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Abstract

We study the problem of identifying individu-
als based on their characteristic gaze patterns
during reading of arbitrary text. The motiva-
tion for this problem is an unobtrusive biomet-
ric setting in which a user is observed during
access to a document, but no specific chal-
lenge protocol requiring the user’s time and at-
tention is carried out. Existing models of indi-
vidual differences in gaze control during read-
ing are either based on simple aggregate fea-
tures of eye movements, or rely on paramet-
ric density models to describe, for instance,
saccade amplitudes or word fixation durations.
We develop flexible semiparametric models of
eye movements during reading in which den-
sities are inferred under a Gaussian process
prior centered at a parametric distribution fam-
ily that is expected to approximate the true dis-
tribution well. An empirical study on read-
ing data from 251 individuals shows signifi-
cant improvements over the state of the art.

1 Introduction

Eye-movement patterns during skilled reading con-
sist of brief fixations of individual words in a
text that are interleaved with quick eye movements
called saccades that change the point of fixation to
another word. Eye movements are driven both by
low-level visual cues and high-level linguistic and
cognitive processes related to text understanding; as
a reflection of the interplay between vision, cog-
nition, and motor control during reading they are
frequently studied in cognitive psychology (Kliegl
et al., 2006; Rayner, 1998). Computational mod-
els (Engbert et al., 2005; Reichle et al., 1998) as well
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as models based on machine learning (Matties and
S¢gaard, 2013; Hara et al., 2012) have been devel-
oped to study how gaze patterns arise based on text
content and structure, facilitating the understanding
of human reading processes.

A central observation in these and earlier psycho-
logical studies (Huey, 1908; Dixon, 1951) is that eye
movement patterns strongly differ between individu-
als. Holland et al. (2012) and Landwehr et al. (2014)
have developed models of individual differences in
eye movement patterns during reading, and studied
these models in a biometric problem setting where
an individual has to be identified based on observing
her eye movement patterns while reading arbitrary
text. Using eye movements during reading as a bio-
metric feature has the advantage that it suffices to
observe a user during a routine access to a device
or document, without requiring the user to react to
a specific challenge protocol. If the observed eye
movement sequence is unlikely to be generated by
an authorized individual, access can be terminated or
an additional verification requested. This is in con-
trast to approaches where biometric identification is
based on eye movements in response to an artificial
visual stimulus, for example a moving (Kasprowski
and Ober, 2004; Komogortsev et al., 2010; Rigas et
al., 2012b; Zhang and Juhola, 2012) or fixed (Bed-
narik et al., 2005) dot on a computer screen, or a
specific image stimulus (Rigas et al., 2012a).

The model studied by Holland & Komogort-
sev (2012) uses aggregate features (such as average
fixation duration) of the observed eye movements.
Landwehr et al. (2014) showed that readers can be
identified more accurately with a model that cap-
tures aspects of individual-specific distributions over
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eye movements, such as the distribution over fixa-
tion durations or saccade amplitudes for word refix-
ations, regressions, or next-word movements. Some
of these distributions need to be estimated from very
few observations; a key challenge is thus to design
models that are flexible enough to capture character-
istic differences between readers yet robust to sparse
data. Landwehr et al. (2014) used a fully paramet-
ric approach where all densities are assumed to be in
the gamma family; gamma distributions were shown
to approximate the true distribution of interest well
for most cases (see Figure 1). This model is robust
to sparse data, but might not be flexible enough to
capture all differences between readers.

The model we study in this paper follows ideas
developed by Landwehr et al. (2014), but em-
ploys more flexible semiparametric density models.
Specifically, we place a Gaussian process prior over
densities that concentrates probability mass on den-
sities that are close to the gamma family. Given
data, a posterior distribution over densities is de-
rived. If data is sparse, the posterior will still be
sharply peaked around distributions in the gamma
family, reducing the effective capacity of the model
and minimizing overfitting. However, given enough
evidence in the data, the model will also deviate
from the gamma-centered prior—depending on the
kernel function chosen for the GP prior, any density
function can in principle be represented. Integrating
over the space of densities weighted by the posterior
yields a marginal likelihood for novel observations
from which predictions are inferred. We empirically
study this model in the same setting as studied by
Landwehr et al. (2014), but using an order of mag-
nitude more individuals. Identification error is re-
duced by more than a factor of three compared to
the state of the art.

