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Abstract 

Speculation and negation are important infor-

mation to identify text factuality. In this paper, 

we propose a Convolutional Neural Network 

(CNN)-based model with probabilistic 

weighted average pooling to address specula-

tion and negation scope detection. In particular, 

our CNN-based model extracts those meaning-

ful features from various syntactic paths be-

tween the cues and the candidate tokens in both 

constituency and dependency parse trees. Eval-

uation on BioScope shows that our CNN-based 

model significantly outperforms the state-of-

the-art systems on Abstracts, a sub-corpus in 

BioScope, and achieves comparable perfor-

mances on Clinical Records, another sub-

corpus in BioScope. 

1 Introduction 

Factual information is critical to understand a sen-

tence or a document in most typical NLP applica-

tions. Speculation and negation extraction has 

been drawing more and more attentions in recent 

years due to its importance in distinguishing coun-

terfactual or uncertain information from the facts. 

Generally speaking, speculation is a type of uncer-

tain expression between certainty and negation, 

while negation is a grammatical category which 

reverses the truth value of a proposition. 

Commonly, speculation and negation extraction 

involves two typical subtasks: cue identification 

and scope detection. Here, a cue is a word or 

phrase that has speculative or negative meaning 

(e.g., suspect, guess, deny, not), while a scope is a 

text fragment governed by the corresponding cue 

in a sentence. Consider the following two sentenc-

es for examples: 

(S1) The doctors warn that smoking [may harm 

our lungs].  

(S2) He does [not like playing football] but 

likes swimming.
 1
 

In sentence S1, the speculative cue “may” gov-

erns the scope “may harm our lungs”, while the 

negative cue “not” governs the scope “not like 

playing football” in sentence S2. 

Previous work have achieved quite success on 

cue identification (e.g., with F1-score of 86.79 for 

speculative cue detection in Tang et al. (2010)). In 

comparison, speculation and negation scope detec-

tion is still a challenge due to its inherent difficul-

ties and those upstream errors. In this paper, we 

focus on scope detection. Previous work on scope 

detection can be classified into heuristic rules 

based methods (e.g., Özgür et al., 2009; Øvrelid et 

al., 2010), machine learning based methods (e.g., 

Tang et al., 2010; Zou et al., 2013), and hybrid 

approaches which integrate empirical models with 

manual rules (Velldal et al., 2012).  

Different from those previous studies, this paper 

presents a Convolutional Neural Network (CNN)-

based approach for scope detection. CNN models, 

firstly invented to capture more abstract features 

for computer vision (LeCun et al., 1989), have 

achieved certain success on various NLP tasks in 

                                                 
1 In this paper, cues are in bold face, and scopes are in 

[brackets] in the example sentences. 
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recent years, such as semantic role labeling (Col-

lobert et al., 2011), machine translation (Meng et 

al., 2015; Hu et al., 2015), event extraction (Chen 

et al., 2015; Nguyen et al., 2015), etc. These stud-

ies have proved the ability of CNN models in 

learning meaningful features. 

In particular, our CNN-based model extracts 

various kinds of meaningful features from the syn-

tactic paths between the cue and the candidate to-

ken in both constituency and dependency parse 

trees. The importance of syntactic information in 

scope detection has been justified in previous 

work (Velldal et al., 2012; Lapponi et al., 2012; 

Zou et al., 2013, etc). Our model can also benefit 

from the ability of neural networks in extracting 

useful information from syntactic paths (Xu et al., 

2015a; Xu et al., 2015b) or more complex syntac-

tic trees (Ma et al., 2015; Tai et al., 2015). Moreo-

ver, instead of traditional average pooling, our 

CNN-based model utilizes probabilistic weighted 

average pooling to alleviate the overfitting prob-

lem (Zeiler et al., 2013). Experimental results on 

BioScope prove the effectiveness of our CNN-

based model. 

The reminder of this paper is organized as fol-

lows: Section 2 gives an overview of the related 

work. Section 3 describes our CNN-based model 

with probabilistic weighted average pooling for 

scope detection. Section 4 illustrates the experi-

mental settings, and reports the experimental re-

sults and analysis. Finally, Section 5 draws the 

conclusion.  

2 Related Work 

In this section, we give an overview of previous 

work on both scope detection and utilization of 

CNNs in NLP applications. 

