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Abstract

An exciting outcome of research at the inter-
section of language and vision is that of zero-
shot learning (ZSL). ZSL promises to scale
visual recognition by borrowing distributed
semantic models learned from linguistic cor-
pora and turning them into visual recognition
models. However the popular word-vector
DSM embeddings are relatively impoverished
in their expressivity as they model each word
as a single vector point. In this paper we ex-
plore word-distribution embeddings for ZSL.
We present a visual-linguistic mapping for
ZSL in the case where words and visual cat-
egories are both represented by distributions.
Experiments show improved results on ZSL
benchmarks due to this better exploiting of
intra-concept variability in each modality

1 Introduction

Learning vector representations of word meaning is
a topical area in computational linguistics. Based
on the distributional hypothesis (Harris, 1954) – that
words in similar context have similar meanings –
distributed semantic models (DSM)s build vector
representations based on corpus-extracted context.
DSM approaches such as topic models (Blei et al.,
2003), and more recently neural networks (Collobert
et al., 2011; Mikolov et al., 2013) have had great
success in a variety of lexical and semantic tasks
(Arora et al., 2015; Schwenk, 2007).

However despite their successes, classic DSMs
are severely impoverished compared to humans due
to learning solely from word cooccurrence without
grounding in the outside world. This has motivated a

wave of recent research into multi-modal and cross-
modal learning that aims to ground DSMs in non-
linguistic modalities (Bruni et al., 2014; Kiela and
Bottou, 2014; Silberer and Lapata, 2014; ?). Such
multi-modal DSMs are attractive because they learn
richer representations than language-only models
(e.g., that bananas are yellow fruit (Bruni et al.,
2012b)), and thus often outperform language only
models in various lexical tasks (Bruni et al., 2012a).

In this paper, we focus on a key unique and prac-
tically valuable capability enabled by cross-modal
DSMs: that of zero-shot learning (ZSL). Zero-shot
recognition aims to recognise visual categories in
the absence of any training examples by cross-modal
transfer from language. The idea is to use a lim-
ited set of training data to learn a linguistic-visual
mapping and then apply the induced function to map
images from novel visual categories (unseen during
training) to a linguistic embedding: thus enabling
recognition in the absence of visual training exam-
ples. ZSL has generated big impact (Lampert et al.,
2009; Socher et al., 2013; Lazaridou et al., 2014)
due to the potential of leveraging language to help
visual recognition scale to many categories without
labor intensive image annotation.

DSMs typically generate vector embeddings of
words, and hence ZSL is typically realised by vari-
ants of vector-valued cross-modal regression. How-
ever, such vector representations have limited ex-
pressivity – each word is represented by a point, with
no notion of intra-class variability. In this paper,
we consider ZSL in the case where both visual and
linguistic concepts are represented by Gaussian dis-
tribution embeddings. Specifically, our Gaussian-
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embedding approach to ZSL learns concept distri-
butions in both domains: Gaussians representing in-
dividual words (as in (Vilnis and McCallum, 2015))
and Gaussians representing visual concepts. Simul-
taneously, it learns a cross-domain mapping that
warps language-domain Gaussian concept represen-
tations into alignment with visual-domain concept
Gaussians. Some existing vector DSM-based cross-
modal ZSL mappings (Akata et al., 2013; Frome et
al., 2013) can be seen as special cases of ours where
the within-domain model is pre-fixed as vector cor-
responding to the Gaussian means alone, and only
the cross-domain mapping is learned. Our results
show that modeling linguistic and visual concepts as
Gaussian distributions rather than vectors can signif-
icantly improve zero-shot recognition results.

2 Methodology

2.1 Background
Vector Word Embeddings In a typical setup for
unsupervised learning of word-vectors, we observe
a sequence of tokens {wi} and their context words
{c(w)i}. The goal is to map each word w to a d-
dimensional vector ew reflecting its distributional
properties. Popular skip-gram and CBOW models
(Mikolov et al., 2013), learn a matrix W ∈ R|V |×d
of word embeddings for each of V vocabulary words
(ew = W(w,:)) based on the objective of predicting
words given their contexts.

Another way to formalise a word vector represen-
tation learning problem is to search for a representa-
tion W so that words w have high representational
similarity with co-occuring words c(w), and low
similarity with representations of non-co-occurring
words ¬c(w). This could be expressed as optimisa-
tion of max-margin loss J ; requiring that each word
w’s representation ew is more similar to that of con-
text words ep than non-context words en.