The rest of the paper is organized as follows.
After defining the problem setting in Section 2,
Section 3 presents the semiparametric probabilis-
tic model. Section 4 discusses inference, Section 5
presents an empirical study on reader identification.

2 Problem Setting

Assume R different readers, indexed by r €
{1,...,R},and let ¥ = {Xy,...,X,,} denote a set
of texts. Each r € R generates a set of eye move-
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ment patterns S(") = {Sgr), e Sg)} on X, by

s\ ~ p(SX;,r,T)

where p(S|X;,r,I') is a reader-specific distribution
over eye movement patterns given a text X;. Here,
r is a variable indicating the reader generating the
sequence, and I' is a true but unknown model that
defines all reader-specific distributions. We assume
that I' can be broken down into reader-specific mod-
els, ' = (v1,...,7), such that the distribution

is defined by the partial model ~,. We aggregate the
observations of all readers on the training data into a
variable SR = (S S(A)),

We follow a Bayesian approach, defining a prior
p(T") over the joint model that factorizes into priors
over reader-specific models, p(T') = Hf;l ().
At test time, we observe novel eye movement
patterns S = {Si,...,S,,} on a novel set of
texts ¥ = {X1,...,X,,} generated by an unknown
reader r € R. We assume a uniform prior over
readers, that is, each » € R is equally likely to be
observed at test time. The goal is to infer the most
likely reader to have generated the novel eye move-
ment patterns. In a Bayesian setting, this means in-
ferring the most likely reader given the training ob-
servations (X', S1:f)) and test observation (X, S):

T :argmaxp(r]f,S,X,S(lzR)). 2
reER
We can rewrite Equation 2 to
r, = arg max p(S|r, X, X, S1:H) 3)
rerR

— argmax [ p(Slr, &, D)p(T1x, SEM)ar
re

= argmaX/p(S\??,%)p(vrl?CS(’"))d% )

reR
where
p(SIX,v) = [ [ p(SilXi, ) 5)
i=1
Pyl X, 8 o< p(yr) [T (81 [ Xis ). (6)

=1



In Equation 3 we exploit that readers are uniformly
chosen at test time, and in Equation 4 we exploit
the factorization p(T') = Hle p(7,) of the prior,
which together with Equation 1 entails a factoriza-
tion p(T|x,SEM)) = [T p(v,|X, S™)) of the
posterior. Note that Equation 4 states that at test
time we predict the reader r for which the marginal
likelihood (that is, after integrating out the reader-
specific model ~,.) of the test observations is high-
est. The next section discusses the reader-specific
models p(S|X, ~,) and prior distributions p(~;).

3 Probabilistic Model

The probabilistic model we employ follows the gen-
eral structure proposed by Landwehr et al. (2014),
but employs semiparametric density models and al-
lows for fully Bayesian inference. To reduce nota-
tional clutter, let v € {~1,...,7r} denote a par-
ticular reader-specific model, and let X € X de-
note a text. An eye movement pattern is a sequence
S = ((s1,d1),...,(sp,dr)) of gaze fixations, con-
sisting of a fixation position s; (position in text that
was fixated) and duration d; € R (length of fixation
in milliseconds). In our experiments, individual sen-
tences are presented in a single line on screen, thus
we only model a horizontal gaze position s; € R.
We model p(S|X,~y) as a dynamic process that suc-
cessively generates fixation positions s; and dura-
tions d; in S, reflecting how a reader generates a se-
quence of saccades in response to a text stimulus X:

T
p(SIX, ) = p(s1, da|X,y) [ [ st dilsi-1, X, ),
t=2

where p(s¢, d¢|si—1, X, ) models the generation of
the next fixation position and duration given the old
fixation position s;—1. In the psychological litera-
ture, four different saccade types are distinguished:
a reader can refixate the current word (refixation),
fixate the next word in the text (next word move-
ment), move the fixation to a word after the next
word, that is, skip one or more words (forward skip),
or regress to fixate a word occurring earlier in the
text (regression), see, e.g., Heister et al. (2012).
We observe empirically that for each saccade type,
there is a characteristic distribution over saccade am-
plitudes and fixation durations, and that both ap-
proximately follow gamma distributions—see Fig-
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Figure 1: Empirical distributions of saccade amplitudes in
training data for first individual, with fitted Gamma distribu-

tions and semiparametric distribution fits.