2.1 Scope Detection 

Earlier studies on speculation and negation scope 

detection focused on developing various heuristic 

rules manually to detect scopes. 

Chapman et al. (2001) developed various regu-

lar expressions for negation scope detection. Sub-

sequently, various kinds of heuristic rules began to 

emerge. Özgür et al. (2009) resorted to the part-of-

speech of the speculative cues and the syntactic 

structures of the current sentences for identifying 

scopes, and developed heuristic rules according to 

the syntactic trees. Øvrelid et al. (2010) construct-

ed a set of heuristic rules on dependency structures 

and obtained the accuracy of 66.73% on the 

CoNLL evaluation data. The approaches based on 

heuristic rules were effective because the sentence 

structures in BioScope satisfy some grammatical 

rules to a certain extent. 

With the release of the BioScope corpus (Szar-

vas et al., 2008), machine learning based methods 

began to dominate the research of speculation and 

negation scope detection. 

Morante et al. (2008) regarded negation scope 

detection as a chunk classification task utilizing 

lexical and syntactic features. Morante et al. 

(2009a) further implemented a scope detection 

system combining three classifiers, i.e., TiMBL, 

SVM and CRF, based on shallow syntactic fea-

tures, and achieved the performance of 77.13% 

and 73.36% in Percentage of Correct Scopes (PCS) 

on speculation and negation scope detection on 

Abstracts, a sub-corpus of BioScope. Velldal et al. 

(2012) explored a hybrid method, adopting manu-

ally crafted rules over dependency parse trees and 

a discriminative ranking function over nodes in 

constituent parse trees. Zou et al. (2013) proposed 

a tree kernel based approach on the syntactic parse 

trees to detect speculation and negation scopes. 

Alternative studies treated scope detection as a 

sequential labeling task. Tang et al. (2010) pro-

posed a CRF model with POS, chunks, NERs, de-

pendency relations as features. Similarly, Lapponi 

et al. (2012) employed a CRF model with lexical 

and dependency features for negation scope and 

event resolution on the Conan Doyle corpus. The-

se machine learning methods manifest the effec-

tiveness of syntactic features. 

2.2 CNN based NLP Applications 

Currently, CNNs have obtained certain success on 

various NLP tasks, e.g., part-of-speech tagging, 

chunking, named entity recognition (Collobert et 

al., 2011). Specifically, CNNs have been proven 

effective in extracting sentence-level features. For 

instance, Zeng et al. (2014) utilized a CNN-based 

model to extract sentence-level features for rela-

tion classification. Zhang et al. (2015) proposed a 

shallow CNN-based model for implicit discourse 

relation recognition. Chen et al. (2015) presented a 

CNN-based model with dynamic multi-pooling on 

event extraction. 

More recently, researchers tend to learn features 

from complex syntactic trees. Ma et al. (2015) use 
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a CNN-based model for sentence embedding, uti-

lizing dependency tree-based n-grams. Xu et al. 

(2015a) exploited a CNN-based model to learn 

features from the shortest dependency path be-

tween the subject and the object for semantic rela-

tion classification. 

3 CNN-based Modeling with Probabilis-

tic Weighted Average Pooling 

This section describes our CNN-based model for 

speculation and negation scope detection, which is 

recast as a classification task to determine whether 

each token in a sentence belongs to the scope of 

the corresponding cue or not. Principally, our 

CNN-based model first extracts path features from 

syntactic trees with a convolutional layer and con-

catenates them with their relative positions into 

one feature vector, which is then fed into a soft-

max layer to compute the confidence scores of its 

location labels, described in subsection 3.1. 

3.1 Token Labeling 

We employ following labeling scheme for each 

candidate token: 

 A token is labeled as O if it is NOT an ele-

ment of a speculation or negation scope; 

 A token is labeled as B if it is inside a scope 

and occurs before the cue, i.e., Ptoken＜Pcue, 

where Ptoken and Pcue are the positions of the 

token and the cue in a sentence, respectively; 

 A token is labeled as A if it is inside a scope 

and occurs after the cue (inclusive), i.e., Ptoken

≥Pcue. 

Under this scheme, each token in a sentence is 

classified into B, A or O. For example, the labels 

of all the tokens in sentence S3 are shown in sen-

tence S4. 

