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Abstract

This paper introduces STEM and LAMB, em-
beddings trained for stems and lemmata in-
stead of for surface forms. For morpholog-
ically rich languages, they perform signif-
icantly better than standard embeddings on
word similarity and polarity evaluations. On
a new WordNet-based evaluation, STEM and
LAMB are up to 50% better than standard em-
beddings. We show that both embeddings
have high quality even for small dimension-
ality and training corpora.

1 Introduction

Despite their power and prevalence, embeddings,
i.e., (low-dimensional) word representations in vec-
tor space, have serious practical problems. First,
large text corpora are necessary to train high-quality
embeddings. Such corpora are not available for un-
derresourced languages. Second, morphologically
rich languages (MRLs) are a challenge for stan-
dard embedding models because many inflectional
forms are rare or absent even in a large corpus. For
example, a Spanish verb has more than 50 forms,
many of which are rarely used. This leads to miss-
ing or low quality embeddings for such inflectional
forms, even for otherwise frequent verbs, i.e., spar-
sity is a problem. Therefore, we propose to com-
pute normalized embeddings instead of embeddings
for surface/inflectional forms (referred to as forms
throughout the rest of the paper): STem EMbed-
dings (STEM) for word stems and LemmA eMBed-
dings (LAMB) for lemmata.

Stemming is a heuristic approach to reducing
form-related sparsity issues. Based on simple rules,
forms are converted into their stem.1 However, often
the forms of one word are converted into several dif-
ferent stems. For example, present indicative forms
of the German verb “brechen” (to break) are mapped
to four different stems (“brech”, “brich”, “bricht”,
“brecht”). A more principled solution is lemmatiza-
tion. Lemmatization unites many individual forms,
many of which are rare, in one equivalence class,
represented by a single lemma. Stems and equiva-
lence classes are more frequent than each individual
form. As we will show, this successfully addresses
the sparsity issue.

Both methods can learn high-quality semantic
representations for rare forms and thus are most ben-
eficial for MRLs as we show below. Moreover, less
training data is required to train lemma embeddings
of the same quality as form embeddings. Alterna-
tively, we can train lemma embeddings that have the
same quality but fewer dimensions than form em-
beddings, resulting in more efficient applications.

If an application such as parsing requires in-
flectional information, then stem and lemma em-
beddings may not be a good choice since they
do not contain such information. However, NLP
applications such as similarity benchmarks (e.g.,
MEN (Bruni et al., 2014)) and (as we show below)
polarity classification are semantic and are largely

1In this paper, we use the term “stem” not in its linguistic
meaning, but to refer to the character string that is produced
when a stemming algorithm like SNOWBALL is applied to a
word form. The stem is usually a prefix of the word form, but
some orthographic normalization (e.g., “possibly” → “possi-
ble” or “possibli”) is often also performed.
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independent of inflectional morphology.
Our contributions are the following. (i) We intro-

duce the normalized embeddings STEM and LAMB

and show their usefulness on different tasks for five
languages. This paper is the first study that compre-
hensively compares stem/lemma-based with form-
based embeddings for MRLs. (ii) We show the ad-
vantage of normalization on word similarity bench-
marks. Normalized embeddings yield better perfor-
mance for MRL languages on most datasets (6 out
of 7 datasets for German and 2 out of 2 datasets for
Spanish). (iii) We propose a new intrinsic related-
ness evaluation based on WordNet graphs and pub-
lish datasets for five languages. On this new evalua-
tion, LAMB outperforms form-based baselines by a
big margin. (iv) STEM and LAMB outperform base-
lines on polarity classification for Czech and En-
glish. (v) We show that LAMB embeddings are effi-
cient in that they are high-quality for small training
corpora and small dimensionalities.

2 Related Work

There have been a large number of studies on En-
glish, a morphologically simple language, that show
that the effect of normalization, in particular stem-
ming, is different for different applications. For in-
stance, Karlgren and Sahlgren (2001) analyze the
impact of morphological analysis on creating word
representations for synonymy detection. They com-
pare several stemming methods. Bullinaria and
Levy (2012) use stemming and lemmatization be-
fore training word representations. The improve-
ment of morphological normalization in both stud-
ies is moderate in the best case. Melamud et al.
(2014) compute lemma embeddings to predict re-
lated words given a query word. They do not com-
pare form and lemma representations.