ure 1. We therefore model p(s;, d|si—1,X,~) us-
ing a mixture over distributions for the four different
saccade types. At each time ¢, the model first draws
a saccade type u; € {1,2,3,4}, and then draws a
saccade amplitude a; and fixation duration d; from
type-specific distributions p(alu, s¢—1, X,~) and
p(d|ug, 7). More formally,

ug ~ p(u|m) @)
ag Np(a‘ut78t—17X7a) (8)
dt Np(d|ut76)7 (9)
where v = (7, @, d) is decomposed into compo-

nents 7, «, and d. Afterwards, the model updates
the fixation position according to s; = s¢—1 + ag,
concluding the definition of p(sq, di|si—1,X,7).
Figure 2 shows a slice in the dynamical model.

The distribution p(u|w) over saccade types
(Equation 7) is multinomial with parameter vector
m € R*. The distributions over amplitudes and du-
rations (Equations 8 and 9) are modeled semipara-
metrically as discussed in the following subsections.

3.1 Model of Saccade Amplitudes

We  first discuss the amplitude model
p(alug, si—1,X, ) (Equation 8). We first de-
fine a distribution p(a|u¢, a) over amplitudes for
saccade type u;, and subsequently discuss condi-
tioning on the text X and old fixation position s;_1,



X e

Figure 2: Plate notation of of a slice in the dynamic model.

leading to p(alu, si—1, X, ). We define

aluy =1, ) = paa(a)
plaju =1,) {(l—u)&l(—a) :a<0

ta>0 (10)

where p is a mixture weight and o1, & are densities
defining the distribution over positive and negative
amplitudes for the saccade type refixation, and

plaluy = 2, ) = a(a) (11)
plaluy = 3, ) = az(a) (12)
plaluy =4, ) = ay(—a) (13)

where as(a), as(a), and ay(a) are densities defin-
ing the distribution over amplitudes for the remain-
ing saccade types. Finally, the distribution

p(s1|1X, ) = ap(s1) (14)

over the initial fixation position is given by another
density function . The variables u, ag, a1, g,
a9, a3, and ay are aggregated into model compo-
nent a. For resolving the most likely reader at test
time (Equation 4), densities in a will be integrated
out under a prior based on Gaussian processes (Sec-
tion 3.3) using MCMC inference (Section 4).

Given the old fixation position s;_1, the text X,
and the chosen saccade type u;, the amplitude is
constrained to fall within a specific interval. For in-
stance, for a refixation the amplitude has to be cho-
sen such that the novel fixation position lies within
the beginning and the end of the currently fixated
word; a regression implies an amplitude that is neg-
ative and makes the novel fixation position lie be-
fore the beginning of the currently fixated word.
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These constraints imposed by the text structure de-
fine the conditional distribution p(a|ug, si—1, X, ).
More formally, p(a|ut, si—1, X, a) is the distribu-
tion p(a|us, o) conditioned on a € [I, 7], that is,

p(a|ut, Stflaxva) = p(a|a € [l’r}vutva%

where [ and r are the minimum and maximum am-
plitude consistent with the constraints. Recall that
for a distribution over a continuous variable x given
by density «(x), the distribution over x conditioned
on z € [l,r] is given by the truncated density

2)

R
afale € [,r]) = {J; s saell]

15
0 cx ¢ l,r]. (1

We derive p(alug, s¢—1, X, a) by truncating the dis-
tributions given by Equations 10 to 13 to the min-
imum and maximum amplitude consistent with the
current fixation position s;_1 and text X. Let wy
(w;) denote the position of the left-most (right-
most) character of the currently fixated word, and
let w;r, w;" denote these positions for the next word
in X. Let furthermore [° = w} — 541, 7° = w, —

si—1, 1T = w" — s;_1,and r™ = w; — ;1. Then
p(a|ut - 178t—17X) a) -
pai(ala € 0,7°]) :a >0 (16)
(1 —p)ai(—alae[l°,0]):a<0

plaluy=2,5_1,X, a)=az(alac[IT,r*]) (17)
plaluy=3,5-1,X, a)=as(ala € (r*,00)) (18)

ay(—ala € (=00,1%))
19)

p(a|ut :47 St—1, X7 a)

defines the appropriately truncated distributions.