(S3) They think that [those bacteria may be 

killed by white blood cells] , but other researchers 

do not think so. 

(S4) They/O think/O that/O [those/B bacteria/B 

may/A be/A killed/A by/A white/A blood/A 

cells/A] ,/O but/O other/O researchers/O do/O 

not/O think/O so/O ./O 

The advantage of our scheme is that it can de-

scribe the location relationship among the tokens, 

cues and scopes more precisely than some previ-

ous studies, which regarded scope detection as a 

binary classification task (Øvrelid et al., 2010; Zou 

et al., 2013). Compared to other schemes with 

more than two labels (Morante et al., 2009a; Tang 

et al., 2010; Lapponi et al., 2012), our scheme can 

much alleviate the imbalance of labels, because 

the tokens occurring at the first or last positions of 

the scopes are much fewer than other tokens. 

3.2 Input Representation 

Figure 1 shows the framework of our model based 

on neural network. We concentrate on Path Fea-

ture and Position Feature. They are concatenated 

into one feature vector, which is finally fed into 

the softmax layer to obtain the output vector. 

Hidden

 Layer

Word 

embeddings of 

a path

Convolutional 

Layer

W1×       + b1

      Max                          Min                Pavg

Path Features

tanh(W2×       +b2)softmax(W3×         +b3)

Embeddings

Position Features     &       Path Features

Input

Features Position features Path features

Softmax 

Layer

concatenate

Dropout

 Layer

×Mmask

W0

output

Input may↑MD↑VP↓VP↓NP↓PRPP↓our

not↑neg↑does↓prep↓like↓pcomp↓playing

Normalization 

 
Figure 1: The framework of CNN for scope detection. Figure 2: The architecture of CNN-based model to extract 

path features. 
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Relative Position has been proven useful in 

previous studies (Zeng et al., 2014; Chen et al., 

2015). In this paper, relative position is defined as 

the relative distance of the cue to the candidate 

token. For instance, in sentence S1, the relative 

distances of the cue “may” to the candidate tokens 

“warn” and “our” are 3 and -2, respectively. The 

values of position features are mapped into a vec-

tor P of dimension dp, with P initialized randomly. 

Instead of the word sequence (e.g., Zeng et al., 

2014; Zhang et al. 2015; Chen et al., 2015), we 

argue that the Shortest Syntactic Path from the 

cue to the candidate token can offer effective fea-

tures to determine whether a token belongs to the 

scope. It is remarkable that the lowest common 

ancestor node of the cue and the token is the high-

est tree node in the path. 

Figure 2 illustrates the architecture of our CNN-

based model to extract path features. Here, convo-

lutional features are first extracted from the matrix 

of embeddings of the path, and then fed into the 

hidden layer to produce more complicated features. 

In this paper, the syntactic paths between the 

cues and the candidate tokens in constituency and 

dependency parse trees are both considered. Fig-

ure 3 presents the constituency parse tree of sen-

tence S1 and the constituency path from the cue 

“may” to the candidate token “our”. It shows that 

the tokens are at both the beginning and the end of 

the path with the arrows indicating the directions. 

Meanwhile, Figure 4 displays the dependency 

parse tree of sentence S2 and the dependency path 

from the cue “not” to the token “playing”. 

As the input of our CNN-based model, both the 

constituency path and the dependency path be-

tween the cue and the token can be regarded as the 

special “sentences” S=(t1, t2,…, tn), whose “words” 

can be tokens of sentences, syntactic categories, 

dependency relations, and arrows. 

Similar to other CNN-based models, we also 

consider a fixed size window of tokens around the 

current token to capture its local features in the 

path. Here, the window size is set as an odd num-

ber w, indicating that there are (w-1)/2 tokens be-

fore and after the candidate token, respectively. In 

this case, path S is transferred into matrix 
0

nw d 


0

X R  according to embedding table 

0 0
| |Td 

 R
0

W , where d0 is the dimension of the em-

beddings and |T0| is the size of the table. 

3.3 Convolutional Neural Networking 

After fed into the convolutional layer, the matrix 

of the syntactic path X0 is processed with a linear 

operation: 

 
1 1 0 1

Y W X b                      (1) 

where 01
n w d


1

W R  is the parameter matrix, and 

1
n


1

b R is the bias term. To extract the most active 

convolutional features from 1
n n


1

Y R , we consid-

er two features Cmax and Cmin whose elements 

are maximum, minimum values of rows in Y1, re-

spectively:  

ROOT

S

NP VP PERIOD

DT NN

The doctors

VBZ SBAR

warn IN S

that NP

NN

smoking

.

