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Abstract

Sequence labeling is a widely used method
for named entity recognition and information
extraction from unstructured natural language
data. In the clinical domain one major ap-
plication of sequence labeling involves ex-
traction of relevant entities such as medica-
tion, indication, and side-effects from Elec-
tronic Health Record Narratives. Sequence la-
beling in this domain presents its own set of
challenges and objectives. In this work we
experiment with Conditional Random Field
based structured learning models with Recur-
rent Neural Networks. We extend the pre-
viously studied CRF-LSTM model with ex-
plicit modeling of pairwise potentials. We also
propose an approximate version of skip-chain
CRF inference with RNN potentials. We use
these methods1 for structured prediction in or-
der to improve the exact phrase detection of
clinical entities.

1 Introduction

Patient data collected by hospitals falls into two cat-
egories, structured data and unstructured natural lan-
guage texts. It has been shown that natural text
clinical documents such as discharge summaries,
progress notes, etc are rich sources of medically rel-
evant information like adverse drug events, medica-
tion prescriptions, diagnosis information etc. Infor-
mation extracted from these natural text documents
can be useful for a multitude of purposes ranging

1Code is available at https://github.com/abhyudaynj/LSTM-
CRF-models

from drug efficacy analysis to adverse effect surveil-
lance.

A widely used method for Information Extrac-
tion from natural text documents involves treating
the text as a sequence of tokens. This format al-
lows sequence labeling algorithms to label the rel-
evant information that should be extracted. Sev-
eral sequence labeling algorithms such as Condi-
tional Random Fields (CRFs), Hidden Markov Mod-
els (HMMs), Neural Networks have been used for
information extraction from unstructured text. CRFs
and HMMs are probabilistic graphical models that
have a rich history of Natural Language Process-
ing (NLP) related applications. These methods try
to jointly infer the most likely label sequence for a
given sentence.

Recently, Recurrent (RNN) or Convolutional
Neural Network (CNN) models have increasingly
been used for various NLP related tasks. These Neu-
ral Networks by themselves however, do not treat
sequence labeling as a structured prediction prob-
lem. Different Neural Network models use dif-
ferent methods to synthesize a context vector for
each word. This context vector contains informa-
tion about the current word and its neighboring con-
tent. In the case of CNN, the neighbors comprise
of words in the same filter size window, while in
Bidirectional-RNNs (Bi-RNN) they contain the en-
tire sentence.

Graphical models and Neural Networks have their
own strengths and weaknesses. While graphical
models predict the entire label sequence jointly, they
usually rely on special hand crafted features to pro-
vide good results. Neural Networks (especially Re-
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current Neural Networks), on the other hand, have
been shown to be extremely good at identifying pat-
terns from noisy text data, but they still predict each
word label in isolation and not as a part of a se-
quence. In simpler terms, RNNs benefit from rec-
ognizing patterns in the surrounding input features,
while structured learning models like CRF benefit
from the knowledge about neighboring label predic-
tions. Recent work on Named Entity Recognition
by (Huang et al., 2015) and others have combined
the benefits of Neural Networks(NN) with CRF by
modeling the unary potential functions of a CRF as
NN models. They model the pairwise potentials as
a paramater matrix [A] where the entry Ai,j corre-
sponds to the transition probability from the label i
to label j. Incorporating CRF inference in Neural
Network models helps in labeling exact boundaries
of various named entities by enforcing pairwise con-
straints.

This work focuses on labeling clinical events
(medication, indication, and adverse drug events)
and event related attributes (medication dosage,
route, etc) in unstructured clinical notes from Elec-
tronic Health Records. Later on in the Section 4,
we explicitly define the clinical events and attributes
that we evaluate on. In the interest of brevity, for the
rest of the paper, we use the broad term “Clinical En-
tities” to refer to all medically relevant information
that we are interested in labeling.