A finding about English morphology does not
provide insight into what happens with the morphol-
ogy of an MRL. In this paper we use English to
provide a data point for morphologically poor lan-
guages. Although we show that normalization for
embeddings increases performance significantly on
some applications – a novel finding to the best of
our knowledge – morphologically simple languages
(for which normalization is expected to be less im-
portant) are not the main focus of the paper. Instead,

MRLs are the main focus. For these, we show large
improvements on several tasks.

Recently, Köper et al. (2015) compared form and
lemma embeddings on English and German focus-
ing on morpho-syntactic and semantic relation tasks.
Generally, they found that lemmatization has lim-
ited impact. We extensively study MRLs and find a
strong improvement on MRLs when using normal-
ization, on intrinsic as well as extrinsic evaluations.

Synonymy detection is a well studied problem
in the NLP community (Turney, 2001; Turney et
al., 2003; Baroni and Bisi, 2004; Ruiz-Casado et
al., 2005; Grigonytė et al., 2010). Rei and Briscoe
(2014) classify hyponomy relationships through em-
bedding similarity. Our premise is that seman-
tic similarity comprises all of these relations and
more. Our ranking-based word relation evaluation
addresses this issue. Similar to Melamud et al.
(2014), our motivation is that, in contrast to standard
word similarity benchmarks, large resources can be
automatically generated for any language with a
WordNet. This is also exploited by Tsvetkov et al.
(2015). Their intrinsic evaluation method requires
an annotated corpus, e.g., annotated with WordNet
supersenses. Our approach requires only the Word-
Net.

An alternative strategy of dealing with data spar-
sity is presented by Soricut and Och (2015). They
compute morphological features in an unsupervised
fashion in order to construct a form embedding by
the combination of the word’s morphemes. We ad-
dress scenarios (such as polarity classification) in
which morphological information is less important,
thus morpheme embeddings are not needed.

3 Stem/Lemma Creation

The main hypothesis of this work is that normaliza-
tion addresses sparsity issues, especially for MRLs,
because although a particular word form might not
have been seen in the text, its stem or lemma is more
likely to be known. For all stemming experiments
we use SNOWBALL,2 a widely used stemmer. It nor-
malizes a form based on deterministic rules, such as
replace the suffix ‘tional’ by ‘tion’ for English.

For lemmatization we use the pipeline version of
the freely available, high-quality lemmatizer LEM-

2snowball.tartarus.org
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MING (Müller et al., 2015). Since it is a language-
independent token-based lemmatizer it is especially
suited for our multi-lingual experiments. Moreover,
it reaches state-of-the-art performance for the five
languages that we study. We train the pipeline us-
ing the Penn Treebank (Marcus et al., 1993) for En-
glish, SPMRL 2013 shared task data (Seddah et al.,
2013) for German and Hungarian, and CoNLL 2009
(Hajič et al., 2009) datasets for Spanish and Czech.
We additionally use a unigram list extracted from
Wikipedia datasets and the ASPELL dictionary of
each language.3

4 Experiments

4.1 Word Similarity
Our first experiment evaluates how well
STEM/LAMB embeddings predict human word
similarity judgments. Given a pair of words (m,n)
with a human-generated similarity value and a set
of embeddings E we compute their similarity as
cosine similarity. For form embeddings EF , we
directly use the embeddings of the word pairs’
forms (EF

m and EF
n ) and compute their similarity.

For STEM we use ES
stem(w), where stem(w) is the

stem of w. For LAMB we use EL
lemma(w), where

lemma(w) is the lemma of w; we randomly select
one of w’s lemmata if there are several. We conduct
experiments on English (en), German (de) and
Spanish (es). Table 1 gives dataset statistics.

For good performance, high-quality embeddings
trained on large corpora are required. Hence,
the training corpora for German and Spanish are
web corpora taken from COW14 (Schäfer, 2015).
Preprocessing includes removal of XML, conver-
sion of HTML characters, lowercasing, stemming
using SNOWBALL and lemmatization using LEM-
MING. We use the entire Spanish corpus (3.7 bil-
lion tokens), but cut the German corpus to approxi-
mately 8 billion tokens to be comparable to Köper
et al. (2015). We train CBOW models (Mikolov
et al., 2013) for forms, stems and lemmata us-
ing WORD2VEC4 with the following settings: 400
dimensions, symmetric context of size 2 (no dy-
namic window), 1 training iteration, negative sam-
pling with 15 samples, a learning rate of 0.025, min-

3ftp://ftp.gnu.org/gnu/aspell/dict
4code.google.com/p/word2vec/

imum count of words of 50, and a sampling param-
eter of 10−5. CBOW is chosen, because it trains
much faster than skip-gram, which is beneficial on
these large corpora.