VP

MD

may

VP

VB NP

harm PRPP NNS

our lungs  
Cue: may 

Current candidate token: our 

Constituency path:  

may↑MD↑VP↓VP↓NP↓PRPP↓our 

Figure 3:  An example for the constituency parse tree 

of sentence S1 and the path from the cue to the candi-

date token. 

neg

ROOT

does
root

He

nsubj

not like

prep

playing

pcomp

football
dobj

but

cc

swimming

conj

likes

amod

 
Cue: not 

Current candidate token: playing 

Dependency path: 

not↑neg↑does↓prep↓like↓pcomp↓playing 

Figure 4: An example for the dependency parse tree of 

sentence S2 and the path from the cue to the candidate 

token. 
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( ) [ ( , 0 ), ( ,1), ..., ( , 1)]r m a x r r r n 
1 1 1

C m a x Y Y Y (2) 

( ) [ ( , 0 ), ( ,1), ..., ( , 1)]r m in r r r n 
1 1 1

C m in Y Y Y   (3) 

where 
1

0 1r n   . Moreover, we extract a con-

volutional feature Cpavg, whose elements are 

probabilistic weighted average values of rows in 

Y1. Formally, Cpavg can be written as: 

1

0

( ) ( , )

n

i

i

r p r i





  1
C p a vg Y                 (4) 

In Equation (4), pi is the probability of the ele-

ment ( , )r i
1

Y  in the vector ( , )r 
1

Y : 

1

0

( , )

( , )

i n

j

r i
p

r j









1

1

Y

Y

                        (5) 

Cpavg is a variant probabilistic weighted aver-

age pooling used by Zeiler et al. (2013). Compared 

to the standard average pooling, each element in 

Cpavg has a weight depending on its value. That is, 

during computing Cpavg, the most active elements 

with the largest absolute values (i.e., the maximum 

and minimum values) play the leading roles, while 

those less active elements with smaller absolute 

values have less effect. In this way, we can reduce 

the influence of less active elements, and can cap-

ture more active information in ( , )r 
1

Y . From this 

respect, Cpavg can be regarded as a meaningful 

convolutional feature. 

   The extracted convolutional features above are 

first concatenated into 1
3 n

 RC , as the output of 

the convolutional layer: 

[ ],C C m ax C m in ,C pavg                (6) 

Then, C is fed into the hidden layer to learn 

more complex and meaningful features. Here, we 

process C with a linear operation just like in the 

convolutional layer, and choose hyperbolic tanh as 

the activation function to get 2

2

n
 RY : 

ta n h ( ) 
2 2 2

Y W C b                      (7) 

 where 2 1
3n n

 R
2

W is the parameter matrix, and 

2
n

 R
2

b is the bias term. To produce the output of 

the hidden layer, a normalization operation is ap-

plied to eliminate the manifold differences among 

various features: 

/
2 2

H Y Y                                (8) 

In this way we obtain the path feature 2
n

H R  

for each candidate token and then concatenate it 

with the position feature P into one vector F0: 

[ , ]
T T T


0

F P H                           (9) 

where f
n

 R
0

F  is the feature vector of a candi-

date token with the dimension equaling the sum of 

n2 and the dimension of P. Besides, we also con-

sider the dropout operation for regularization to 

prevent the co-adaptation of hidden units on the 

penultimate layer: 


1 0

F F M                            (10) 

where  is an element-wise multiplication and M 

is a mask vector whose elements follow the Ber-

noulli distribution with the probability p of being 1. 

We determine whether the candidate token is in 

the scope of the current cue according to its F1. 

3.4 Output 

Finally, F1 is fed into the softmax layer: 

( )= so ftm a x 
3 1 3

O W F b             (11) 

where 3 f
n n

 R
3

W is the parameter matrix, and 

3
n


3

b R is the bias term. The dimension of O is 

n3=3, which is equal to the number of labels repre-

senting whether the token is an element of the 

scope, just as described in subsection 3.1, and the 

elements of O can be interpreted as the confidence 

scores of the three labels, i.e., B, A and O. 

