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Abstract

Automatically solving algebra word problems
has raised considerable interest recently. Ex-
isting state-of-the-art approaches mainly rely
on learning from human annotated equations.
In this paper, we demonstrate that it is pos-
sible to efficiently mine algebra problems and
their numerical solutions with little to no man-
ual effort. To leverage the mined dataset, we
propose a novel structured-output learning al-
gorithm that aims to learn from both explicit
(e.g., equations) and implicit (e.g., solutions)
supervision signals jointly. Enabled by this
new algorithm, our model gains 4.6% abso-
lute improvement in accuracy on the ALG-
514 benchmark compared to the one without
using implicit supervision. The final model
also outperforms the current state-of-the-art
approach by 3%.

1 Introduction

Algebra word problems express mathematical rela-
tionships via narratives set in a real-world scenario,
such as the one below:

Maria is now four times as old as Kate.
Four years ago, Maria was six times as

old as Kate. Find their ages now.

The desired output is an equation system which ex-
presses the mathematical relationship symbolically:
m = 4× n and m− 4 = 6× (n− 4) where m and
n represent the age of Maria and Kate, respectively.
The solution (i.e., m = 40, n = 10) can be found by
a mathematical engine given the equation systems.
Building efficient automatic algebra word problem

solvers have clear values for online education sce-
narios. The challenge itself also provides a good
test bed for evaluating an intelligent agent that un-
derstands natural languages, a direction advocated
by artificial intelligence researchers (Clark and Et-
zioni, 2016).

One key challenge of solving algebra word prob-
lems is the lack of fully annotated data (i.e., the an-
notated equation system associated with each prob-
lem). In contrast to annotating problems with binary
or categorical labels, manually solving algebra word
problems to provide correct equations is time con-
suming. As a result, existing benchmark datasets
are small, limiting the performance of supervised
learning approaches. However, thousands of alge-
bra word problems have been posted and discussed
in online forums, where the solutions can be easily
mined, despite the fact that some of them could be
incorrect. It is thus interesting to ask whether a bet-
ter algebra problem solver can be learned by lever-
aging these noisy and implicit supervision signals,
namely the solutions.

In this work, we address the technical difficulty of
leveraging implicit supervision in learning an alge-
bra word problem solver. We argue that the effec-
tive strategy is to learn from both explicit and im-
plicit supervision signals jointly. In particular, we
design a novel online learning algorithm based on
structured-output Perceptron. By taking both kinds
of training signals together as input, the algorithm
iteratively improves the model, while at the same
time it uses the intermediate model to find candidate
equation systems for problems with only numerical
solutions.
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Our contributions are summarized as follows.
• We propose a novel learning algorithm (Sec-

tion 3 and 4) that jointly learns from both ex-
plicit and implicit supervision. Under different
settings, the proposed algorithm outperforms
the existing supervised and weakly supervised
algorithms (Section 6) for algebra word prob-
lems.
• We mine the problem-solution pairs for alge-

bra word problems from an online forum and
show that we can effectively obtain the implicit
supervision with little to no manual effort (Sec-
tion 5).1

• By leveraging both implicit and explicit su-
pervision signals, our final solver outperforms
the state-of-the-art system by 3% on ALG-
514, a popular benchmark data set proposed by
(Kushman et al., 2014).

2 Related Work

Automatically solving mathematical reasoning
problems expressed in natural language has been
a long-studied problem (Bobrow, 1964; Newell et
al., 1959; Mukherjee and Garain, 2008). Recently,
Kushman et al. (2014) created a template-base
search procedure to map word problems into
equations. Then, several following papers studied
different aspects of the task: Hosseini et al. (2014)
focused on improving the generalization ability of
the solvers by leveraging extra annotations; Roy
and Roth (2015) focused on how to solve arithmetic
problems without using any pre-defined template.
In (Shi et al., 2015), the authors focused on number
word problems and proposed a system that is
created using semi-automatically generated rules.
In Zhou et al. (2015), the authors simplified the
inference procedure and pushed the state-of-the-art
benchmark accuracy. The idea of learning from
implicit supervision is discussed in (Kushman et
al., 2014; Zhou et al., 2015; Koncel-Kedziorski
et al., 2015), where the authors train the algebra
solvers using only the solutions with little or no
annoated equation systems. We discuss this in detail
in Section 4.