Detecting entities in clinical documents such as
Electronic Health Record notes composed by hospi-
tal staff presents a somewhat different set of chal-
lenges than similar sequence labeling applications
in the open domain. This difference is partly due
to the critical nature of medical domain, and partly
due to the nature of clinical texts and entities therein.
Firstly, in the medical domain, extraction of exact
clinical phrase is extremely important. The names
of clinical entities often follow polynomial nomen-
clature. Disease names such as Uveal melanoma
or hairy cell leukemia need to be identified exactly,
since partial names ( hairy cell or melanoma) might
have significantly different meanings. Addition-
ally, important clinical entities can be relatively rare
events in Electronic Health Records. For example,
mentions of Adverse Drug Events occur once ev-
ery six hundred words in our corpus. CRF inference
with NN models cited previously do improve exact

phrase labeling. However, better ways of modeling
the pairwise potential functions of CRFs might lead
to improvements in labeling rare entities and detect-
ing exact phrase boundaries.

Another important challenge in this domain is a
need to model long term label dependencies. For ex-
ample, in the sentence “the patient exhibited A sec-
ondary to B”, the label for A is strongly related to
the label prediction of B. A can either be labeled as
an adverse drug reaction or a symptom if B is a Med-
ication or Diagnosis respectively. Traditional linear
chain CRF approaches that only enforce local pair-
wise constraints might not be able to model these
dependencies. It can be argued that RNNs may im-
plicitly model label dependencies through patterns
in input features of neighboring words. While this is
true, explicitly modeling the long term label depen-
dencies can be expected to perform better.

In this work, we explore various methods of struc-
tured learning using RNN based feature extractors.
We use LSTM as our RNN model. Specifically,
we model the CRF pairwise potentials using Neural
Networks. We also model an approximate version of
skip chain CRF to capture the aforementioned long
term label dependencies. We compare the proposed
models with two baselines. The first baseline is a
standard Bi-LSTM model with softmax output. The
second baseline is a CRF model using handcrafted
feature vectors. We show that our frameworks im-
prove the performance when compared to the base-
lines or previously used CRF-LSTM models. To
the best of our knowledge, this is the only work fo-
cused on usage and analysis of RNN based struc-
tured learning techniques on extraction of clinical
entities from EHR notes.

2 Related Work

As mentioned in the previous sections, both Neural
Networks and Conditional Random Fields have been
widely used for sequence labeling tasks in NLP.
Specially, CRFs (Lafferty et al., 2001) have a long
history of being used for various sequence labeling
tasks in general and named entity recognition in par-
ticular. Some early notable works include McCal-
lum et. al. (2003), Sarawagi et al. (2004) and Sha et.
al. (2003). Hammerton et. al. (2003) and Chiu et.
al. (2015) used Long Short Term Memory (LSTM)
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(Hochreiter and Schmidhuber, 1997) for named en-
tity recognition.

Several recent works on both image and text based
domains have used structured inference to improve
the performance of Neural Network based mod-
els. In NLP, Collobert et al (2011) used Convolu-
tional Neural Networks to model the unary poten-
tials. Specifically for Recurrent Neural Networks,
Lample et al. (2016) and Huang et. al. (2015) used
LSTMs to model the unary potentials of a CRF.

In biomedial named entity recognition, several
approaches use a biological corpus annotated with
entities such as protein or gene name. Settles (2004)
used Conditional Random Fields to extract occur-
rences of protein, DNA and similar biological en-
tity classes. Li et. al. (2015) recently used LSTM
for named entity recognition of protein/gene names
from BioCreative corpus. Gurulingappa et. al.
(2010) evaluated various existing biomedical dictio-
naries on extraction of adverse effects and diseases
from a corpus of Medline abstracts.

This work uses a real world clinical corpus of
Electronic Health Records annotated with various
clinical entities. Jagannatha et. al. (2016) recently
showed that RNN based models outperform CRF
models on the task of Medical event detection on
clinical documents. Other works using a real world
clinical corpus include Rochefort et al. (2015), who
worked on narrative radiology reports. They used a
SVM-based classifier with bag of words feature vec-
tor to predict deep vein thrombosis and pulmonary
embolism. Miotto et. al. (2016) used a denoising
autoencoder to build an unsupervised representation
of Electronic Health Records which could be used
for predictive modeling of patient’s health.