Since the morphology of English is rather sim-
ple we do not expect STEM and LAMB to reach or
even surpass highly optimized systems on any word
similarity dataset (e.g., Bruni et al. (2014)). There-
fore, for practical reasons we use a smaller train-
ing corpus, namely the preprocessed and tokenized
Wikipedia dataset of Müller and Schütze (2015).5

Embeddings are trained with the same settings (us-
ing 5 iterations instead of only 1, due to the smaller
size of the corpus: 1.8 billion tokens).

Table 1 shows results. We also report the Spear-
man correlation on the vocabulary intersection, i.e.,
only those word pairs that are covered by the vocab-
ularies of all models.

Results. Although English has a simple morphol-
ogy, LAMB improves over form performance on
MEN and SL. A tie is achieved on RW. These are
the three largest English datasets, giving a more re-
liable result. Both models perform comparably on
WS. Here, STEM is ahead by 1 point. Forms are
better on the small datasets MC and RG, where a
single word pair can have a large influence on the
result. Additionally, these are datasets with high fre-
quency forms, where form embeddings can be well
trained. Because of the simple morphology of En-
glish, STEM/LAMB do not outperform forms or only
by a small margin and thus they cannot compete with
highly optimized state-of-the-art systems.6

On German, both STEM and LAMB perform bet-
ter on all datasets except WS. We set the new state-
of-the-art of 0.79 on Gur350 (compared to 0.77
(Szarvas et al., 2011)) and 0.39 on ZG (compared
to 0.25 (Botha and Blunsom, 2014)); 0.83 on Gur65
(compared to 0.79 (Köper et al., 2015)) is the best
performance of a system that does not need addi-
tional knowledge bases (cf. Navigli and Ponzetto
(2012), Szarvas et al. (2011)).

LAMB’s results on Spanish are equally good. 0.82
on MC and 0.58 on WS are again the best per-

5cistern.cis.lmu.de/marmot/naacl2015
6Baroni et al. (2014)’s numbers are higher on some of the

datasets for the best of 48 different parameter configurations.
In contrast, we do not tune parameters.
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formances of a system not requiring an additional
knowledge base (cf. Navigli and Ponzetto (2012)).
The best performance before was 0.64 for MC and
0.50 for WS (both Hassan and Mihalcea (2009)).
STEM cannot improve over form embeddings, show-
ing the difficulty of Spanish morphology.

4.2 Word Relations
Word similarity benchmarks are not available for
many languages and are expensive to create. To rem-
edy this situation, we create word similarity bench-
marks that leverage WordNets, which are available
for a great number of languages.

Generally, a representation is deemed good if
words related by a lexical relation in WordNet – syn-
onymy, hyponymy etc. – have high cosine similar-
ity with this representation. Since the gold standard
necessary for measuring this property of a represen-
tation can be automatically derived from a WordNet,
we can create very large similarity benchmarks with
up to 50k lemmata for the five languages we investi-
gate: Czech, English, German, Hungarian and Span-
ish.

We view each WordNet as a graph whose edges
are the lexical relations encoded by the WordNet,
e.g., synonymy, antonymy and hyponymy. We then
define L as the set of lemmata in a WordNet and the
distance d(l, l′) between two lemmata l and l′ as the
length of the shortest path connecting them in the
graph. The k-neighborhood Nk(l) of l is the set of
lemmata l′ that have distance k or less, excluding l:
Nk(l) := {l′|d(l, l′) ≤ k, l 6= l′}. The rank of l for
an embedding set E is defined as:

rankkE(l) := argmin
i

li ∈ Nk(l) (1)

where li is the lemma at position i in the list of all
lemmata in the WordNet, ordered according to co-
sine similarity to l in descending order. We restrict
i ∈ [1, 10] and set k = 2 for all experiments in this
paper. We omit the indexes k and E when they are
clear from context.