To learn the parameters of the network, we su-

pervise the predicted labels of O with the gold la-

bels in the training set, and utilize the following 

training objection function:  

2

1

1
( ) lo g ( | , )

2

m

i i

i

J p y x
m


  



        (12) 

where ( | , )
i i

p y x   is the confidence score of the 

golden label yi (B, A, O) of the training instance xi, 

m is the number of the training instances, λ is the 

regularization coefficient and θ={W0, W1, b1, W2, 

b2, W3, b3} is the set of parameters. To train the 

CNN-based model, the Stochastic Gradient De-

scent algorithm is applied to fine-tune θ. 
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4 Experimentation 

In this section, we first introduce the evaluation 

data, and then describe the experimental settings. 

Finally, we report the experimental results and 

analysis. 

4.1 Corpus 

We evaluate our CNN-based model on BioScope 

(Szarvas et al., 2008; Vincze et al., 2008), a widely 

used and freely available resource consisting of 

sentences annotated with speculative and negative 

cues and their scopes in biomedical domain. 

  Abs Papers Cli 

Total 

#Documents 1273 9 1954 

#Sentences 11871 2670 6383 

Ave. Len Sentences 25.47 24.54 7.71 

Spe 

#Sentences 2101 519 855 

#Scopes 2659 672 1112 

Ave. Len Sentences 29.77 30.76 11.96 

Ave. Len Scopes 15.10 13.38 4.92 

Neg 

#Sentences 1597 339 865 

#Scopes 1719 376 870 

Ave. Len Sentences 29.28 30.55 8.53 

Ave. Len Scopes 7.60 7.35 3.87 

(Notes: “Ave. Len” denotes average length; “Abs”, “Papers” 

and “Cli” denote Abstracts, Full Papers and Clinical Records, 

respectively; “Spe” and “Neg” denote speculation and nega-

tion, respectively.) 

Table 1: Statistics on the BioScope corpus. 

BioScope includes 3 different sub-corpora: Ab-

stracts of biological papers from the GENIA cor-

pus (Collier et al., 1999), Full scientific Papers 

from Flybase and BMC Bioinformatics website, 

and Clinical radiology Records corpus. These texts 

in three sub-corpora ensure that BioScope can cap-

ture the heterogeneity of language use in biomedi-

cal domain. While Abstracts and Full Papers share 

the same genre, Clinical Records consists of short-

er sentences. Previous studies regarded Abstracts 

as the main resource for text mining applications 

due to its public accessibility (e.g. through Pub-

Med). 

Table 1 shows the statistics of the BioScope 

corpus. While in both Abstracts and Full Papers, 

the average lengths of speculation and negation 

sentences are comparable (Abstracts: 29.77 vs 

29.28; Full Papers: 30.76 vs 30.55). However, 

their average lengths of the negation scopes are 

shorter than those of speculation ones (Abstracts: 

7.60 vs 15.10; Full Papers: 7.35 vs 13.38). Moreo-

ver, both the average lengths of sentences and 

scopes in Clinical Records are shorter than those 

of other two sub-corpora (Average length: 11.96 

(speculation sentence), 8.53 (negation sentence), 

4.92 (speculation scope) and 3.87 (negation 

scope)). 

4.2 Experimental Settings 

Following the previous work (e.g., Özgür et al., 

2009; Morante et al., 2009a, 2009b; Zou et al., 

2013), we divide the Abstracts sub-corpus into 10 

folds to perform 10-fold cross-validation. Moreo-

ver, to examine the robustness of our CNN-based 

model towards different text types within biomed-

ical domain, all the models are trained on the same 

Abstracts sub-corpus. Therefore, the results on 

Abstracts can be regarded as in-domain evaluation 

while the results on Clinical Records and Full Pa-

pers can be regarded as cross-domain evaluation. 

For the measurement, traditional Precision, Re-

call, and F1-score are used to report the token-

based performance in scope detection, while the 

Percentage of Correct Scopes (PCS) is adopted to 

report the scope-based performance, which con-

siders a scope correct if all the tokens in the sen-

tence have been assigned the correct scope classes 

for a specific cue. Obviously, PCS can better de-

scribe the overall performance in scope detection. 

