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Abstract

Sentence modelling is a fundamental top-
ic in computational linguistics. Recently,
deep learning-based sequential models of sen-
tence, such as recurrent neural network, have
proved to be effective in dealing with the
non-sequential properties of human language.
However, little is known about how a recurrent
neural network captures linguistic knowledge.
Here we propose to correlate the neuron
activation pattern of a LSTM language model
with rich language features at sequential,
lexical and compositional level. Qualitative
visualization as well as quantitative analy-
sis under multilingual perspective reveals the
effectiveness of gate neurons and indicates
that LSTM learns to allow different neurons
selectively respond to linguistic knowledge
at different levels. Cross-language evidence
shows that the model captures different as-
pects of linguistic properties for different
languages due to the variance of syntactic
complexity. Additionally, we analyze the
influence of modelling strategy on linguistic
knowledge encoded implicitly in different
sequential models.

1 Introduction

Sentence modelling is a central and fundamental
topic in the study of language generation and
comprehension. With the application of popular
deep learning methods, researchers have found that
recurrent neural network can successfully model the
non-sequential linguistic properties with sequential
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data input (Vinyals et al., 2015; Zhou and Xu,
2015; Rocktäschel et al., 2015). However, due
to the complexity of the neural networks and the
lack of effective analytic methodology, little is
known about how a sequential model of sentence,
such as recurrent neural network, captures linguistic
knowledge. This makes it hard to understand
the underlying mechanism as well as the model’s
strength and weakness. Previous work (Li et al.,
2016) has attempted to visualize neural models in
NLP, but only focus on analyzing the hidden layer
and sentiment representation rather than grammar
knowledge.

Currently, there have been a few attempts (Yo-
gatama et al., 2014; Köhn, 2015; Faruqui and Dyer,
2015) at understanding what is embedded in the
word vectors or building linguistically interpretable
embeddings. Few works focus on investigating
the linguistic knowledge encoded in a sequential
neural network model of a sentence, not to mention
the comparison of model behaviours from a cross-
language perspective. Our work, therefore, aims to
shedding new insights into the following topics:

a) How well does a sequential neural model (e.g.
language model) encodes linguistic knowledge
of different levels?

b) How does modelling strategy (e.g. the optimiza-
tion objective) influence the neuron’s ability of
capturing linguistic knowledge?

c) Does the sequential model behave similarly to-
wards typologically diverse languages?

To tackle the questions above, we propose to
visualize and analyze the neuron activation pattern
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Figure 1: Experiment paradigm: correlating the
dynamic activation pattern of the model neurons
with linguistic features .

ID (Non-)Linguistic Knowledge Level
I Sequence Length Sequential

II
Gender / Definiteness

Lexical
Part-of-Speech

III
Case / VerbForm / Mood

Compositional
Syntactic Role

Table 1: List of the linguistic features to be
correlated with model neuron behaviours.

so as to understand how a sequential neural model
of sentence encodes linguistic properties of different
level. By training vanilla LSTM language models
with multilingual data and correlating the model
neuron’s activation with various linguistic features,
we not only qualitatively show the activation pattern
of a certain model neuron, but also quantify the
selectivity of the neuron towards input language data
or certain linguistic properties.

2 Methodology

2.1 A ‘Brain’ Metaphor of Artificial Model

Mitchell et al. (2008) correlates brain activities with
linguistic stimuli under a popular brain-mapping
paradigm. Since brain is a ‘black box’, researchers
want to decode what is represented in a certain
neuronal cluster of the brain at a certain time step.
Here we propose that this paradigm can be applied
to similar ‘black-box’ model, such as the neural
network. This is what we call a ‘brain’ metaphor
of the artificial model, as is visualized in Figure 1.
We treat the neural network as a simplified ‘brain’.
We correlate the neuron behaviours with the input
stimuli and design experiments to map the neuron
activation to an explicit linguistic feature.