To measure the quality of a set of embeddings
we compute the mean reciprocal rank (MRR) on the
rank results of all lemmata:

MRRE =
1

|L|
∑

l∈L

1

rankE(l)
(2)

We create large similarity datasets for five lan-
guages: Czech (cz), English (en), German (de),
Hungarian (hu) and Spanish (es) by extracting all
lemmata from the WordNet version of the respec-
tive language. For English and Spanish we use the
preprocessed WordNets from the Open Multilingual
WordNet (Bond and Paik, 2012). We use the Czech
and Hungarian WordNets (PALA and SMRZ, 2004;
Miháltz et al., 2008) and GermaNet (Hamp and
Feldweg, 1997) for German. We keep all lemmata
that have a known form in the form embeddings and
that exist in the lemma embeddings. Moreover, we
filter out all synsets that contain only one lemma and
discard all multiword phrases. The split into devel-
opment and test sets is done in a way that the distri-
bution of synset sizes (i.e., the number of lemmata
per synset) is nearly equal in both sets.

The number of lemmata in our evaluation sets can
be found in Table 2. For more insight, we report
results on all parts-of-speech (POS), as well as sep-
arately for nouns (n), verbs (v) and adjectives (a).7

The data is provided as supplementary material.8

We propose the following models for the embed-
ding evaluation. For form embeddings we com-
pare three different strategies, a realistic one, an op-
timistic one and a lemma approximation strategy.
In the realistic strategy (form real), given a query
lemma we randomly sample a form, for which we
then compute the k-neighborhood. If the neigh-
bors contain multiple forms of the same equivalence
class, we exclude the repetitions and use the next
neighbors instead. For instance, if house is already
a neighbor, then houses will be skipped. The opti-
mistic strategy (form opt) works similarly, but uses
the embedding of the most frequent surface form of
a lemma. This is the most likely form to perform
best in the form model. This strategy presupposes
the availability of information about lemma and sur-
face form counts. As a baseline lemma approxi-
mation strategy, we sum up all surface form em-
beddings that belong to one equivalence class (form
sum). For STEM we repeat the same experiments as
described for forms, leading to stem real, stem opt
and stem sum.

For embedding training, Wikipedia comes as a
7The all-POS setting includes all POS, not just n, v, a.
8All supplementary material is available at www.cis.

uni-muenchen.de/ebert/
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full vocabulary vocabulary intersection

lang dataset reference pairs form STEM LAMB cov. form STEM LAMB cov.

de Gur30 Gurevych (2005) 29 0.76 0.83 0.80 29, 29, 29 0.76 0.83 0.80 29
Gur350 Gurevych (2005) 350 0.74 0.79 0.79 336, 340, 339 0.74 0.79 0.79 336
Gur65 Gurevych (2005) 65 0.80 0.83 0.82 65, 65, 65 0.80 0.83 0.82 65
MSL Leviant and Reichart (2015) 999 0.44 0.44 0.47 994, 995, 995 0.44 0.44 0.47 994
MWS Leviant and Reichart (2015) 350 0.60 0.61 0.62 348, 350, 350 0.60 0.61 0.61 348
WS Köper et al. (2015) 280 0.72 0.72 0.71 279, 280, 280 0.72 0.71 0.71 279
ZG Zesch and Gurevych (2006) 222 0.36 0.38 0.39 200, 207, 208 0.36 0.40 0.41 200

en MC Miller and Charles (1991) 30 0.82 0.77 0.80 30, 30, 30 0.82 0.77 0.80 30
MEN Bruni et al. (2014) 1000 0.72 0.73 0.74 1000, 1000, 1000 0.72 0.73 0.74 1000
RG Rubenstein et al. (1965) 65 0.82 0.79 0.79 65, 65, 65 0.82 0.79 0.79 65
RW Luong et al. (2013) 2034 0.47 0.47 0.47 1613, 1947, 1819 0.47 0.47 0.48 1613
SL Hill et al. (2014) 999 0.42 0.38 0.43 998, 999, 999 0.42 0.38 0.43 998
WS Finkelstein et al. (2002) 353 0.63 0.64 0.63 353, 353, 353 0.63 0.64 0.63 353

es MC Hassan and Mihalcea (2009) 30 0.70 0.69 0.82 30, 30, 30 0.70 0.69 0.82 30
WS Hassan and Mihalcea (2009) 352 0.54 0.54 0.58 350, 352, 352 0.54 0.54 0.58 350

Table 1: Word similarity results. The left part shows dataset information. The right part shows Spearman correlation (ρ) for the

models with their full vocabulary and for the intersection of vocabularies. Coverage is shown for all models in order of appearance.