J(W ) =
∑

w,wp∈c(w),wn∈¬c(w)

max(0, δ−E(ew, ewp)+E(ew, ewn))

(1)

where similarity measure E(·, ·) is a distance in Rd
space such as cosine or euclidean.

Gaussian Word Embeddings Vector-space mod-
els are successful, but have limited expressivity in

terms of modelling the variance of a concept, or
asymmetric distances between words, etc. This has
motivated recent work into distribution-based em-
beddings (Vilnis and McCallum, 2015). Rather than
learning word-vectors ew, the goal here is now to
learn a distribution for each word, represented by a
per-word mean µw and covariance Σw.

In order to extend word representation learning
approaches such as Eq. (1) to learning Gaussians,
we need to replace vector similarity measure E(·, ·)
with a similarity measure for Gaussians. We fol-
low (Vilnis and McCallum, 2015) in using the inner
product between distributions f and g – the proba-
bility product kernel (Jebara et al., 2004).

E(f, g) =

∫

x∈Rn

f(x)g(x). (2)

The probability product kernel (PPK) has a conve-
nient closed form in the case of Gaussians:

E(f, g) =

∫

x∈Rn

N (x;µf ,Σf )N (x;µg,Σg)dx

= N (0;µf − µg,Σf + Σg) (3)

where µf , µg are the means and Σf ,Σg are the co-
variances of the probability distribution f and g.

2.2 Cross-Modal Distribution Mapping
Gaussian models of words can be learned as in the
previous section, and that Gaussian models of im-
age categories can be trivially obtained by maximum
likelihood. The central task is therefore to estab-
lish a mapping between word-and image-Gaussians,
which will be of different dimensions dw and dx.

We aim to find a projection matrix A ∈ Rdx×dw
such that a word w generates an image vector as
ex = Aew. Working with distributions, this im-
plies that we have µx = Aµw and Σx = AΣwA

T .
We can now evaluate the similarity of concept dis-
tributions across modalities. The similarity between
image-and text-domain Gaussians f and g is:

E(f, g) = N (0;µf −Aµg,Σf +AΣgA
T ) (4)

Using this metric, we can train our cross-modal pro-
jection A via the cross-domain loss:

J(A) =
∑

f,g∈P, h,k∈N
max(0, δ − E(f, g) + E(h, k)) (5)
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where P is the set of matching pairs that should
be aligned (e.g., the word Gaussian ‘plane’ and the
Gaussian of plane images) and N is the set of mis-
matching pairs that should be separated (e.g., ‘plane’
and images of dogs). This can be optimised with
SGD using the gradient:

∂E

∂A
=

1

2
((Σf +AΣgA

T )−1A(Σg + ΣT
g ))

+ ((µTg (Σf +AΣgA
T )−1(µf −Aµg)

+ (µf −Aµg)T (Σf +AΣgA
T )−1µTg

+ (µf −Aµg)T (Σf +AΣgA
T )−1

AT (Σg + ΣT
j )(Σf +AΣgA

T )−1(µf −Aµg))

2.3 Joint Representation and Mapping

The cross-domain mappingA can be learned (Eq. 5)
for fixed within-domain representations (word and
image Gaussians). It is also possible to simulta-
neously learn the text and image-domain gaussians
({µi,Σi}text, {µj ,Σj}img) by optimising the sum
of three coupled losses: Eq. 1 with Eq. 3, Eq. 5 and
max-margin image-classification using Gaussians.
We found jointly learning the image-classification
Gaussians did not bring much benefit over the MLE
Gaussians, so we only jointly learn the text Gaus-
sians and cross-domain mapping.

2.4 Application to Zero-Shot Recognition

Once the text-domain Gaussians and cross-domain
mapping have been trained for a set of known
words/classes, we can use the learned model to
recognise any novel/unseen but name-able visual
category w as follows: 1. Get the word-Gaussians
of target categories w, N (µw,Σw). 2. Project those
Gaussians to image modality,N (Aµw, AΣwA

T ). 3.
Classify a test image x by evaluating its likelihood
under each Gaussian, and picking the most likely
Gaussian: p(w|x) ∝ N (x|Aµw, AΣwA

T ).