A sentence is, of course, a linear sequential
arrangement of a cluster of words, but more than just
a simple addition of words, as there exist compli-
cated non-sequential syntactic relations. Thus, we

consider three levels of features in the analysis of
model behaviours, a) Sequential feature, a kind of
superficial feature shared by any sequence data, b)
Lexical feature, which is stable and almost indepen-
dent of the sentence context, and c) Compositional
feature, which is required for building the meaning
of a sentence. Table 1 lists the details of the features
involved in this paper.

2.2 Model Description
Since the goal is to understand the internal neurons’
behaviour and how the behaviour patterns can be
interpreted as a way to encode dynamic linguistic
knowledge, we choose the most fundamental se-
quential sentence models as the research objects. We
do not consider tree-structured model, as it explicitly
involves linguistic structure in model architecture.
We focus on word-based language model and com-
pare it to two other counterparts in this paper.

Word-based Language Model Word-based lan-
guage model (Mikolov et al., 2010) predicts the
incoming word given the history context.

Character-based Language Model Instead of
predicting the next word, character-based language
model (Hermans and Schrauwen, 2013) predicts
the incoming character given the history character
sequence.

Task-specific Model A common task-specific
model takes word sequence as input, but only
predicts the category (e.g. sentiment) of the sentence
after all the words are processed. In this paper, we
consider a sequential model utilized for sentiment
analysis task.

All the three sequential models are built on recur-
rent neural network with LSTM unit (Hochreiter and
Schmidhuber, 1997). LSTM unit has a memory cell
c and three gates: input gate i, output gate o and
forget gate f , in addition to the hidden layer h of
a vanilla RNN. The states of LSTM are updated as
follows:

it = σ(Wxixt +Whiht−1 +Wcict−1 + bi), (1)

ft = σ(Wxfxt +Whfht−1 +Wcfct−1 + bf ), (2)

ct = ft � ct−1

+ it � tanh(Wxcxt +Whcht−1 + bc), (3)

ot = σ(Wxoxt +Whoht−1 +Wcoct−1 + bo), (4)
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ht = ot � tanh(ct), (5)

where xt is the input vector at the current time
step, σ denotes the logistic sigmoid function and �
denotes elementwise multiplication.

The dimension of the embeddings and the LSTM
unit is 64. All three models use pretrained word
embedding from Polyglot multilingual embeddings
(Al-Rfou et al., 2013) trained with C&W (Collobert
et al., 2011) model on Wikipedia. We train a lot
of word-based and character-based LSTM language
models with multilingual data from the Universal
Treebank 1.2 (Joakim Nivre and Zhu, 2015), as
well as a task-specific sentiment model on Stanford
Sentiment Treebank (Socher et al., 2013b). We
separate the training and testing data according to
90%/10% principle. We stop training when the loss
of the test data does not decrease.

Regarding the analysis of the model behaviours,
we collect the internal neuron activation of the
hidden layer, three gates, and memory cell for all
the data in the treebank/sentiment corpus1. For the
sake of notation, we refer the hidden layer, input
gate, output gate, forget gate and memory cell as
h, i, f , o, c for three models, word-based language
model (WL), character-based language model (CL)
and task-specific model for sentiment analysis (SA).
We mark the index of the neuron in the superscript
and the meta information about the model in the
subscript.

3 Qualitative Analysis

3.1 Sequential Feature
Karpathy et al. (2015) finds that some memory
neurons of the character language model are se-
lective towards the length of the input sequence.
Similar patterns are also observed among the mem-
ory neuron activation pattern of the word-level
language model as is shown in Figure 2, where deep
purple color indicate strong negative activation and
deep green color indicate strong positive activation.
Moreover, we compute the correlation between the
input sequence length and the activation pattern of

1The analyses cover languages such as English (en), German
(de), Latin (la), Ancient Greek (grc), Bulgarian (bg), Spanish
(es), Portuguese (pt), Italian (it), French (fr), Dutch (nl),
Norwegian (no), Hindi (hi), Slovenian (sl), Hungarian (hu),
Indonesian (id) and Chinese (zh).
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Figure 2: Memory neuron c21en,WL that are sensitive
to the length of the input word sequence.
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Figure 4: Visualising the activation of a neuron
towards raw English sentences and sentences with
shuffled word order.

every single neuron of h, i, f , o, c. Quantitative
results in Figure 3 reveal that none of the hidden
layer or gate neurons are strongly correlated with
this sequential feature.