Bold is best per vocabulary and row.

lang set all a n v

cz dev 9694 852 6436 2315
test 9763 869 6381 2433

de dev 51682 6347 40674 5018
test 51827 6491 40623 5085

en dev 44448 9713 30825 5661
test 44545 9665 30736 5793

es dev 12384 1711 8634 1989
test 12476 1727 8773 1971

hu dev 19387 1953 15268 2057
test 19486 1928 15436 2011

Table 2: Number of lemmata in WordNet datasets

natural choice as corpus, because it is available for
many languages. Therefore, we use the prepro-
cessed and tokenized Wikipedia datasets of Müller
and Schütze (2015). We train 50-dimensional
skip-gram embeddings (Mikolov et al., 2013) with
WORD2VEC on the original, the stemmed and the
lemmatized corpus, respectively. Embeddings are
trained for all tokens, because we need high cover-
age; the context size is set to 5, all remaining param-
eters are left at their default value.9

9We train smaller embeddings than before, because we have
more models to train and training corpora are smaller.

Results. The MRR results in the left half of Ta-
ble 3 (“unfiltered”) show that for all languages and
for all POS, form real has the worst performance
among the form models. This comes at no surprise
since this model does barely know anything about
word forms and lemmata. The form opt model im-
proves these results based on the additional infor-
mation it has access to (the mapping from lemma to
its most frequent form). form sum performs simi-
lar to form opt. For Czech, Hungarian and Spanish
it is slightly better (or equally good), whereas for
English and German there is no clear trend. There
is a large difference between these two models on
German nouns, with form sum performing consider-
ably worse. We attribute this to the fact that many
German noun forms are rare compounds and there-
fore lead to badly trained form embeddings, which
summed up do not lead to high quality embeddings
either.

Among the stemming models, stem real also is the
worst performing model. We can further see that for
all languages and almost all POS, stem sum performs
worse than stem opt. That indicates that stemming
leads to many low-frequency stems or many words
sharing the same stem. This is especially apparent
in Spanish verbs. There, the stemming models are
clearly inferior to form models.

Overall, LAMB performs best for all languages
and POS types. Most improvements of LAMB are
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significant. The improvement over the best form-
model reaches up to 6 points (e.g., Czech nouns). In
contrast to form sum, LAMB improves over form opt
on German nouns. This indicates that the sparsity
issue is successfully addressed by LAMB.

In general, morphological normalization in terms
of stemming or lemmatization improves the result
on all languages, leading to an especially substantial
improvement on MRLs. For the morphologically
very rich languages Czech and Hungarian, the rela-
tive improvement of STEM or LAMB to form-based
models is especially high, e.g., Hungarian all: 50%.
Moreover, we find that MRLs yield lower absolute
performance. This confirms the findings of Köper et
al. (2015). Surprisingly, LAMB yields better perfor-
mance on English despite its simple morphology.

The low absolute results – especially for Hungar-
ian – show that we address a challenging task and
that our new evaluation methodology is a good eval-
uation for new types of word representations.

For further insight, we restrict the nearest neigh-
bor search space to those lemmata that have the same
POS as the query lemma. The general findings in
the right half of Table 3 (“filtered”) are similar to the
unrestricted experiment: Normalization leads to su-
perior results. The form real and stem real models
yield the lowest performance. Form opt improves
the performance and form sum is better on average
than form opt. Stem sum can rarely improve on stem
opt. The best stemming model most often is better
than the best form model. LAMB can benefit more
from the POS type restriction than the form models.
The distance to the best form model generally in-
creases, especially on German adjectives and Span-
ish verbs. In all cases except on English adjectives,
LAMB yields the best performance. Again, in al-
most all cases LAMB’s improvement over the form-
models is significant.