1The new resource and the dataset we used for training is
available soon on https://aka.ms/dataimplicit and
https://aka.ms/datadraw

Solving automatic algebra word problems can be
viewed as a semantic parsing task. In the semantic
parsing community, the technique of learning from
implicit supervision signals has been applied (un-
der the name response-driven learning (Clarke et al.,
2010)) to knowledge base question answering tasks
such as Geoquery (Zelle and Mooney, 1996) and
WebQuestions (Berant et al., 2013) or mapping in-
structions to actions (Artzi and Zettlemoyer, 2013).
In these tasks, researchers have shown that it is pos-
sible to train a semantic parser only from question-
answer pairs, such as “What is the largest state bor-
dering Texas?” and “New Mexico” (Clarke et al.,
2010; Liang et al., 2013; Yih et al., 2015).

One key reason that such implicit supervision is
effective is because the correct semantic parses of
the questions can often be found using the answers
and the knowledge base alone, with the help of
heuristics developed for the specific domain. For
instance, when the question is relatively simple
and does not have complex compositional structure,
paths in the knowledge graph that connect the an-
swers and the entities in the narrative can be inter-
preted as legitimate semantic parses. However, as
we will show in our experiments, learning from im-
plicit supervision alone is not a viable strategy for
algebra word problems. Compared to the knowl-
edge base question answering problems, one key dif-
ference is that a large number (potentially infinitely
many) of different equation systems could end up
having the same solutions. Without a database or
special rules for combining variables and coeffi-
cients, the number of candidate equation systems
cannot be trimmed effectively, given only the solu-
tions.

From the algorithmic point of view, our proposed
learning framework is related to several lines of
work. Similar efforts have been made to develop la-
tent structured prediction models (Yu and Joachims,
2009; Chang et al., 2013; Zettlemoyer and Collins,
2007) to find latent semantic structures which best
explain the answer given the question. Our algo-
rithm is also influenced by the discriminative re-
ranking algorithms (Collins, 2000; Ge and Mooney,
2006; Charniak and Johnson, 2005) and models
for learning from intractable supervision (Steinhardt
and Liang, 2015).

Recently, Huang et al. (2016) collected a large
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number of noisily annotated word problems from
online forums. While they collected a large-scale
dataset, unlike our work, they did not demonstrate
how to utilize the newly crawled dataset to improve
existing systems. It will be interesting to see if our
proposed algorithm can make further improvements
using their newly collected dataset.2

3 Problem Definition

Table 1 lists all the symbols representing the compo-
nents in the process. The input algebra word prob-
lem is denoted by x, and the output y = (T,A) is
called a derivation, which consists of an equation
system template T and an alignment A. A template
T is a family of equation systems parameterized by
a set of coefficients C(T ) = {ci}ki=1, where each co-
efficient ci aligns to a textual number (e.g., four) in a
word problem. Let Q(x) be all the textual numbers
in the problem x, and C(T ) be the coefficients to be
determined in the template T . An alignment is a set
of tuples A = {(q, c) | q ∈ Q(x), c ∈ C(T ) ∪ {ε}},
where the tuple (q, ε) indicates that the number q is
not relevant to the final equation system. By spec-
ifying the value of each coefficient, it identifies an
equation system belonging to the family represented
by template T . Together, T and A generate a com-
plete equation system, and the solution z can be de-
rived by the mathematical engine E.

Following (Kushman et al., 2014; Zhou et al.,
2015), our strategy of mapping a word problem to
an equation system is to first choose a template that
consists of variables and coefficients, and then align
each coefficient to a textual number mentioned in
the problem. We formulate the mapping between
an algebra word problem and an equation system as
a structured learning problem. The output space is
the set of all possible derivations using templates
that are observed in the training data. Our model
maps x to y = (T,A) by a linear scoring function
wTΦ(x,y), where w is the model parameters and
Φ is the feature functions. At test time, our model
scores all the derivation candidates and picks the
best one according to the model score. We often
refer to y as a semantic parse, as it represents the
semantics of the algebra word problem.