3.2 Lexical Feature

For a inner neuron of the model, we can get the
activation of a certain neuron in a certain model
component towards a certain input word. A model
neuron may be most active towards the words of
some category instead of other words.

We notice that some neurons (e.g. Neuron
h30en,WL) strongly activate towards functional words
such as the determiners ‘a’, as is visualized in Figure
4. This activation can be observed even when we
feed the model with a abnormal English sentence
with shuffled word order.

Since it is not easy to go through all the neuron
activation pattern, we design a visualization method
to vividly show how a neuron selectively respond to
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(a) h22en,WL (b) h30en,WL (c) h35en,WL (d) h23en,WL

(e) i30en,WL (f) f18fr,WL (g) i54pt,WL (h) i28de,WL

Figure 5: Visualising the lexical space responded by a certain neuron of the word-level language model
trained on different languages.

certain words, inspired by the work in Cukur et al.
(2013) and Huth et al. (2016).

Suppose the vocabulary of a language spans
a default lexical space. An internal neuron of
the artificial model modulates this linguistic space
via showing selective activation pattern towards
certain words. we carry out PCA on all the word
embedding in the language model and extract the
most prominent 3 principal components as the bases.
Then we project the word vectors onto these three
basis to get a new representation of the words in a
low dimensional space. We draw all the words on a
plane, where the location of each word is determined
by the first two components and the text color
is determined by three main components as RGB
value. To visualize how a target neuron x respond to
this lexical space, we modify the appearance of the
word by scaling the size of the word text against the
product of the log-transformed word frequency and
the absolute value of the mean activation, and setting
the degree of transparency of the text against the
relative positive/negative activation strength among
all the existed activation value of a target neuron

x. In this way, large font size and low degree of
transparency of a word w indicate that the target
neuron x frequently activates towards the word
w. This means that we can interpret a neuron’s
selectivity towards the lexical space just by looking
for large and explicit words on the visualized two-
dimensional space.

Figure 5 visualizes the lexical space responded by
four hidden layer neuron of the English language
model, as well as four gate neurons of different
languages respectively. We can see that words
with the similar grammatical functions are located
near each other. Besides, it is interesting to see
that some hidden layer neurons activate selectively
towards determiner words, pronoun, preposition or
auxiliary verbs. This phenomena have also been
observed on gate neurons. For example, forget gate
neuron f18fr,WL activates towards the determiners in
French. Input gate neuron i54pt,WL activates towards
the determiners in Portuguese. Notice that not all
of the inner neurons show interpretable activation
pattern towards the lexical space.
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Figure 6: Visualising the Neuron h35en,WL neuron
activation towards verb-preposition composition.

3.3 Compositional Feature
To validate whether the internal neuron of the model
can discriminate the local composition and long-
distance composition, we choose the preposition as
the object for observation.

In English, preposition can be combined with the
previous verb to form a compound verbal phrase,
such as ‘check it in’,‘give him up’, ‘find out what
it will take’. This function of the preposition is
annotated as the compound particle in the Universal
Dependency Treebank. Another function of the
preposition is to serve as the case marker, such as the
preposition in the phrase ‘lives in the central area’,
‘Performances will be performed on a project basis’.
Given that these two functions of the preposition are
not explicitly discriminated in the word form, the
language model should tell the difference between
the prepositions served as the compound particle
and the prepositions served as the case marker if
it indeed has the ability to handle word meaning
composition.

For the hidden layer, we notice that hidden layer
neuron h35en,WL is sensitive to the function of the
preposition. It only activates when the possible
preposition does not form a composition with the
former verb, as is vividly shown in Figure 6. The
prepositions marked by dashed box serve as case
marker while those in solid box form a phrase with
previous verb. The activation pattern are obviously
different. Similar pattern is also found in the gate
neurons.