Besides, Percentage of Correct Left Boundaries 

(PCLB) and Percentage of Correct Right Bounda-

ries (PCRB) are reported as partial measurements. 

In all our experiments, both the constituency 

and dependency parse trees are produced by Stan-

ford Parser
2
. Specially, we train the parser on the 

GENIA Treebank 1.0
3
 (Tateisi et al., 2005), which 

contains Penn Treebank-style syntactic (phrase 

structure) annotation for the GENIA corpus. The 

parser achieves the performance of 87.12% in F1-

score in terms of 10-fold cross-validation on 

GENIA TreeBank 1.0. 

For the hyper-parameters in our CNN-based 

model, we set d0=100, dp=10, w=3, n1=200, 

n2=500, λ=10
-4

, p=0.8. The embeddings of the to-

kens in ordinary sentences (as word sequences) are 

initialized by Word2Vec
4
 (Mikolov et al., 2013). 

For the baseline, we utilize the classifier-based 

baseline developed by Zou et al. (2013). Besides 

those typical features, constituency and dependen-

                                                 
2 http://nlp.stanford.edu/software/lex-parser.shtml 
3 http://www.geniaproject.org/genia-corpus/treebank 
4 https://code.google.com/archive/p/word2vec/ 
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cy syntactic features are also included. Further-

more, Mallet
5
 is selected as the classifier. 

In addition, since our CNN-based model may 

result in discontinuous blocks, we utilize a post-

processing algorithm (Morante et al., 2008) to en-

sure the continuity of scopes. Meanwhile, the cue 

must be in its scope as defined in Bioscope. 

4.3 Experimental Results on Abstracts  

Table 2 summarizes the performances of scope 

detection on Abstracts. In Table 2, CNN_C and 

CNN_D refer the CNN-based model with constit-

uency paths and dependency paths, respectively 

(the same below). It shows that our CNN-based 

models (both CNN_C and CNN_D) can achieve 

better performances than the baseline in most 

measurements. This indicates that our CNN-based 

models can better extract and model effective fea-

tures. Besides, compared to the baseline, our 

CNN-based models consider fewer features and 

need less human intervention. It also manifests 

that our CNN-based models improve significantly 

more on negation scope detection than on specula-

tion scope detection. Much of this is due to the 

better ability of our CNN-based models in identi-

fying the right boundaries of scopes than the left 

ones on negation scope detection, with the huge 

gains of 29.44% and 25.25% on PCRB using 

CNN_C and CNN_D, respectively. 

Table 2 illustrates that the performance of spec-

ulation scope detection is higher than that of nega-

tion (Best PCS: 85.75% vs 77.14%). It is mainly 

attributed to the shorter scopes of negation cues. 

Under the circumstances that the average length of 

negation sentences is almost as long as that of 

speculation ones (29.28 vs 29.77), shorter negation 

scopes mean that more tokens do not belong to the 

scopes, indicating more negative instances. The 

imbalance between positive and negative instances 

has negative effects on both the baseline and the 

                                                 
5 http://mallet.cs.umass.edu/ 

CNN-based models for negation scope detection. 

Table 2 also shows that our CNN_D outper-

forms CNN_C in negation scope detection (PCS: 

77.14% vs 70.86%), while our CNN_C performs 

better than CNN_D in speculation scope detection 

(PCS: 85.75% vs 74.43%). To explore the results 

of our CNN-based models in details, we present 

the analysis of top 10 speculative and negative 

cues below on CNN_C and CNN_D, respectively. 

 

Figure 5: PCSs of top 10 speculative cues for scope detection 

in Abstracts sub-corpus. 

Figure 5 illustrates the PCSs of the most fre-

quent 10 speculative cues using CNN_C. The cues 

in the horizontal axis are in the order of lowest to 

highest in frequency. Among those cues, “sug-

gest”, “may”, “indicate”, and “appear” are 

commonly used to express opinions of certain in-

dividuals. The scopes of these cues are integrated 

semantic fragments (probably clauses) governed 

by corresponding cues in grammatical sense, and 

the tokens in the scope tend to share the same 

chunk with the cue in the constituency parse tree. 