2The dataset has not been made public at the time of publi-
cation.
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Figure 1: Left: Explicit supervision signals. Note that
the solution z can be derived by the semantic parses y.
Right: Implicit supervision signals. In this case, we only
have the annotated response z∗2. It is difficult to use z∗2
to find the correct derivation, as multiple derivations may
lead to the same solution. Therefore, the learning algo-
rithm has to explore the output space to guide the model
in order to match the annotated response.

Properties of Implicit Supervision Signals We
discuss some key properties of the implicit supervi-
sion signal to explain several design choices of our
algorithm. Figure 1 illustrates the main differences
between implicit and explicit supervision signals.

Algorithms that learn from implicit supervision
signals face the following challenges. First, the
learning system usually does not model directly the
correlations between the input x and the solution
z. Instead, the mapping is handled by an external
procedure such as a mathematical engine. There-
fore, E(y) is effectively a one-directional function.
As a result, finding semantic parses (derivations)
from responses (solutions) E−1(z) can sometimes
be very slow or even intractable. Second, in many
cases, even if we could find a semantic parse from
responses, multiple combinations of templates and
alignments could end up with the same solution set
(e.g., the solutions of equations 2 + x = 4 and
2 × x = 4 are the same). Therefore, the implicit
supervision signals may be incomplete and noisy,
and using the solutions alone to guide the training
procedure might not be sufficient. Finally, since we
need to have a complete derivation before we can
observe the response of the mathematical engine E,
we cannot design efficient inference methods such
as dynamic programming algorithms based on par-
tial feedback. As a result, we have to perform explo-
ration during learning to search for fully constructed
semantic parses that can generate the correct solu-
tion.

299



Term Symbol Example

Word Problem x Maria is now four times as old as Kate. Four years ago, Maria was six
times as old as Kate. Find their ages now.

Derivation (Semantic Parse) y = (T,A) ({m− a× n = −1× a× b+ b,m− c× n = 0}, A)
Solution z n = 10, m = 40

Mathematical Engine E : y→ z After determining the coefficients, the equation system is {m = 4 × n,
m− 4 = 6× (n− 4)}. The solution is thus n = 10, m = 40.

Variables v m, n

Textual Number3 Q(x) {four, Four, six}
Equation System Template T {m− a× n = −1× a× b+ b,m− c× n = 0}
Coefficients C(T ) a, b, c

Alignment A six→ a, Four→ b, four→ c

Table 1: Notation used in this paper to formally describe the problem of mapping algebra word problems to equations.

4 Learning from Mixed Supervision

We assume that we have two sets: De = {(xe,ye)}
and Dm = {(xm, zm)}. De contains the fully an-
notated equation system ye for each algebra word
problem xe, whereas in Dm, we have access to the
numerical solution zm to each problem, but not the
equation system (ym = ∅). We refer toDe as the ex-
plicit set and Dm as the implicit set. For the sake of
simplicity, we explain our approach by modifying
the training procedure of the structured Perceptron
algorithm (Collins, 2002).4

As discussed in Section 3, the key challenge of
learning from implicit supervision is that the map-
ping E(y) is one-directional. Therefore, the correct
equation system cannot be easily derived from the
numerical solution. Intuitively, for data with only
implicit supervision, we can explore the structure
space Y and find the best possible derivation ỹ ∈ Y
according to the current model. If E(ỹ) matches z,
then we can update the model based on ỹ. Following
this intuition, we propose MixedSP (Algorithm 1).

For each example, we use an approximate search
algorithm to collect top scoring candidate structures.
The algorithm first ranks the top-K templates ac-
cording to the model score, and forms a candidate
set by expanding all possible derivations that use
the K templates (Line 3). The final candidate set
is Ω = {y1,y2, . . . ,yK} ⊂ Y .

When the explicit supervision is available (i.e.,

4Our approach can be easily extended to other structured
learning algorithms such as Structured SVM (Taskar et al.,
2004; Tsochantaridis et al., 2004).

(xi,yi) ∈ De), our algorithm follows the standard
structured prediction update procedure. We find the
best scoring structure ŷ in Ω and then update the
model using the difference of the feature vectors be-
tween the gold output structure yi and the best scor-
ing structure ŷ (Line 6).