4 Quantitative Analysis

4.1 Decoding Lexical/Compositional Feature
Visualization only provides us with an intuitive
idea of what a single neuron is encoding when

processing language data. In this section, we
employ a mapping paradigm to quantitatively reveal
the linguistic knowledge distributed in the model
components.

Instead of looking at one single neuron, here
we use the whole 64 neurons of each model
component as a 64-dimensional vector h, i, f , o,
c respectively. The basic method is to decode
interpretable linguistic features from target neuron
clusters, which has been used in (Köhn, 2015; Qian
et al., 2016). We hypothesize that there exists a
map between a neuron cluster activation vector x
and a high-level sparse linguistic feature vector y
if the neuron cluster’s activation pattern implicitly
encode sufficient information about a certain lexical
or compositional feature.

Hence we design a series of experiments to map
the hidden layer, three gates, and memory cell
vector activated by a target input word w in a
sentence to the corresponding linguistic features of
the word w, which are annotated in the Universal
Dependency Treebank. Our experiments cover
POS TAG, SYNTACTIC ROLE, GENDER, CASE,
DEFINITENESS, VERB FORM and MOOD. These
linguistic features are all represented as a one-hot
vector. The mapping model is a simple softmax
layer, with the activation vector as the input and
the sparse vector as the output. For each linguistic
feature of each language, a mapping model is trained
on the randomly-selected 90% of all the word tokens
and evaluated over the remaining 10%. Notice that
GENDER, CASE, DEFINITENESS, VERB FORM,
and MOOD only apply to certain word categories.
We give a default ‘N/A’ tag to the words without
these annotations so that all the word can be used
for training. The evaluation result is only computed
from the words with the features. This requires the
mapping model to not only recognize the differences
between the sub-categories of a linguistic feature
(e.g. CASE), but also discriminate the words that
we are interested in from other unrelated words (e.g.
words without CASE annotations). Accuracies for
each model component h, i, f , o, c are reported in
Figure 7 and 8.

Comparing different model components, we no-
tice that gate neurons except output gate are general-
ly better than hidden layer and memory cell neurons
on decoding linguistic knowledge. Input gate and
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Figure 7: Comparison of neurons on decoding POS
AG, SYNTACTIC ROLE, CASE, and GENDER.

forget gate are the best, while memory cell is the
worst. It shows that the gates of a recurrent language
model are more sensitive to the grammar knowledge
of the input words.

Comparing decoding results on different lan-
guages, we find that it is generally easier to de-
code POS TAG than SYNTACTIC ROLE for all
the languages. One interesting thing is that the
mapping model works better with Bulgarian, a slavic
language, but worse on Norwegian on decoding
CASE while the situation is opposite on decoding
GENDER. It might be because that gender is a
weakened grammatical feature in Bulgarian. There-
fore, knowledge about GENDER may not be so
important in building the grammatical structure of
the Bulgarian language data.
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Figure 8: Comparison of LSTM neurons on decod-
ing VERB FORM, TENSE, and DEFINITENESS.

4.2 The Dynamics of Neuron Behaviour

Since sentence meaning is dynamically constructed
by processing the input sequence in a word-by-
word way, it is reasonable to hypothesize that the
linguistic feature of an input word w won’t sharply
decay in the process. Naturally, we would like to
ask whether it is possible to decode, or at least
partially infer, a word’s property from the neuron
behaviours of its context words. Specifically, if
the model process a verbal phrase ‘spill over’ or
‘in the garden’, will the property of the word
‘spill’, ‘in’ be combined with the following word
and decodable from the model neuron activation
behaviours towards the following word, or will the
property of the word ‘over’, ‘the garden’ be primed
by the previous word and decodable from the model
neuron behaviours towards the previous word?

To quantitatively explore this question, we carry
out a mapping experiment similar to the previous
one. The difference is that here we map the
hidden layer, three gates, and memory cell vector
activated by a target input word w in a sentence
to the corresponding linguistic features of the pre-
vious/following word w−2/−1/w+1/+2 in a 5-word
window context. Results in Figure 9 shows that the
linguistic feature POS TAG is partially primed or
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Figure 9: Neuron dynamics on decoding POS.