4.3 Polarity Classification
Our first two evaluations were intrinsic. We now
show the benefit of normalization on an extrinsic
task. The task is classification of Czech movie
reviews (CSFD, Habernal et al. (2013)) into posi-
tive, negative or neutral (Table 4). We reimplement
lingCNN (Ebert et al., 2015), a Convolutional Neu-
ral Network that uses linguistic information to im-
prove polarity classification. This model reaches

close to state-of-the-art performance on data of the
SemEval 2015 Task 10B (message level polarity).
LingCNN takes several features as input: (i) embed-
ding features, (ii) linguistic features at word level
and (iii) linguistic features at review level.

We reuse the 50-dimensional Wikipedia embed-
dings from Section 4.2 and compare three experi-
mental conditions: using forms, STEM and LAMB.

Linguistic word level features are: (i) SubLex
1.0 sentiment lexicon (Veselovská and Bojar, 2013)
(two binary indicators that word is marked posi-
tive/negative); (ii) SentiStrength10 (three binary in-
dicators that word is an emoticon marked as posi-
tive/negative/neutral); (iii) prefix “ne” (binary nega-
tion indicator in Czech).11

All word level features are concatenated to form
a single word representation of the review’s input
words. The concatenation of these representations
is the input to a convolution layer, which has sev-
eral filters spanning the whole representation height
and several representations (i.e., several words) in
width. The output of the convolution layer is input
to a k-max pooling layer (Kalchbrenner et al., 2014).
The max values are concatenated with the follow-
ing linguistic review level features: (i) the count of
elongated words, such as “cooool”; (ii) three count
features for the number of positive/negative/neutral
emoticons using the SentiStrength list; (iii) a count
feature for punctuation sequences, such as “!!!”; (iv)
and a feature that counts the number of negated
words. (v) A final feature type comprises one count
feature each for the number of sentiment words in a
review, the sum of sentiment values of these words
as provided by the sentiment lexicon, the maximum
sentiment value and the sentiment value of the last
word (Mohammad et al., 2013). The concatenation
of max values and review level features is then for-
warded into a fully-connected three-class (positive,
negative, neutral) softmax layer. We train lingCNN
with AdaGrad (Duchi et al., 2011) and early stop-
ping, batch size = 100, 200 filters per width of 3-6;
k-max pooling with k = 5; learning rate 0.01; and
`2 regularization (λ = 5 · 10−5).

We also perform this experiment for English on

10sentistrength.wlv.ac.uk/
11We disregard words with the prefix “nej”, because they in-

dicate superlatives. Exceptions are common negated words with
this prefix, such as “nejsi” (engl. “you are not”).
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unfiltered filtered

form STEM form STEM

lang POS real opt sum real opt sum LAMB real opt sum real opt sum LAMB

cz a 0.03 0.04 0.05 0.02 0.05 0.05 0.06 0.03‡ 0.05† 0.07 0.04† 0.08 0.08 0.09
n 0.15‡ 0.21‡ 0.24‡ 0.18‡ 0.27‡ 0.26‡ 0.30 0.17‡ 0.23‡ 0.26‡ 0.20‡ 0.29‡ 0.28‡ 0.32
v 0.07‡ 0.13‡ 0.16† 0.08‡ 0.14‡ 0.16‡ 0.18 0.09‡ 0.15‡ 0.17‡ 0.09‡ 0.17† 0.18 0.20
all 0.12‡ 0.18‡ 0.20‡ 0.14‡ 0.22‡ 0.21‡ 0.25 - - - - - - -

de a 0.14‡ 0.22‡ 0.25† 0.17‡ 0.26 0.21‡ 0.27 0.17‡ 0.25‡ 0.27‡ 0.23‡ 0.33 0.33 0.33
n 0.23‡ 0.35‡ 0.30‡ 0.28‡ 0.35† 0.33‡ 0.36 0.24‡ 0.36‡ 0.31‡ 0.28‡ 0.36 0.35‡ 0.37
v 0.11‡ 0.19‡ 0.18‡ 0.11‡ 0.22 0.18‡ 0.23 0.13‡ 0.20‡ 0.21‡ 0.13‡ 0.24‡ 0.23‡ 0.26
all 0.21‡ 0.32‡ 0.28‡ 0.24‡ 0.33† 0.30‡ 0.34 - - - - - - -