3.2 Model of Fixation Durations

The model for fixation durations (Equation 9) is sim-
ilarly specified by saccade type-specific densities,

p(dlug = u,8) = 6,(d) foru e {1,2,3,4} (20)
and a density for the initial fixation durations

p(d1|X, &) = do(dy) 2n

where dg, ..., 64 are aggregated into model compo-
nent §. Unlike saccade amplitude, the fixation du-
ration is not constrained by the text structure and
accordingly densities are not truncated. This con-
cludes the definition of the model p(S|X, ).



3.3 Prior Distributions

The prior distribution over the entire model ~ fac-
torizes over the model components as

p(Y[A, ps k) = (22)
4 4

p(w(Np(plp)p(as|r) ] [ plailx) [ p(6ilx)
=0 =0

where p(mw) = Dir(m|\) is a symmetric Dirich-

let prior and p(u) = Beta(u|p) is a Beta prior.
The key challenge is to develop appropriate pri-
ors for the densities defining saccade amplitude
(p(@1|k), p(ey|k)) and fixation duration (p(d;|k))
distributions. Empirically, we observe that ampli-
tude and duration distributions tend to be close to
gamma distributions—see the example in Figure 1.

Our goal is to exploit the prior knowledge that
distributions tend to be closely approximated by
gamma distributions, but allow the model to devi-
ate from the gamma assumption in case there is
enough evidence in the data. To this end, we de-
fine a prior over densities that concentrates probabil-
ity mass around the gamma family. For all densities
1 €{a1,ap,...,a4,d, ..., 04}, we employ identical
prior distributions p(f|x). Intuitively, the prior is
given by first drawing a density function from the
gamma family and then drawing the final density
from a Gaussian process (with covariance function
k) centered at this function. More formally, let

_ exp(nTu(x))
G = o mrat))ar

denote the gamma distribution in exponential family
form, with sufficient statistics u(x) = (log(z),z)"
and parameters n = (71,72). Let p(n) denote a
prior over the gamma parameters, and define

(23)

p(fle) = [ plmpfin o @)
where p(f|n, k) is given by drawing
g~ GP(0,k) (25)

from a Gaussian process prior GP (0, k) with mean
zero and covariance function x, and letting

__opmu@) +g@)
Jexp(nTu(a’) + g(2'))da’

f(x) (26)

589

Note that decreasing the variance of the Gaussian
process means regularizing g(z) towards zero, and
therefore Equation 26 towards Equation 23. This
concludes the specification of the prior p(y|\, p, k).

The density model defined by Equations 24 to 26
draws on ideas from the large body of literature
on GP-based density estimation, for example by
Adams et al. (2009), Leonard (1978), or Tokdar et
al. (2010), and semiparametric density estimation,
e.g. as discussed by Yang (2009), Lenk (2003) or
Hjort & Glad (1995). However, note that existing
density estimation approaches are not applicable off-
the-shelf as in our domain distributions are truncated
differently at each observation due to constraints that
arise from the way eye movements interact with the
text structure (Equations 16 to 19).

4 Inference

To solve Equation 4, we need to integrate for each
r € 'R over the reader-specific model ~,.. To reduce
notational clutter, let v € {v1,...,vr} denote a
reader-specific model, and let S € {S W.....8 (R)}
denote the eye movement observations of that reader
on the training texts X'. We approximate

K
o 1 o
[ PSIZ A2, )y 1D w81 A®)
k=1

(K)

by a sample vV, ..., ) of models drawn by

A~ (| X, S A, p, K),

where p(v|X, S, A, p, k) is the posterior as given by
Equation 6 but with the dependence on the prior hy-
perparameters A, p, x made explicit. Note that with
X and S, all saccade types u; are observed. Together
with the factorizing prior (Equation 22), this means
that the posterior factorizes according to

p(Y|X, S, A, p, k) = p(m| X, S, N)p(pl|X, S, p)