When only implicit supervision is available (i.e.,
(xi, zi) ∈ Dm), our algorithm uses the current
model to conduct a guided exploration, which it-
eratively finds structures that best explain the im-
plicit supervision, and use the explanatory structure
for making updates. As mentioned in Section 3,
we have to explore and examine each structure in
the candidate set Ω. This is due the fact that par-
tial structure cannot be used for finding the right re-
sponse, as getting response E(y) requires complete
derivations. In Line 9, we want to find the deriva-
tions y where its solution E(y) matches the implicit
supervision zi. More specifically,

ỹ = arg min
y∈Ω

∆(E(y), zi), (1)

where ∆ is a loss function to estimate the dis-
agreement between E(y) and zi. In our experi-
ments, we simply set ∆(E(y), zi) to be 0 if the
solution partially matches, and 1 otherwise.5 If
more than one derivation achieves the minimal value
of ∆(E(y), zi), we break ties by choosing the
derivation with higher score wTφ(xi,y). This tie-

5The mined solutions are often incomplete for some vari-
ables (e.g. solution y=6 but no value for x could be mined).
We allow partial matches so that the model can learn from the
incomplete implicit signals as well.
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Algorithm 1 Structured Perceptron with Mixed Super-
vision. (MixedSP)

Input: De, Dm, L = |De|+ |Dm|, T , K, γ ∈ [0, 1)
1: for t = 1 . . . N do . training epochs
2: for i = 1 . . . L do
3: Ω ← find top-K structures {y} approxi-

mately
4: if yi 6= ∅ then . explicit supervision
5: ŷ← arg max

y∈Ω
wTφ(xi,y)

6: w← w + η (φ(x,yi)− φ(x, ŷ))
7: else if t ≥ γN then . implicit supervision
8: ŷ← arg max

y∈Ω
wTφ(xi,y)

9: Pick ỹ from Ω by Eq. (1). . exploration
10: w← w + η (φ(x, ỹ)− φ(x, ŷ))

11: Return the average of w

breaking strategy is important – in practice, several
derivations may lead to the gold numerical solution;
however, only few of them are correct. The tie-
breaking strategy relies on the current model and
the structured features φ(xi,y) to filter out incor-
rect derivations during training. Finally, the model
is updated using ỹ in Line 10.

Similar to curriculum learning (Bengio et al.,
2009), it is important to control when the algorithm
starts exploring the output space using weak super-
vision. Exploring too early may mislead the model,
as the structured feature weights w may not be able
to help filter out incorrect derivations, while explor-
ing too late may lead to under-utilization of the im-
plicit supervision. We use the parameter γ to control
when the model starts to learn from implicit supervi-
sion signals. The parameter γ denotes the fraction of
the training time that the model uses purely explicit
supervision.

Key Properties of Our Algorithm The idea of us-
ing solutions to train algebra word problem solvers
has been discussed in (Kushman et al., 2014)
and (Zhou et al., 2015). However, their implicit su-
pervision signals are created from clean, fully super-
vised data, and the experiments use little to no ex-
plicit supervision examples.6 While their algorithms
are interesting, the experimental setting is somewhat
unrealistic as the implicit signals are simulated.

6Prior work (Kushman et al., 2014) has used only 5 explicit
supervision examples when training with solutions.

On the other hand, the goal of our algorithm is
to significantly improve a strong solver with a large
quantity of unlabeled data. Moreover, our implicit
supervision signals are noisier given that we crawled
the data automatically, and the clean labeled equa-
tion systems are not available to us. As a result, we
have made several design choices to address issues
of learning from noisy implicit supervision signals
in practice.

First, the algorithm is designed to perform up-
dates conservatively. Indeed, in Line 10, the algo-
rithm will not perform an update if the model could
not find any parses matching the implicit signals in
Line 9. That is, if ∆(E(y), zi) = 1 for all y ∈ Ω,
ỹ = ŷ due to the tie-breaking mechanism. This
ensures that the algorithm drives the learning using
only those structures which lead to the correct solu-
tion, avoiding undesirable effects of noise.

Second, the algorithm does not use implicit su-
pervision signals in the early stage of model train-
ing. Learning only on clean and explicit supervision
helps derive a better intermediate model, which later
allows exploring the output space more efficiently
using the implicit supervision signals.

Existing semantic parsing algorithms typically
use either implicit or explicit supervision signals ex-
clusively (Zettlemoyer and Collins, 2007; Berant et
al., 2013; Artzi and Zettlemoyer, 2013). In contrast,
MixedSP makes use of both explicit and implicit su-
pervised examples mixed at the training time.