2.5 Contextual Query

To illustrate our approach, we also experiment with
a new variant of the ZSL setting. In conventional
ZSL, a novel word can be matched against images
by projecting it into image space, and sorting images
by their distance to the word (vector), or likelihood
under the word (Gaussian). However, results may
be unreliable when used with polysemous words,

or words with large appearance variability. In this
case we may wish to enrich the query with contex-
tual words that disambiguate the visual meaning of
the query. With regular vector-based queries, the
typical approach is to sum the word-vectors. For
example: For contextual disambiguation of poly-
semy, we may hope that vec(‘bank’)+vec(‘river’)
may retrieve a very different set of images than
vec(‘bank’)+vec(‘finance’). For specification of a
specific subcategory or variant, we may hope that
vec(‘plane’)+vec(‘military’) retrieves a different set
of images than vec(‘plane’)+vec(‘passenger’). By
using distributions rather than vectors, our frame-
work provides a richer means to make such queries
that accounts for the intra-class variability of each
concept. When each word is represented by a
Gaussian, a two-word query can be represented
by their product, which is the new Gaussian

N (
Σ−1

1 µ1+Σ−1
2 µ2

Σ−1
1 +Σ−1

2

, (Σ−1
1 + Σ−1

2 )−1).

3 Experiments

3.1 Datasets and Settings
Datasets: We evaluate our method 1 using the
main Animals with Attributes (AWA) and Ima-
geNet1K benchmarks. To extract visual features we
use the VGG-16 CNN (Simonyan and Zisserman,
2015) to extract a dx = 4096 dimensional feature for
each image. To train the word Gaussian represen-
tation, we use a combination of UkWAC (Ferraresi
et al., 2008) and Wikipedia corpus of 25 million
tokens, and learn a dw = 100 dimensional Gaus-
sian representation. We set our margin parameter to
∆ = 1.

Settings: Our zero-shot setting involves training a
visual recogniser (i.e., our mapping A) on a subset
of classes, and evaluating it on a disjoint subset. For
AWA, we use the standard 40/10 class split (Lampert
et al., 2009), and for ImageNet we use a standard
800/200 class split (Mensink et al., 2012).

Competitors: We implement a set of representa-
tive alternatives for direct comparison with ours on
the same visual features and text corpus. These
include: cross-modal linear regression (LinReg,
(Dinu et al., 2015)), non-linear regression (NLin-
Reg, (Lazaridou et al., 2014; Socher et al., 2013)),

1Code and datasets kept at http://bit.ly/2cI64Zf
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(a) Top: ‘Military’+‘Plane’ (Gaussian), Middle: ‘Passen-
ger’+‘Plane’ (Gaussian), Bottom: ‘Passenger’+’Plane’ (Vector)

(b) Top: ‘White’+‘Horse’ (Gaussian), Middle: ‘Black’+‘Horse’
(Gaussian), Bottom: ‘Black’+’Horse’ (Vector)

Figure 1: Qualitative visualisation of zero-shot query with context words.

Vector space models Ours
Dataset LinReg NLinReg CME ES-ZSL Gaussian
AWA 44.0 48.4 43.1 58.2 65.4

Table 1: Zero-shot recognition results on AWA (% accuracy).

ES-ZSL (Romera-Paredes and Torr, 2015), and a
max-margin cross-modal energy function method
(CME, (Akata et al., 2013; Frome et al., 2013)).
Note that the CME strategy is the most closely re-
lated to ours in that it also trains a dx × dw matrix
with max-margin loss, but uses it in a bilinear en-
ergy function with vectors E(x, y) = xTAy; while
our energy function operates on Gaussians.

3.2 Results

Table 1 compares our results on the AWA bench-
mark against alternatives using the same visual fea-
tures, and word vectors trained on the same corpus.
We observe that: (i) Our Gaussian-embedding ob-
tains the best performance overall. (ii) Our method
outperforms CME which shares an objective func-
tion and optimisation strategy with ours, but oper-
ates on vectors rather than Gaussians. This sug-
gests that our new distribution rather than vector-
embedding does indeed bring significant benefit.

A comparison to published results obtained by
other studies on the same ZSL splits is given in Ta-
ble 2, where we see that our results are competitive
despite exploitation of supervised embeddings such
as attributes (Fu et al., 2014), or combinations of
embeddings (Akata et al., 2013) by other methods.