4 4
'p(dl‘X7 87 /i) Hp(aZ|X7S7 /{) Hp(6Z|X7S7 H)
=0 i=0

as is easily seen from the graphical model in Fig-
ure 2. Obtaining samples 7% ~ p(w|X,S)
and p*) ~ p(u|X,S) is straightforward because
their prior distributions are conjugate to the likeli-
hood terms. Let now f € {a1, ag, ..., a4, 00, ..., 04}



denote a particular density in the model. The
posterior p(f|X,S, k) is proportional to the prior
p(f|k) (Equation 24) multiplied by the likeli-
hood of all observations that are generated by
this density, that is, that are generated accord-
ing to Equation 14, 16, 17, 18, 19, 20, or 21.
Lety = (y1,..-. )" € R¥! denote the vector of
all observations generated from density f, and let
1= (ll, R ,lm)T € R“', r = (7“1, R ,7"|r|)T S Rl
denote the corresponding left and right boundaries
of the truncation intervals (again see Equations 14
to 21), where for densities that are not truncated we
take [; = 0 and r; = oo throughout. Then the likeli-
hood of the observations generated from f is

lyl

p(y’fv l,I‘) = Hf(yzlyl € [lz;TZ]) (27)
=1

and the posterior over f is given by

p(f1X, S, k) o p(f|K)p(ylf,L ).

Note that y, 1 and r are observable from X, S.

We obtain samples from the posterior given by
Equation 28 from a Metropolis-Hastings sampler
that explores the space of densities f : R — R,
generating density samples f(1), ..., f5) A density
f is given by a combination of gamma parameters
n € R? and function g : R — R; specifically, f is
obtained by multiplying the gamma distribution with
parameters 1) by exp(g) and normalizing appropri-
ately (Equation 26). During sampling, we explicitly
represent a density sample f(*) by its gamma param-
eters n¥) and function ¢(¥). The proposal distribu-
tion of the Metropolis-Hastings sampler is

(1) g(41) ) G ()) —
plg* VRN (D™, 6°T)

where p(g**1|k) is the probability of g(¥+1) ac-
cording to the GP prior GP(0, k) (Equation 25),
and N (n*+tD|n*) 521) is a symmetric proposal
that randomly perturbs the old state n¥) accord-
ing to a Gaussian. In every iteration k£ a proposal
0%, 9% ~ q(n,9n®,¢"®) is drawn based on the
old state (n(k), g®)). The acceptance probability is
A(n*, g*In™, g*¥)) = min(1, Q) with

Q=

(™, g™ ", g )p(n)p(e*K)p(y|f* 1 x)
a(m*, g*In®), gENp(n®N)p(g®|k), p(y| f*),1,r)

(28)

q(n
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Here, p(n*) is the prior probability of gamma pa-
rameters n* (Section 3.3) and p(y|f*,1,r) is given
by Equation 27 where f* is obtained from n*, ¢g*
according to Equation 26.

To compute the likelihood terms p(y|f®*), 1, r)
(Equation 27) and also to compute the likelihood
of test data under a model (Equation 5), the den-
sity f : R — R needs to be evaluated. Accord-
ing to Equation 26, f is represented by parame-
ter vector m together with the nonparametric func-
tion g : R — R. As usual when working with
distributions over functions in a Gaussian process
framework, the function g only needs to be repre-
sented at those points for which we need to evalu-
ate it. Clearly, this includes all observations of sac-
cade amplitudes and fixation durations observed in
the training and test set. However, we also need
to evaluate the normalizer in Equation 26, and (for
f € {a1, a1, a9, as, as}) the additional normalizer
required when truncating the distribution (see Equa-
tion 15). As these integrals are one-dimensional,
they can be solved relatively accurately using nu-
merical integration; we use 2-point Newton-Cotes
quadrature. Newton-Cotes integration requires the
evaluation (and thus representation) of g at an addi-
tional set of equally spaced supporting points.

When the set of test observations S, X is large,
the need to evaluate p(S|X,~(*)) for all ~;, and all
test observations leads to computational challenges.
In our experiments, we use a heuristic to reduce
computational load. While generating samples, den-
sities are only represented at the training observa-
tions and the supporting points needed for Newton-
Cotes integration. We then estimate the mean of the
posterior by ¥ = % Zszl ~*), and approximate
%Zéilp(g\)?,'y(k)) ~ p(S|X,4). To evaluate
p(S|X, %), we infer the approximate value of the
density 4 at a test observation by linearly interpo-
lating based on the available density values at the
training observations and supporting points.

5 Empirical Study

We conduct a large-scale study of biometric iden-
tification performance using the same setup as dis-
cussed by Landwehr et al. (2014) but a much larger
set of individuals (251 rather than 20).

Eye movement records for 251 individuals are
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Figure 3: Multiclass accuracy over number of test observations (left) and number of individuals R (right) with standard errors.