3 Methods

We evaluate the performance of three different Bi-
LSTM based structured prediction models described
in section 3.2, 3.3 and 3.4. We compare this perfor-
mance with two baseline methods of Bi-LSTM(3.1)
and CRF(3.5) model.

3.1 Bi-LSTM (baseline)

This model is a standard bidirectional LSTM neu-
ral network with word embedding input and a Soft-
max Output layer. The raw natural language input

sentence is processed with a regular expression to-
kenizer into sequence of tokens x = [xt]

T
1 . The to-

ken sequence is fed into the embedding layer, which
produces dense vector representation of words. The
word vectors are then fed into a bidirectional RNN
layer. This bidirectional RNN along with the em-
bedding layer is the main machinery responsible for
learning a good feature representation of the data.
The output of the bidirectional RNN produces a
feature vector sequence ω(x) = [ω(x)]T1 with the
same length as the input sequence x. In this base-
line model, we do not use any structured inference.
Therefore this model alone can be used to predict the
label sequence, by scaling and normalizing [ω(x)]T1 .
This is done by using a softmax output layer, which
scales the output for a label l where l ∈ {1, 2, ..., L}
as follows:

P (ỹt = j|x) =
exp(ω(x)tWj)∑L
l=1 exp(ω(x)tWl)

(1)

The entire model is trained end-to-end using cate-
gorical cross-entropy loss.

3.2 Bi-LSTM CRF

This model is adapted from the Bi-LSTM CRF
model described in Huang et. al. (2015). It
combines the framework of bidirectional RNN
layer[ω(x)]T1 described above, with linear chain
CRF inference. For a general linear chain CRF the
probability of a label sequence ỹ for a given sentence
x can be written as :

P (ỹ|x) =
1

Z

N∏

t=1

exp{φ(ỹt) + ψ(ỹt, ỹt+1)} (2)

Where φ(yt) is the unary potential for the label po-
sition t and ψ(yt, yt+1) is the pairwise potential be-
tween the positions t,t+1. Similar to Huang et. al.
(2015), the outputs of the bidirectional RNN layer
ω(x) are used to model the unary potentials of a lin-
ear chain CRF. In particular, the NN based unary po-
tential φnn(yt) is obtained by passing ω(x)t through
a standard feed-forward tanh layer. The binary po-
tentials or transition scores are modeled as a matrix
[A]L×L. Here L equals the number of possible la-
bels including the Outside label. Each element Ai,j

represents the transition score from label i to j. The
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probability for a given sequence ỹ can then be cal-
culated as :

P (ỹ|x; θ) =
1

Z

T∏

t=1

exp{φnn(ỹt) +Aỹt,ỹt+1} (3)

The network is trained end-to-end by minimizing
the negative log-likelihood of the ground truth label
sequence ŷ for a sentence x as follows:

L(x, ŷ; θ) = −
∑

t

∑

yt

δ(yt = ŷt) logP (yt|x; θ)}

(4)
The negative log likelihood of given label se-

quence for an input sequence is calculated by sum-
product message passing. Sum-product message
passing is an efficient method for exact inference in
Markov chains or trees.

3.3 Bi-LSTM CRF with pairwise modeling
In the previous section, the pairwise potential is cal-
culated through a transition probability matrix [A]
irrespective of the current context or word. For rea-
sons mentioned in section 1, this might not be an
effective strategy. Some clinical entities are rela-
tively rare. Therefore transition from an Outside la-
bel to a clinical label might not be effectively mod-
eled by a fixed parameter matrix. In this method,
the pairwise potentials are modeled through a non-
linear Neural Network which is dependent on the
current word and context. Specifically, the pairwise
potential ψ(yt, yt+1) in equation 2 is computed by
using a one dimensional CNN with 1-D filter size 2
and tanh non-linearity. At every label position t, it
takes [ω(x)t;ω(x)t+1] as input and produces a L×L
pairwise potential output ψnn(yt, yt+1). This CNN
layer effectively acts as a non-linear feed-forward
neuron layer, which is repeatedly applied on con-
secutive pairs of label positions. It uses the output
of the bidirectional LSTM layer at positions t and
t+ 1 to prepare the pairwise potential scores.

