch. 2010. Research design and statistical analy-
sis. Routledge.

Xinlei Shi, Junjie Zhai, Xudong Yang, Zehua Xie, and
Chao Liu. 2015. Radical embedding: Delving deeper
to chinese radicals. In Proceedings of the 53rd Annu-
al Meeting of the Association for Computational Lin-
guistics and the 7th International Joint Conference on
Natural Language Processing, pages 594-598.

Yaming Sun, Lei Lin, Nan Yang, Zhenzhou Ji, and Xiao-
long Wang, 2014. Radical-Enhanced Chinese Char-
acter Embedding, chapter Proceedings of the 21st In-
ternational Conference on Neural Information Pro-
cessing, pages 279-286.

Ruifeng Xu, Tao Chen, Yunqging Xia, Qin Lu, Bin Liu,
and Xuan Wang. 2015. Word embedding composition
for data imbalances in sentiment and emotion classifi-
cation. Cognitive Computation, 7(2):226-240.

Mo Yu, Matthew R. Gormley, and Mark Dredze. 2015.
Combining word embeddings and feature embeddings
for fine-grained relation extraction. In Proceedings of
the 2015 Conference of the North American Chapter
of the Association for Computational Linguistics: Hu-
man Language Technologies, pages 1374—1379.

Guangyou Zhou, Tingting He, Jun Zhao, and Po Hu.
2015. Learning continuous word embedding with
metadata for question retrieval in community question
answering. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics
and the 7th International Joint Conference on Natural
Language Processing, pages 250-259.

Will Y. Zou, Richard Socher, Daniel Cer, and Christo-
pher D. Manning. 2013. Bilingual word embeddings
for phrase-based machine translation. In Proceedings
of the 2013 Conference on Empirical Methods in Nat-
ural Language Processing, pages 1393—1398.