Method
Semiparametric
Semiparametric (TD)
Semiparametric (TA)
Landwehr et al.
Landwehr et al. (TA)
Landwehr et al. (T)
Holland & K. (unweighted) | 0.6988 + 0.0241
Holland & K. (weighted) 0.4566 £ 0.0220

Table 1: Multiclass identification accuracy =+ standard error.

Accuracy
0.9502 £+ 0.0130
0.8853 £+ 0.0142
0.7717 £ 0.0361
0.8319 £+ 0.0218
0.5964 4+ 0.0262
0.2749 £+ 0.0369

obtained from an EyeLink II system with a 500-
Hz sampling rate (SR Research, Ongoode, Ontario,
Canada) while reading sentences from the Potsdam
Sentence Corpus (Kliegl et al., 2006). There are 144
sentences in the corpus, which we split into equally
sized sets of training and test sentences. Individu-
als read between 100 and 144 sentences, the training
(testing) observations for one individual are the ob-
servations on those sentences in the training (testing)
set of sentences that the individual has read. Results
are averaged over 10 random train-test splits. Each
sentence is shown as a single line on the screen.

We study the semiparametric model discussed in
Section 3 with MCMC inference as presented in
Section 4 (denoted Semiparametric'). We employ a
squared exponential covariance function x(x,z’) =

lz—a]?

o exp <— 507
stant « is tuned on the training data by cross-

), where the multiplicative con-

'"An implementation is available at github.com/
abdelwahab/SemiparametricIdentification
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validation and the bandwidth o is set to the av-
erage distance between points in the training data.
The Beta and Dirichlet parameters \ and p are
set to one (Laplace smoothing), the prior p(n)
for the Gamma parameters is uninformative. We
use backoff-smoothing as discussed by Landwehr
et al. (2014). We initialize the sampler with the
maximum-likelihood Gamma fit and perform 10000
sampling iterations, 5000 of which are burn-in it-
erations. As a baseline, we study the model by
Landwehr et al. (2014) (Landwehr et al.) and sim-
plified versions proposed by them that only use sac-
cade type and amplitude (Landwehr et al. (TA)) or
saccade type (Landwehr et al. (T)). We also study
the weighted and unweighted version of the feature-
based model of Holland & Komogortsev (2012) with
a feature set adapted to the Potsdam Sentence Cor-
pus data as described in Landwehr et al. (2014).

We note that there are two recent extensions of the
feature-based model (by Rigas et al. (2016) and Ab-
dulin & Komogortsev (2015)) that are unfortunately
not applicable in our empirical setting but might
yield improved results in other scenarios. Rigas et
al. (2016) study a model that is focused on repre-
senting reader-specific differences in saccadic vigor
and acceleration, which are both derived from the
dynamics of saccadic velocity. In the preprocessed
data set that we use, saccadic velocities are not avail-
able, therefore we do not make use of velocities in
our model and cannot easily compare against their
model. Abdulin & Komogortsev (2015) study a
model that is based on features that relate eye move-
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ments to the 2D text structure, that is, to the way
words are arranged into lines in a text. As in our
empirical study each sentence is presented as a sin-
gle line on screen, this 2D structure does not ex-
ist. Moreover, Abdulin & Komogortsev (2015) only
report accuracy improvements for their method in
a setting where individuals have to be identified in
the future based on data collected in the past (aging
test), which is not the focus of our study.

We first study multiclass identification accuracy.
All test observations of one particular individual
constitute one test example; the task is to infer the
individual that has generated these test observations.
Multiclass identification accuracy is the fraction of
cases in which the correct individual is identified.
Table 1 shows multiclass identification accuracy for
all methods, including variants of Semiparametric
discussed below. We observe that Semiparametric
outperforms Landwehr et al., reducing the error by
more than a factor of three. Consistent with results
reported in Landwehr et al. (2014), Holland & K.
(unweighted) is less accurate than Landwehr et al.,
but more accurate than the simplified variants. We
next study how the amount of data available at test
time—that is, the amount of time we can observe a
reader before having to make a decision—influences
accuracy. Figure 3 (left) shows identification accu-
racy as a function of the fraction of test data avail-
able, obtained by randomly removing a fraction of
sentences from the test set. We observe that iden-
tification accuracy steadily improves with more test
observations for all methods. Figure 3 (right) shows
identification accuracy when varying the number R
of individuals that need to be distinguished. We ran-
domly draw a subset of R individuals from the set
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Figure 5: False-accept over false-reject rate when using 40%
(dotted), 60% (dashed-dotted), 80% (dashed), and 100% (solid)

of test observations, for selected subset of methods.