The unary potential calculation is kept the same as
in Bi-LSTM-CRF. Substituting the neural network
based pairwise potential ψnn(yt, yt+1) into equation
2 we can reformulate the probability of the label se-
quence ỹ given the word sequence x as :

P (ỹ|x; θ) =
1

Z

N∏

t=1

exp{φnn(ỹt) + ψnn(ỹt, ỹt+1)}

(5)

Labels Num. of
Instances

Avg word length
± std

ADE 1807 1.68 ± 1.22
Indication 3724 2.20 ± 1.79
Other SSD 40984 2.12 ± 1.88
Severity 3628 1.27 ± 0.62
Drugname 17008 1.21 ± 0.60
Duration 926 2.01 ± 0.74
Dosage 5978 2.09 ± 0.82
Route 2862 1.20± 0.47
Frequency 5050 2.44± 1.70

Table 1: Annotation statistics for the corpus.

The neural network is trained end-to-end with the
objective of minimizing the negative log likelihood
in equation 4. The negative log-likelihood scores are
obtained by sum-product message passing.

3.4 Approximate Skip-chain CRF

Skip chain models are modifications to linear chain
CRFs that allow long term label dependencies
through the use of skip edges. These are basically
edges between label positions that are not adjacent
to each other. Due to these skip edges, the skip chain
CRF model (Sutton and McCallum, 2006) explicitly
models dependencies between labels which might
be more than one position apart. The joint inference
over these dependencies are taken into account while
decoding the best label sequence. However, unlike
the two models explained in the preceding section,
the skip-chain CRF contains loops between label
variables. As a result we cannot use the sum-product
message passing method to calculate the negative
log-likelihood.The loopy structure of the graph in
skip chain CRF renders exact message passing in-
ference intractable. Approximate solutions for these
models include loopy belief propagation(BP) which
requires multiple iterations of message passing.

However, an approach like loopy BP is pro-
hibitively expensive in our model with large Neural
Net based potential functions. The reason for this is
that each gradient descent iteration for a combined
RNN-CRF model requires a fresh calculation of the
marginals. In one approach to mitigate this, Lin et.
al. (2015) directly model the messages in the mes-
sage passing inference of a 2-D grid CRF for image
segmentation. This bypasses the need for modeling
the potential function, as well as calculating the ap-
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proximate messages on the graph using loopy BP.
Approximate CRF message passing inference:
Lin et. al. (2015) directly estimate the factor to
variable message using a Neural Network that uses
input image features. Their underlying reasoning is
that the factor-to-variable message from factor F to
label variable yt for any iteration of loopy BP can
be approximated as a function of all the input vari-
ables and previous messages that are a part of that
factor. They only model one iteration of loopy BP,
and empirically show that it leads to an apprecia-
ble increase in performance. This allows them to
model the messages as a function of only the input
variables, since the messages for the first iteration of
message passing are computed using the potential
functions alone.

We follow a similar approach for calculation
of variable marginals in our skip chain model.
However, instead of estimating individual factor-to-
variable messages, we exploit the sequence struc-
ture in our problem and estimate groups of factor-
to-variable messages. For any label node yt, the first
group contains factors that involve nodes which oc-
cur before yt in the sentence (from left). The second
group of factor-to-variable messages corresponds to
factors involving nodes occurring later in the sen-
tence. We use recurrent computational units like
LSTM to estimate the sum of log factor-to-variable
messages within a group. Essentially, we use bidi-
rectional recurrent computation to estimate all the
incoming factors from left and right separately.