We next demonstrate our approach qualitatively
by means of the contextual query idea introduced in

ImageNet
ConSE (Norouzi et al., 2014) 28.5%
DeVISE (Frome et al., 2013) 31.8%
Large Scale Metric. (Mensink et al., 2012) 35.7%
Semantic Manifold. (Fu et al., 2015) 41.0%
Gaussian Embedding 45.7%

AwA
DAP (CNN feat) (Lampert et al., 2009) 53.2%
ALE (Akata et al., 2013) 43.5%
TMV-BLP (Fu et al., 2014) 47.1%
ES-ZSL (Romera-Paredes and Torr, 2015) 49.3%
Gaussian Embedding 65.4%

Table 2: Comparison of our ZSL results with state of the art.

Sec 2.5. Fig. 1 shows examples of how the top re-
trieved images differ intuitively when querying Im-
ageNet for zero-shot categories ‘plane’ and ‘horse’
with different context words. To ease interpretation,
we constrain the retrieval to the true target class,
and focus on the effect of the context word. Our
learned Gaussian method retrieves more relevant im-
ages than the word-vector sum baseline. E.g., with
the Gaussian model all of the top-4 retrieved images
for Passenger+Plane are relevant, while only two are
relevant with the vector model. Similarly, the re-
trieved black horses are more clearly black.

3.3 Further Analysis

To provide insight into our contribution, we repeat
the analysis of the AwA dataset and evaluate several
variants of our full method. These use our features,
and train the same cross-domain max-margin loss in
Eq 5, but vary in the energy function and representa-
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AwA
Bilinear-WordVec 43.1%
Bilinear-MeanVec 52.2%
PPK-MeanVec 52.6%
PPK-Gaussian 65.4%

Table 3: Impact of training and testing with distribution rather

than vector-based representations

tions used. Variants include: (i) Bilinear-WordVec:
Max-margin training on word vector representations
of words and images with a bilinear energy func-
tion. (ii) Bilinear-MeanVec: As before, but using
our Gaussian means as vector representations in im-
age and text domains. (iii) PPK-MeanVec: Train
the max-margin model with Gaussian representa-
tion and PPK energy function as in our full model,
but treat the resulting means as point estimates for
conventional vector-based ZSL matching at testing-
time. (v) PPK-Gaussian: Our full model with Gaus-
sian PPK training and testing by Gaussian matching.

From the results in Table 3, we make the observa-
tions: (i) Bilinear-MeanVec outperforming Bilinear-
WordVec shows that cross-modal (Sec 2.3) train-
ing of word Gaussians learns better point esti-
mates of words than conventional word-vector train-
ing, since these only differ in the choice of vector
representation of class names. (ii) PPK-Gaussian
outperforming PPK-MeanVec shows that having a
model of intra-class variability (as provided by the
word-Gaussians) allows better zero-shot recogni-
tion, since these differ only in whether covariance
is used at testing time.

3.4 Related Work and Discussion

Our approach models intra-class variability in both
images and text. For example, the variability
in visual appearance of military versus passenger
‘plane’s, and the variability in context according to
whether a the word ‘plane’ is being used in a military
or civilian sense. Given distribution-based represen-
tations in each domain, we find a cross-modal map
that warps the two distributions into alignment.

Concurrently with our work, Ren et al (2016)
present a related study on distribution-based visual-
text embeddings. Methodologically, they benefit
from end-to-end learning of deep features as well
as cross-modal mapping, but they only discrimi-

natively train word covariances, rather than jointly
training both means and covariances as we do.

With regards to efficiency, our model is fast to
train if fixing pre-trained word-Gaussians and op-
timising only the cross-modal mapping A. How-
ever, training the mapping jointly with the word-
Gaussians comes at the cost of updating the repre-
sentations of all words in the dictionary, and is thus
much slower.

In terms of future work, an immediate improve-
ment would be to generalise our of Gaussian embed-
dings to model concepts as mixtures of Gaussians
or other exponential family distributions (Rudolph et
al., 2016; Chen et al., 2015). This would for exam-
ple, allow polysemy to be represented more cleanly
as a mixture, rather than as a wide-covariance
Gaussian as happens now. We would also like
to explore distribution-based embeddings of sen-
tences/paragraphs for class description (rather than
class name) based zero-shot recognition (Reed et
al., 2016). Finally, besides end-to-end deep learning
of visual features, training non-linear cross-modal
mappings is also of interest.

4 Conclusion

In this paper, we advocate using distribution-based
embeddings of text and images when bridging the
gap between vision and text modalities. This is in
contrast to the common practice of point vector-
based embeddings. Our distribution-based approach
provides a representation of intra-class variability
that improves zero-shot recognition, allows more
meaningful retrieval by multiple keywords, and also
produces better point-estimates of word vectors.
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