Method Area under curve
Semiparametric 0.0000119
Semiparametric (TD) 0.0000821
Semiparametric (TA) 0.0001833
Landwehr et al. 0.0001743
Landwehr et al. (TA) 0.0010371
Landwehr et al. (T) 0.0017040
Holland & K. (unweighted) 0.0027853
Holland & K. (weighted) 0.0039978

Table 2: Area under the curve in binary classification setting.

of 251 individuals, and perform identification based
on only these individuals. Results are averaged over
10 such random draws. As expected, accuracy im-
proves if fewer individuals need to be distinguished.

We next study a binary setting in which for each
individual and each set of test observations a deci-
sion has to be made whether or not the test observa-
tions have been generated by that individual. This
setting more closely matches typical use cases for
the deployment of a biometric system. Let X de-
note the text being read at test time, and let S de-
note the observed eye movement sequences. Our
model infers for each reader r € R the marginal
likelihood p(S|r, X, X, SUH) of the eye move-
ment observations under the reader-specific model
(Equation 3). The binary decision is made by
dividing this marginal likelihood by the average
marginal likelihood assigned to the observations by
all reader-specific models, and comparing the result
to a threshold 7. Figure 4 shows the fraction of false
accepts as a function of false rejects as the thresh-
old 7 is varied, averaged over all individuals. The
Landwehr et al. model and variants also assign a
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Figure 6: Multiclass accuracy over number of test observations

with standard errors for Semiparametric variants.

reader-specific likelihood to novel test observations;
we compute the same statistics again by normaliz-
ing the likelihood and comparing to a threshold 7.
Finally, Holland & K. (unweighted) and Holland
& K. (weighted) compute a similarity measure for
each combination of individual and set of test ob-
servations, which we normalize and threshold anal-
ogously. We observe that Semiparametric accom-
plishes a false-reject rate of below 1% at virtually
no false accepts; Landwehr et al. and variants tend
to perform better than Holland & K. (unweighted)
and Holland & K. (weighted). Table 2 shows the
error under the curve for the experiment shown in
Figure 4, as well as for variants of Semiparametric
discussed below.

We finally study the contribution of the individual
model components for saccade type, saccade am-
plitude, and fixation duration (see Figure 2) by re-
moving the corresponding model components, as in
Landwehr et al. (2014). By Semiparametric (TD)
we denote a variant of Semiparametric in which the
variable a; and the corresponding distribution is re-
moved, that is, only the distribution over the sac-
cade type and duration is modeled. Semiparamet-
ric (TA) denotes a variant in which the variable
dy and the corresponding distribution is removed.
Figure 6 shows identification accuracy as a func-
tion of the fraction of test data available for model
variants Semiparametric (TD) and Semiparametric
(TA) in comparison to Semiparametric; results for
these variants are also included in Table 1. Figure 7
shows the fraction of false accepts as a function of
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the Semiparametric variants.

false rejects in the binary classification setting dis-
cussed above for these two model variants; Table 2
includes area under the curve results for the experi-
ment shown in Figure 7. We observe that accuracy
is substantially reduced when removing any model
component. Note that if both the amplitude and du-
ration components of the model are removed, it be-
comes identical to the model Landwehr et al. (T).

Training the joint model for all 251 individuals
takes 46 hours on a single eight-core CPU (Intel
Xeon E5520, 2.27GHz); predicting the most likely
individual to have generated a set of 72 test sen-
tences takes less than 2 seconds.

6 Conclusions

We have studied the problem of identifying read-
ers unobtrusively during reading of arbitrary text.
For fitting reader-specific distributions, we employ a
Bayesian semiparametric approach that infers den-
sities under a Gaussian process prior centered at the
gamma family of distributions, striking a balance be-
tween robustness to sparse data and modeling flex-
ibility. In an empirical study with 251 individuals,
the model was shown to reduce identification er-
ror by more than a factor of three compared to ear-
lier approaches to reader identification proposed by
Landwehr et al. (2014) and Holland & Komogort-
sev (2012).
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