To formulate this, let us assume for now that we
are using skip edges to connect the current node t
to m preceding and m following nodes. Each edge,
skip or otherwise, is denoted by a factor which con-
tains the binary potential of the edge and the unary
potential of the connected node. As mentioned ear-
lier, we will divide the factors associated with node
t into two sets, FL(t) and FR(t). Here FL(t) , con-
tains all factors formed between the variables from
the group {yt−m, ..., yt−1} and yt. So we can for-
mulate the combined message from factors in FL(t)
as

βL(yt) = [
∑

F∈FL(t)

βF→t(yt)] (6)

The combined messages from factors in FR(t)
which contains variables from yt+1 to yt+m can be

formulated as :

βR(yt) = [
∑

F∈FR(t)

βF→t(yt)] (7)

We also need the unary potential of the label vari-
able t to compose its marginal. The unary po-
tentials of each variable from {yt−m, ..., yt−1} and
{yt+1, ..., yt+m} should already be included in their
respective factors. The log of the unnormalized
marginal P̄ (yt|x) for the variable yt, can therefore
be calculated by

log P̄ (yt|x) = βR(yt) + βL(yt) + φ(yt) (8)

Similar to Lin et. al. (2015), in the interest of
limited network complexity, we use only one mes-
sage passing iteration. In our setup, this means that a
variable-to-factor message from a neighboring vari-
able yi to the current variable yt contains only the
unary potentials of yi and binary potential between
yi , yt. As a consequence of this, we can see that
βL(yt) can be written as :

βL(yt) =

t−m∑

i=t−1
log

∑

yi

[expψ(yt, yi) + φ(yi)] (9)

Similarly, we can formulate a function for βR(yt) in
a similar way :

βR(yt) =
t+m∑

i=t+1

log
∑

yi

[expψ(yt, yi) + φ(yi)]

(10)

Modeling the messages using RNN: As mentioned
previously in equation 8, we only need to estimate
βL(yt), βR(yt) and φ(yt) to calculate the marginal
of variable yt. We can use φnn(yt) framework intro-
duced in section 3.2 to estimate the unary potential
for yt. We use different directions of a bidirectional
LSTM to estimate βR(yt) and βL(yt). This elim-
inates the need to explicitly model and learn pair-
wise potentials for variables that are not immediate
neighbors.

The input to this layer at position t is
[φnn(yt);ψnn(yt, yt+1)] (composed of potential
functions described in section 3.3). This can be
viewed as an LSTM layer aggregating beliefs about
yt from the unary and binary potentials of [y]t−11
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Strict Evaluation ( Exact Match) Relaxed Evaluation (Word based)
Models Recall Precision F-score Recall Precision F-score

CRF 0.7385 0.8060 0.7708 0.7889 0.8040 0.7964
Bi-LSTM 0.8101 0.7845 0.7971 0.8402 0.8720 0.8558

Bi-LSTM CRF 0.7890 0.8066 0.7977 0.8068 0.8839 0.8436
Bi-LSTM CRF-pair 0.8073 0.8266 0.8169 0.8245 0.8527 0.8384

Approximate Skip-Chain CRF 0.8364 0.8062 0.8210 0.8614 0.8651 0.8632
Table 2: Cross validated micro-average of Precision, Recall and F-score for all clinical tags

to approximate the sum of messages from left side
βL(yt). Similarly, βR(yt) can be approximated from
the LSTM aggregating information from the oppo-
site direction. Formally, βL(yt) is approximated as
a function of neural network based unary and binary
potentials as follows:

βL(yt) ≈ f ([φnn(yi);ψnn(yi, yi+1)]
t−1
1 ) (11)

Using LSTM as a choice for recurrent compu-
tation here is advantageous, because LSTMs are
able to learn long term dependencies. In our
framework, this allows them to learn to prioritize
more relevant potential functions from the sequence
[[φnn(yi);ψnn(yi, yi+1)]

t−1
1 . Another advantage of

this method is that we can approximate skip edges
between all preceding and following nodes, instead
of modeling just m surrounding ones. This is be-
cause LSTM states are maintained throughout the
sentence.