Hence, constituency paths are more useful for 

speculation scope detection. Figure 5 also shows 

that the PCSs of all the top 10 speculative cues are 

higher than 70% except “or” (PCS: 60.44%), 

mainly due to the flexible usage of “or”, which 

 Systems P(%) R(%) F1 PCLB(%) PCRB(%) PCS(%) 

Speculation 

Baseline 94.71 90.54 92.56 84.81 85.11 72.47 

CNN_C 95.95 95.19 95.56 93.16 91.50 85.75 

CNN_D 92.25 94.98 93.55 86.39 84.50 74.43 

Negation 

Baseline 85.46 72.95 78.63 84.00 58.29 46.42 

CNN_C 85.10 92.74 89.64 81.04 87.73 70.86 

CNN_D 89.49 90.54 89.91 91.91 83.54 77.14 

Table 2: The performances on the Abstracts sub-corpus. 
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can connect two words, two professional terms, or 

even two clauses. 

 

 Figure 6: PCSs of top 10 negative cues for scope detection in 

Abstracts sub-corpus. 

Figure 6 illustrates the performances of the most 

frequent 10 negative cues using CNN_D. In those 

negative cues, “not” is in the absolute majority, 

and “not” and “no” cover over 70%. We have no-

ticed that most negative cues (e.g., “not”, “no”, 

“without”, “fail”) are often applied to negate 

phrases, and the tokens in negation scope tend to 

have the tight dependency relationship with them. 

Therefore, our model can achieve better results 

using dependency paths for negation scope. 

In Figure 6, most negative cues have good PCSs 

(higher than 70%). However, “unable” has poor 

PCS of 16.67%. This is due to the fact that “una-

ble” usually occurs in the phrase structure “be un-

able to”, which often follows a subject. It is nota-

ble that a cue is always in its scope and most cues 

in BioScope are much closer to the left boundaries 

than to the right ones. Hence, the tokens labeled as 

B (i.e., inside the scope and before the cue) are 

much fewer than the ones labeled as A or O. Such 

imbalance makes it hard to judge whether the to-

kens before “unable” are in of its scope or not. 

4.4 Experimental Results on Clinical Records 

and Full Papers 

The performances of our CNN-based models on 

the other two sub-corpora, i.e., Clinical Records 

and Full Papers, are presented in Table 3. Alt-

hough Abstracts and Clinical Records have differ-

ent genres, our CNN-based models can obtain sat-

isfactory results on Clinical Records using both 

constituency paths and dependency paths, proving 

the portability of our models. 

Table 3 also shows that the results of negation 

scope are better than those of speculation scope on 

Clinical Records (PCS: 89.66% vs 73.92%). We 

argue the reason is that both the lengths of nega-

tion sentences and scopes (8.53 and 3.87, respec-

tively) in Clinical Records are much shorter, indi-

cating that the structures of negation sentences are 

simpler than those of speculation ones. After error 

analysis of speculation scopes, we find that 

54.83% of our error scopes contain the annotated 

scopes, just like sentence S5: 

(S5) This does not [appear to represent a stone] 

and is not mobile. 

The annotated scope of the cue “appear” is 

“appear to represent a stone”. However, our 

CNN-based model identifies the whole sentence as 

the scope. These errors indicate that some words 

may be wrongly identified as the components of 

scopes because the scopes in Clinical Records are 

short and their structures are simple. 

Compared with Abstracts and Clinical Records, 

the results on Full Papers are much lower. This is 

mainly due to the poor PCRBs, indicating a con-

siderable quantity of right boundaries of scopes 

cannot be identified correctly. We should note that 

the average lengths of both speculation and nega-

tion sentences (30.76 and 30.55, respectively) in 

Full Papers are longer than those in Abstracts and 

 Systems P(%) R(%) F1 PCLB(%) PCRB(%) PCS(%) 

Speculation 

Clinical 

Records 

CNN_C 86.85 93.84 90.21 84.35 86.87 73.92 

CNN_D 89.02 85.41 87.18 82.91 76.17 64.39 

Full 

Papers 

CNN_C 86.78 86.59 86.69 86.01 68.60 59.82 

CNN_D 86.13 85.09 85.61 80.95 64.14 52.98 

Negation 

Clinical 

Records 

CNN_C 88.29 97.00 92.44 95.98 93.45 89.66 

CNN_D 91.97 97.03 94.43 95.98 90.57 87.82 

Full 

Papers 

CNN_C 80.92 82.26 81.58 82.71 67.29 55.32 

CNN_D 82.08 84.90 83.46 84.04 64.89 53.99 

Table 3: The performances of our CNN-based models on Clinical Records and Full Papers. 
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Clinical Records. Normally, longer sentences 

mean more complicated syntactic structures. 