en a 0.22‡ 0.25‡ 0.24‡ 0.16‡ 0.26‡ 0.25‡ 0.28 0.25‡ 0.28‡ 0.28‡ 0.18‡ 0.29‡ 0.32 0.31
n 0.24‡ 0.27‡ 0.28‡ 0.22‡ 0.30 0.28‡ 0.30 0.25‡ 0.28‡ 0.29‡ 0.23‡ 0.31† 0.31‡ 0.32
v 0.29‡ 0.35‡ 0.37 0.17‡ 0.35 0.24‡ 0.37 0.33‡ 0.39‡ 0.42‡ 0.21‡ 0.42† 0.39‡ 0.44
all 0.23‡ 0.26‡ 0.27‡ 0.20‡ 0.28‡ 0.25‡ 0.29 - - - - - - -

es a 0.20‡ 0.23‡ 0.23‡ 0.08‡ 0.21‡ 0.18‡ 0.27 0.21‡ 0.25‡ 0.26‡ 0.10‡ 0.26‡ 0.26‡ 0.30
n 0.21‡ 0.25‡ 0.25‡ 0.16‡ 0.25‡ 0.23‡ 0.29 0.22‡ 0.26‡ 0.27‡ 0.17‡ 0.27‡ 0.26‡ 0.30
v 0.19‡ 0.35† 0.36 0.11‡ 0.29‡ 0.19‡ 0.38 0.22‡ 0.36‡ 0.36‡ 0.16‡ 0.36‡ 0.33‡ 0.42
all 0.20‡ 0.26‡ 0.26‡ 0.14‡ 0.24‡ 0.21‡ 0.30 - - - - - - -

hu a 0.02‡ 0.06‡ 0.06‡ 0.05‡ 0.08 0.08 0.09 0.04‡ 0.08‡ 0.08‡ 0.06‡ 0.12 0.11 0.12
n 0.01‡ 0.04‡ 0.05‡ 0.03‡ 0.07 0.06‡ 0.07 0.01‡ 0.04‡ 0.05‡ 0.04‡ 0.07† 0.06‡ 0.07
v 0.04‡ 0.11‡ 0.13‡ 0.07‡ 0.14‡ 0.15 0.17 0.05‡ 0.13‡ 0.14‡ 0.07‡ 0.15‡ 0.16† 0.19
all 0.02‡ 0.05‡ 0.06‡ 0.04‡ 0.08‡ 0.07‡ 0.09 - - - - - - -

Table 3: Word relation results. MRR per language and POS type for all models. unfiltered is the unfiltered nearest neighbor search

space; filtered is the nearest neighbor search space that contains only one POS. ‡ (resp. †): significantly worse than LAMB (sign

test, p < .01, resp. p < .05). Best unfiltered/filtered result per row is in bold.

the SemEval 2015 Task 10B dataset (cf. Table 4).
We reimplement Ebert et al. (2015)’s lexicon fea-
tures. They exploit the fact that there are many more
sentiment lexicons available in English. Other word
level features are the same as above. Sentiment
count features at review level are computed sepa-
rately for the entire tweet, for all hashtag words and
for each POS type (Ebert et al., 2015).

Considering the much smaller dataset size and
shorter sentences of the SemEval data we chose
the following hyperparameters: 100k most frequent
word types, 100 filters per filter width of 2-5; and
k-max pooling with k = 1.

Results. Table 5 lists the 10-fold cross-validation
results (accuracy and macro F1) on the CSFD
dataset. LAMB/STEM results are consistently better
than form results.

In our analysis, we found the following example
for the benefit of normalization: “popis a název za-
jmavý a film je taková filmařská prasárna” (engl.
“description and title are interesting, but it is bad
film-making”). This example is correctly classified
as negative by the LAMB model because it has an

embedding for “prasárna” (bad, smut) whereas the
form model does not.

The out-of-vocabulary counts for form and LAMB

on the first fold of the CSFD experiment are 26.3k
and 25.5k, respectively. The similarity of these two
numbers suggests that the quality of word embed-
dings (form vs. LAMB) are responsible for the per-
formance gain.

On the SemEval data, LAMB improves the results
over form and stem (cf. Table 5).12 Hence, LAMB

can still pick up additional information despite the
simple morphology of English. This is probably due
to better embeddings for rare words. The SemEval
2015 winner (Hagen et al., 2015) is a highly domain-
dependent and specialized system that we do not
outperform.