The partition function for yt can be easily ob-
tained by using logsumexp over all label entries of
the unnormalized log marginal shown in equation 8
as follows:

Zt =
∑

yt

exp[βR(yt) + βL(yt) + φ(yt)] (12)

Here the partition function Z is a different for differ-
ent positions of t. Due to our approximations, it is
not guaranteed that the partition function calculated
from different marginals of the same sentence are
equal. The normalized marginal can be now calcu-
lated by normalizing log P̄ (yt|x) in equation 8 using
Zt.

L(x, ŷ; θ) = −
∑

t

∑

yt

δ(yt = ŷt)(βR(yt; θ)

+βL(yt; θ) + φ(yt; θ)− logZt(θ))

(13)

The model is optimized using cross entropy
loss between the true marginal and the predicted
marginal. The loss for a sentence x with a ground
truth label sequence ŷ is provided in equation 13.

3.5 CRF (baseline)
We use the linear chain CRF, which is a widely used
model in extraction of clinical named entities. As
mentioned previously, Conditional Random Fields
explicitly model dependencies between output vari-
ables conditioned on a given input sequence.

The main inputs to CRF in this model are not
RNN outputs, but word inputs and their correspond-
ing word vector representations. We add additional
sentence features consisting of four vectors. Two of
them are bag of words representation of the sentence
sections before and after the word respectively. The
remaining two vectors are dense vector representa-
tions of the same sentence sections. The dense vec-
tors are calculated by taking the mean of all indi-
vidual word vectors in the sentence section. We add
these features to explicitly mimic information pro-
vided by the bidirectional chains of the LSTM mod-
els.

4 Dataset

We use an annotated corpus of 1154 English Elec-
tronic Health Records from cancer patients. Each
note was annotated2 by two annotators who label
clinical entities into several categories. These cate-
gories can be broadly divided into two groups, Clin-
ical Events and Attributes. Clinical events include
any specific event that causes or might contribute to
a change in a patient’s medical status. Attributes
are phrases that describe certain important proper-
ties about the events.

2The annotation guidelines can be found
at https://github.com/abhyudaynj/LSTM-CRF-
models/blob/master/annotation.md
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Figure 1: Plots of Recall, Precision and F-score for RNN based methods. The metrics with prefix Strict are using phrase based

evaluation. Relaxed metrics use word based evaluation.Bar-plots are in order with Bi-LSTM on top and Approx-skip-chain-CRF at

the bottom.

Clinical Event categories in this corpus are Ad-
verse Drug Event (ADE), Drugname , Indication
and Other Sign Symptom and Diseases (Other SSD).
ADE, Indication and Other SSD are events having
a common vocabulary of Sign, Symptoms and Dis-
eases (SSD). They can be differentiated based on the
context that they are used in. A certain SSD should
be labeled as ADE if it can be manually identified as
a side effect of a drug based on the evidence in the
clinical note. It is an Indication if it is an affliction
that a doctor is actively treating with a medication.
Any other SSD that does not fall into the above two
categories ( for e.g. an SSD in patients history) is
labeled as Other SSD. Drugname event labels any
medication or procedure that a physician prescribes.

The attribute categories contain the following
properties, Severity , Route, Frequency, Duration
and Dosage. Severity is an attribute of the SSD event
types , used to label the severity a disease or symp-
tom. Route, Frequency, Duration and Dosage are
attributes of Drugname. They are used to label the
medication method, frequency of dosage, duration
of dosage, and the dosage quantity respectively. The

annotation statistics of the corpus are provided in the
Table 1.

5 Experiments

Each document is split into separate sentences and
the sentences are tokenized into individual word and
special character tokens. The models operate on
the tokenized sentences. In order to accelerate the
training procedure, all LSTM models use batch-wise
training using a batch of 64 sentences. In order to do
this, we restricted the sentence length to 50 tokens.
All sentences longer than 50 tokens were split into
shorter size samples, and shorter sentences were pre-
padded with masks. The CRF baseline model(3.5)
does not use batch training and so the sentences were
used unaltered.