ISO Language f i o h
en English 0.316 -0.022 0.107 0.156
la Latin 0.152 0.131 0.158 0.085

grc Ancient Greek 0.293 0.248 0.166 0.274
pt Portuguese 0.301 0.313 0.161 0.209
nl Dutch 0.196 0.096 0.205 -0.134
no Norwegian 0.335 0.057 0.269 0.033
bg Bulgarian 0.324 0.280 0.071 -0.082

Table 2: Comparison of model components’ corre-
lation with tree structure stastistics.

kept in the context words in English. The longer
distance, the less probability to decode it from
the neuron activations. Still, the nearest context
words w−1 and w+1 prime/keep the most relevant
information of the target word w. Similar patterns
are also found for other linguistic feature in other
languages.

4.3 Correlation with Dependency Tree

Since the sequential model can modelling non-
sequential input, we naturally want to know whether
any component of the model is dynamically corre-
lated with the statistics of tree structure. Inspired
by the case study in Zhou and Xu (2015), we count
the syntactic depth of each word in a sentence and
compute the correlation between the depth sequence
and the dynamics of the average activation of the
model neurons in Table 2. We did not find strong
correlation between the mean neuron activation
dynamics with the syntactic tree depth. One possible
explanation is that the language model only use the
history information, while the depth of a word is
computed in a relative global context.

5 Model Comparison

In this section, we would like to investigate whether
different sentence modelling strategy and optimiza-
tion objective affect the neuron’s implicit encoding
of linguistic knowledge, especially the grammatical
properties.

5.1 Word vs. Character

It is obvious that word-based language model and
character-based language model intend to model the
language data at different granularity. Although both
of them are effective, the latter is often criticized for
an unreasonable modelling strategy.

In addition to the findings in Karpathy et al.
(2015), we see that some of the hidden layer neurons
of the character-based language model seems to be
sensitive to specific characters and character cluster-
s, as is indicated from the visualization of the neuron
activation pattern in Figure 10. We are surprised to
find that some neuron of the hidden layer activates
selectively towards white space character. This is
interesting as it means that the model learns to
detect word boundary, which is exactly an important
linguistic feature.

Besides, some neuron activates selectively to-
wards vowel/consonant characters in a phonograph-
ic language, such as English. This interesting
phenomenon also indicates that the model implic-
itly captures the phonology system, since it can
discriminate the vowel character clusters from the
consonant character clusters. We also find these two
detectors in other languages, such as Indonesian and
Czech in Figure 10.

5.2 Word Prediction vs. Task-specific Model

We compare a word-based LSTM language model
and a word-based LSTM sentiment model. Here,
for a fair comparison, all the models are trained only
on the Stanford Sentiment Treebank Dataset (Socher
et al., 2013a). The results show that the neurons
in these two models displays similar behaviours
towards superficial sequential features, but totally
different behaviours towards high-level linguistic
features, such as semantic and syntactic knowledge.

Both some of the internal neurons of the mem-
ory cell in the language model and the sentiment
model emerge to be sensitive to the length of the
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Figure 10: Visualising the activation of hidden neurons of English, Indonesian and Czech language model.
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Figure 11: Comparison between the internal neurons
of English word-based language model, character-
based language model and sentiment model on
decoding POS TAG.

input sequence, as we expected, since the sentence
length is a non-linguistic features shared by all the
sequential input. However, different optimization
objectives force the models to represent and capture
the linguistic properties of different aspects. The
language model focus more on the syntactic aspect,
as is visualized and quantified in previous sections.
Neurons of the sentiment model tends to be sensitive
only towards the sentiment aspect of the words,
although the sentiment model use the similar LSTM
unit, dimensionality and pretrained embedding. We
apply the same visualization method in Section 3.2
to the 64 hidden layer neurons of the sentiment mod-
el and manually interpret the visualization results
one by one. We did not see any strong activation
pattern towards the functional words like those
found in language model hidden layer neurons.