In the introduction, we discussed that normaliza-
tion removes inflectional information that is nec-
essary for NLP tasks like parsing. For polarity
classification, comparatives and superlatives can be
important. Further analysis is necessary to deter-

12To be comparable with published results we report the
macro F1 of positive and negative classes.
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dataset total pos neg neu

CSFD 91379 30896 29716 30767
SemEval train 9845 3636 1535 4674
SemEval dev 3813 1572 601 1640
SemEval test 2390 1038 365 987

Table 4: Polarity classification datasets

lang features acc F1

cz Brychcin et al. (2013) - 81.53
form 80.86 80.75
STEM 81.51 81.39
LAMB 81.21 81.09

en Hagen et al. (2015) - 64.84
form 66.78 62.21
STEM 66.95 62.06
LAMB 67.49 63.01

Table 5: Polarity classification results. Bold is best per lan-

guage and column.

mine whether their normalization hurts in our exper-
iments. However, note that we evaluate on polarity
only, not on valence.

5 Analysis

Normalized embeddings deal better with sparsity
than form embeddings. In this section, we demon-
strate two additional benefits of LAMB based on its
robustness against sparsity.

Embedding Size. We now show that LAMB can
train embeddings with fewer dimensions on the
same amount of data and still reach the same per-
formance as larger form embeddings. We repeat the
word relation experiments of Section 4.2 (all POS)
and train all models with embedding sizes 10, 20, 30
and 40 for Spanish. We choose Spanish because it
has richer morphology than English and more train-
ing data than Czech and Hungarian.

Figure 1 depicts the MRR results of all models
with respect to embedding size. The relative rank-
ing of form models is real < opt < sum. That
comes from the additional information the more
complex models have access to. All stemming mod-
els reach lower performance than their form coun-
terparts (similar to results in Table 3). That suggests
that stemming is not a proper alternative to correctly

dealing with Spanish morphology. LAMB reaches
higher performance than form real with already 20
dimensions. The 30 dimensional LAMB model is
better than all other models. Thus, we can create
lower-dimensional lemma embeddings that are as
good as higher-dimensional form embeddings; this
has the benefits of reducing the number of parame-
ters in models using these embeddings and of reduc-
ing training times and memory consumption.

Corpus Size. Our second hypothesis is that less
training data is necessary to train good embeddings.
We create 10 training corpora consisting of the first
k percent, k ∈ {10, 20, . . . , 100}, of the random-
ized Spanish Wikipedia corpus. With these 10 sub-
corpora we repeat the word relation experiments of
Section 4.2 (all POS). As query lemmata, we use the
lemmata from before that exist in all subcorpora.

Figure 2 shows that the relative ranking among
the models is the same as before. This time how-
ever, form sum yields slightly better performance
than form opt, especially when little training data is
available. The stemming models again are inferior
to their form counterparts. Only stem opt is able
to reach performance similar to form opt. LAMB

always reaches higher performance than form real,
even when only 10% of the training corpus is used.
With 30% of the training corpus, LAMB surpasses
the performance of the other models.13 Again, by
requiring less than 30% of the training data, embed-
ding training becomes much more efficient. Further-
more, in low-resource languages that lack the avail-
ability of a large homogeneous corpus, LAMB can
still be trained successfully.

6 Conclusion

We have presented STEM and LAMB, embeddings
based on stems and lemmata. In three experiments
we have shown the superiority compared to com-
monly used form embeddings. Especially (but not
only) on MRLs, where data sparsity is a problem,
both normalized embeddings perform better than
form embeddings by a large margin. In a new chal-
lenging WordNet-based experiment we have shown
four methods of adding morphological information

13Recall that form opt is similar to an approach that is used in
most systems that have embeddings, which just use the available
surface forms.
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Figure 2: Corpus size analysis

(opt, sum, STEM, LAMB). Here, LAMB is the best
of the proposed ways of using morphological infor-
mation, consistently reaching higher performance,
often by a large margin. STEM methods are not
consistently better, indicating that the more princi-
pled way of normalization as done by LAMB is to be
preferred. The datasets are available as supplemen-
tary material at www.cis.uni-muenchen.de/
ebert/.

Our analysis shows that LAMB needs fewer em-
bedding dimensions and less embedding training

data to reach the same performance as form embed-
dings, making LAMB appealing for underresourced
languages.

As morphological analyzers are becoming more
widely available, our method – which is easy to
implement, only requiring running the analyzer –
should become applicable to more and more lan-
guages.
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