The first layer for all LSTM models was a 200
dimensional word embedding layer. In order to im-
prove performance, we initialized embedding layer
values in these models with a skip-gram word em-
bedding (Mikolov et al., 2013). The skip-gram em-
bedding was calculated using a combined corpus
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of PubMed open access articles, English Wikipedia
and an unlabeled corpus of around hundred thousand
Electronic Health Records. The EHRs used in the
annotated corpus are not in this unlabeled EHR cor-
pus. This embedding is also used to provide word
vector representation to the CRF baseline model.

The bidirectional LSTM layer which outputs
ω(x) contains LSTM neurons with a hidden size
ranging from 200 to 250. This hidden size is
kept variable in order to control for the number of
trainable parameters between different LSTM based
models. This helps ensure that the improved perfor-
mance in these models is only because of the modi-
fied model structure, and not an increase in trainable
parameters. The hidden size is varied in such a way
that the number of trainable parameters are close to
3.55 million parameters. Therefore, the Approx skip
chain CRF has 200 hidden layer size, while stan-
dard Bi-LSTM model has 250 hidden layer. Since
the ω(x) layer is bidirectional, this effectively means
that the Bi-LSTM model has 500 hidden layer size,
while Approx skip chain CRF model has 400 dimen-
sional hidden layer.

We use dropout (Srivastava et al., 2014) with a
probability of 0.50 in all LSTM models in order to
improve regularization performance. We also use
batch norm (Ioffe and Szegedy, 2015) between lay-
ers wherever possible in order to accelerate training.
All RNN models are trained in an end-to-end fashion
using Adagrad (Duchi et al., 2011) with momentum.
The CRF model was trained using L-BFGS with L2
regularization. We use Begin Inside Outside (BIO)
label modifiers for models that use CRF objective.

We use ten-fold cross validation for our results.
The documents are divided into training and test
documents. From each training set fold, 20% of the
sentences form the validation set which is used for
model evaluation during training and for early stop-
ping.

We report the word based and exact phrase match
based micro-averaged recall, precision and F-score.
Exact phrase match based evaluation is calculated
on a per phrase basis, and considers a phrase as pos-
itively labeled only if the phrase exactly matches
the true boundary and label of the reference phrase.
Word based evaluation metric is calculated on labels
of individual words. A word’s predicted label is con-
sidered as correct if it matches the reference label,

irrespective of whether the remaining words in its
phrase are labeled correctly. Word based evaluation
is a more relaxed metric than phrase based evalua-
tion.

6 Results

The micro-averaged Precision, Recall and F-score
for all five models are shown in Table 2. We report
both strict (exact match) and relaxed (word based)
evaluation results. As shown in Table 2, the best per-
formance is obtained by Skip-Chain CRF (0.8210
for strict and 0.8632 for relaxed evaluation). All
LSTM based models outperform the CRF baseline.
Bi-LSTM-CRF and Bi-LSTM-CRF-pair models us-
ing exact CRF inference improve the precision of
strict evaluation by 2 to 5 percentage points. Bi-
LSTM CRF-pair achieved the highest precision for
exact-match. However, the recall (both strict and re-
laxed) for exact CRF-LSTM models is less than Bi-
LSTM. This reduction in recall is much less in the
Bi-LSTM-pair model. In relaxed evaluation, only
the Skip Chain model has a better F-score than the
baseline LSTM. Overall, Bi-LSTM-CRF-pair and
Approx-Skip-Chain models lead to performance im-
provements. However, the standard Bi-LSTM-CRF
model does not provide an appreciable increase over
the baseline.