To quantify the differences of the linguistic
knowledge encoded in different sentential model,
we again use the previous feature-decoding exper-
iment method. We compare the performance of the
components in three models on decoding POS TAG

from English data. Notice that we use Stanford
POS Tagger (Kristina Toutanova and Singer, 2003)
to automatically tag the sentences in the sentiment
data. For the character-based language model, we
use the neuron activation towards the end character

of each words in the decoding experiment.
Results in Figure 11 shows that even a character-

based language model can achieve pretty well on
decoding the most important lexical features from
the activation pattern of the internal neurons. This
is a strong evidence that word-level feature detector
can emerge from a pure character-based model.
Sentiment model, on the contrary, fails to capture the
grammatical knowledge, although we might think
that a successful sentiment analysis model should be
able to combines the grammar property of the words
with the sentiment information. Current results
indicate that for pure sequential model with vanilla
LSTM units, the objective of the sentence modelling
tasks will largely affect how the model acquires and
encodes linguistic knowledge.

6 Related Works

Karpathy et al. (2015) explores the memory cell in
character-based language model. Their visualization
results show some interesting properties of the
memory neurons in LSTM unit. However, their ex-
ploration on character-based model does not intend
to correlate high-level linguistic knowledge, which
are intuitively required for sequential modelling of a
sentence.

Li et al. (2016) propose a method for visualizing
RNN-based sentiment analysis models and word-
based LSTM auto-encoder in NLP tasks. Li et al.
(2015) investigates the necessity of tree structure
for the modelling non-sequential properties of lan-
guages. Bowman et al. (2015) studies the LSTM’s
ability of capturing non-sequential tree structure.
Despite the useful findings, these works make no
attempts to investigate the internal states of the
neurons for a better understanding of the model’s
power or weakness.

Our work not only provides qualitative visual-
ization of model neurons’ behaviours and detailed
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quantitative investigation with multilingual evidence
(16 for POS decoding experiment), but also reveal
the influence of language syntactic complexity and
modelling strategy on how well the internal neurons
capture linguistic knowledge, which have been
overlooked by previous work on interpreting neural
network models.

7 Conclusion

In this work, we analyze the linguistic knowledge
implicitly encoded in the sequential model of sen-
tence. Through the visualization and quantification
of the correlation between the neuron activation
behaviour of different model components and lin-
guistic features, we summarize that:

• Model neurons encode linguistic features at
different level. Gate neurons encode more lin-
guistic knowledge than memory cell neurons.
• Low-level sequential features are shared across

models while high-level linguistic knowledge
(lexical/compositional feature) are better cap-
tured by language model instead of task-
specified model on sentiment analysis.
• Multilingual evidence indicates that the model

are sensitive to the syntactic complexity of
the language. It would also be a promising
direction to incorporate the factor of language
typological diversity when designing advanced
general sequential model for languages other
than English.
• Word-level feature detector can emerge from a

pure character-based model, due to the utility
of character composition.
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Daniel Zeman Joakim Nivre, Željko Agić and Hanzhi
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Hermann, Tomáš Kočiskỳ, and Phil Blunsom. 2015.
Reasoning about entailment with neural attention.
arXiv preprint arXiv:1509.06664.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang,
Christopher Manning, and Andrew Ng andmChristo-
pher Potts. 2013a. Parsing with compositional vector
grammars. In EMNLP.

Richard Socher, Alex Perelygin, Jean Y. Wu, Jason
Chuang, Christopher D. Manning, Andrew Y. Ng, and
Christopher Potts. 2013b. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of the EMNLP.

Oriol Vinyals, Łukasz Kaiser, Terry Koo, Slav Petrov,
Ilya Sutskever, and Geoffrey Hinton. 2015. Grammar
as a foreign language. In Advances in Neural
Information Processing Systems, pages 2755–2763.

Dani Yogatama, Manaal Faruqui, Chris Dyer, and
Noah A Smith. 2014. Learning word representations
with hierarchical sparse coding. arXiv preprint
arXiv:1406.2035.

Jie Zhou and Wei Xu. 2015. End-to-end learning of
semantic role labeling using recurrent neural networks.
In Proceedings of the Annual Meeting of the Associa-
tion for Computational Linguistics.

835