Besides the results trained on Abstracts, we also 

consider the 10-fold cross-validation on Clinical 

Records and Full Papers. The PCSs of speculation 

and negation scope detection are 74.73% (CNN_C) 

and 91.03% (CNN_C) on Clinical Records, which 

are both higher than the ones trained on Abstracts. 

Remember that Abstracts and Clinical Records 

come from the different genres. However, we get 

lower PCSs on Full Papers (49.54% for specula-

tion scope detection using CNN_C, and 44.67% 

for negation scope detection using CNN_C). In 

addition to the complex structures of long sentenc-

es, another reason is that the smaller size of the 

Full Papers sub-corpus compared to the other two 

sub-corpora. Fewer sentences and scopes (only 

672 speculation scopes in 519 sentences and 376 

negation scopes in 339 sentences) mean that we 

cannot get an excellent model. 

4.5 Comparison with the State-of-the-Art 

Table 4 compares our CNN-based models with the 

state-of-the-art systems. It shows that our CNN-

based models can achieve higher PCSs (+1.54%) 

than those of the state-of-the-art systems for spec-

ulation scope detection and the second highest 

PCS for negation scope detection on Abstracts, 

and can get comparable PCSs on Clinical Records 

(73.92% vs 78.69% for speculation scopes, 

89.66% vs 90.74% for negation scopes). It is 

worth noting that Abstracts and Clinical Records 

come from different genres. 

It also displays that our CNN-based models per-

form worse than the state-of-the-art on Full Papers 

due to the complex syntactic structures of the sen-

tences and the cross-domain nature of our evalua-

tion. Although our evaluation on Clinical Records 

is cross-domain, the sentences in Clinical Records 

are much simpler and the results on Clinical Rec-

ords are satisfactory. Remind that our CNN-based 

models are all trained on Abstracts. Another rea-

son is that those state-of-the-art systems on Full 

Papers (e.g., Li et al., 2010; Velldal et al., 2012) 

are tree-based, instead of token-based. Li et al. 

(2010) proposed a semantic parsing framework 

and focused on determining whether a constituent, 

rather than a word, is in the scope of a negative 

cue. Velldal et al. (2012) presented a hybrid 

framework, combining a rule-based approach us-

ing dependency structures and a data-driven ap-

proach for selecting appropriate subtrees in con-

stituent structures. Normally, tree-based models 

can better capture long-distance syntactic depend-

ency than token-based ones. Compared to those 

tree-based models, however, our CNN-based 

model needs less manual intervention. To improve 

the performances of scope detection task, we will 

explore this alternative in our future work. 

 System Abs Cli Papers 

Spe 

Morante (2009a) 77.13 60.59 47.94 

Özgür (2009) 79.89 N/A 61.13 

Velldal (2012) 79.56 78.69 75.15 

Zou (2013) 84.21 72.92 67.24 

Ours 85.75 73.92 59.82 

Neg 

Morante (2008) 57.33 N/A N/A 

Morante (2009b) 73.36 87.27 50.26 

Li (2010) 81.84 89.79 64.02 

Velldal (2012) 74.35 90.74 70.21 

Zou (2013) 76.90 85.31 61.19 

Ours 77.14 89.66 55.32 

Table 4: Comparison of our CNN-based model with the state-

of-the-art in PCS. 

5 Conclusion 

This paper proposes a CNN-based model for spec-

ulation and negation scope detection. Compared 

with various lexical and syntactic features adopted 

in previous studies (e.g., Lapponi et al., 2012; Zou 

et al., 2013), our CNN-based model only considers 

the position feature and syntactic path feature. 

Experimental results on the BioScope corpus 

show that our CNN-based model can get the best 

performances for speculation scopes and the se-

cond highest performances for negation scopes on 

Abstracts in in-domain evaluation. In cross-

domain evaluations, we can achieve comparable 

results on Clinical Records, but our CNN-based 

model performs worse on Full Papers. This sug-

gests our future direction to extend the model from 

token level to parse tree level in better capturing 

long-distance syntactic dependency and to address 

the cross-domain adaptation issue. 
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