Figure 1 shows the breakdown of performance
for each RNN model with respect to individual
clinical entity labels. CRF baseline model perfor-
mance is not shown in Figure 1, because its per-
formance is consistently lower than Bi-LSTM-CRF
model across all label categories. We use pairwise
t-test on strict evaluation F-score for each fold in
cross validation, to calculate the statistical signifi-
cance of our scores. The improvement in F-score
for Bi-LSTM-CRF-pair and Approx-Skip Chain as
compared to Bi-LSTM baseline is statistically sig-
nificant (p < 0.01). The difference in Bi-LSTM-
CRF and Bi-LSTM baseline, does not appear to be
statistically significant (p > 0.05). However, the im-
provements over CRF baseline for all LSTM models
are statistically significant.

7 Discussion

Overall, Approx-Skip-Chain CRF model achieved
better F-scores than CRF,Bi-LSTM and Bi-LSTM-
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CRF in both strict and relaxed evaluations. The re-
sults of strict evaluation, as shown in Figure 1, are
our main focus of discussion due to their impor-
tance in the clinical domain. As expected, two ex-
act inference-based CRF-LSTM models (Bi-LSTM-
CRF and Bi-LSTM-CRF-pair) show the highest pre-
cision for all labels. Approx-Skip-Chain CRF’s pre-
cision is lower(due to approximate inference) but it
still mostly outperforms Bi-LSTM. The recall for
Skip Chain CRF is almost equal or better than all
other models due to its robustness in modeling de-
pendencies between distant labels. The variations in
recall contribute to the major differences in F-scores.
These variations can be due to several factors includ-
ing the rarity of that label in the dataset, the com-
plexity of phrases of a particular label, etc.

We believe, exact CRF-LSTM models described
here require more training samples than the baseline
Bi-LSTM to achieve a comparable recall for labels
that are complex or “difficult to detect”. For exam-
ple, as shown in table 1, we can divide the labels into
frequent ( Other SSD, Indication, Severity, Drug-
name, Dosage, and Frequency) and rare or sparse
(Duration, ADE, Route). We can make a broad gen-
eralization, that exact CRF models (especially Bi-
LSTM-CRF) have somewhat lower recall for rare
labels. This is true for most labels except for Route,
Indication, and Severity. The CRF models have very
close recall (0.780,0.782) to the baseline Bi-LSTM
(0.803) for Route even though its number of inci-
dences are lower (2,862 incidences) than Indication
(3,724 incidences) and Severity (3,628 incidences),
both of which have lower recall even though their
incidences are much higher.

Complexity of each label can explain the afore-
mentioned phenomenon. Route for instance, fre-
quently contains unique phrases such as “by mouth”
or “p.o.,” and is therefore easier to detect. In con-
trast, Indication is ambiguous. Its vocabulary is
close to two other labels: ADE (1,807 incidences)
and the most populous Other SSD (40,984 inci-
dences). As a consequence, it is harder to sepa-
rate the three labels. Models need to learn cues
from surrounding context, which is more difficult
and requires more samples. This is why the re-
call for Indication is lower for CRF-LSTM models,
even though its number of incidences is higher than
Route. To further support our explanation, our re-

sults show that the exact CRF-LSTM models mis-
labeled around 40% of Indication words as Other
SSD, as opposed to just 20 % in case of the Bi-
LSTM baseline. The label Severity is a similar case.
It contains non-label-specific phrases such as “not
terribly”, “very rare” and “small area,” which may
explain why almost 35% of Severity words are mis-
labeled as Outside by the bi-LSTM-CRF as opposed
to around 20% by the baseline.

It is worthwhile to note that among exact CRF-
LSTM models, the recall for Bi-LSTM-CRF-pair is
much better than Bi-LSTM-CRF even for sparse la-
bels. This validates our initial hypothesis that Neu-
ral Net based pairwise modeling may lead to better
detection of rare labels.

8 Conclusion

We have shown that modeling pairwise potentials
and using an approximate version of Skip-chain in-
ference increase the performance of the LSTM-CRF
models. We also show that these models perform
much better than baseline LSTM and CRF models.
These results suggest that the structured prediction
models are good directions for improving the exact
phrase extraction for clinical entities.
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