5 Mining Implicit Supervision Signals

In this section, we describe the process of collect-
ing SOL-2K, a data set containing question-solution
pairs of algebra word problems from a Web forum7,
where students and tutors interact to solve math
problems.

A word problem posted on the forum is often ac-
companied by a detailed explanation provided by tu-
tors, which includes a list of the relevant equations.
However, these posted equations are not suitable for
direct use as labeled data, as they are often imprecise
or incomplete. For instance, tutors often omit many
simplification steps when writing the equations. A
commonly observed example is that (5-3)x+2y
would be directly written as 2x+2y. Despite being

7http://www.algebra.com
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mathematically equivalent, learning from the latter
equation is not desirable as the model may learn that
5 and 3 appearing the text are irrelevant. An ex-
treme case of this is when tutors directly post the so-
lution (such as x=2 and y=5), without writing any
equations. Another observation is that tutors often
write two-variable equation systems with only one
variable. For example, instead of writing x+y=10,
x-y=2, many tutors pre-compute x=10-y using
the first equation and substitute it in the second one,
which results in 10-y-y=2. It is also possible that
the tutor wrote the incorrect equation system, but
while explaining the steps, made corrections to get
the right answer. These practical issues make it dif-
ficult to use the crawled equations for explicit super-
vision directly.

On the other hand, it is relatively easy to ob-
tain question-solution pairs with simple heuristics.
We use a simple strategy to generate the solution
from the extracted equations. We greedily select
equations in a top-down manner, declaring suc-
cess as soon as we find an equation system that
can be solved by a mathematical engine (we used
SymPy (Sympy Development Team, 2016)). Equa-
tions that cause an exception in the solver (due to
improper extraction) are rejected. Note that the solu-
tion thus found may be incorrect (making the mined
supervision noisy), as the equation system used by
the solver may contain an incorrect equation. To en-
sure the quality of the mined supervision, we use
several simple rules to further filter the problems.
For example, we remove questions that have more
than 15 numbers. We found that usually such ques-
tions were not a single word problem, but instead
concatenations of several problems.

Note that our approach relies only on a few rules
and a mathematical engine to generate (noisy) im-
plicit supervision from crawled problems, with no
human involvement. Once the solutions are gener-
ated, we discarded the equation systems used to ob-
tain them. Using this procedure, we collected 2,039
question-solution pairs. For example, the solution to
the following mined problem was “6” (The correct
solutions are 6 and 12.):

Roz is twice as old as Grace. In 5 years
the sum of their ages will be 28. How old
are they now?

Settings Explicit sets Implicit sets
(De) (Dm)

Dataset ALG-514 DRAW-1K SOL-2K

# temp. 24 224 Unknown
# prob. 514 1,000 2,039
Vocab. 1.83k 2.2k 6.8k

Table 2: The statistics of the data sets.

6 Experiments

In this section, we demonstrate the effectiveness of
the proposed approach and empirically verify the de-
sign choices of the algorithm. We show that our joint
learning approach leverages mined implicit super-
vision effectively, improving system performance
without using additional manual annotations (Sec-
tion 6.1). We also compare our approach to existing
methods under different supervision settings (Sec-
tion 6.2).

Experimental Settings Table 2 shows the statis-
tics of the datasets. The ALG-514 dataset (Kush-
man et al., 2014) consists of 514 algebra word prob-
lems, ranging over a variety of narrative scenarios
(object counting, simple interest, etc.). Although it
is a popular benchmark for evaluating algebra word
solvers, ALG-514 has only 24 templates. To test the
generality of different approaches, we thus conduct
experiments on a newly released data set, DRAW-
1K8 (Upadhyay and Chang, 2016), which covers
more than 200 templates and contains 1,000 alge-
bra word problems. The data is split into training,
development, and test sets, with 600/200/200 exam-
ples, respectively.

The SOL-2K dataset contains the word problem-
solution pairs we mined from online forum (see Sec-
tion 5). Unlike ALG-514 and DRAW-1K, there are
no annotated equation systems in this dataset, and
only the solutions are available. Also, no prepro-
cessing or cleaning is performed, so the problem
descriptions might contain some irrelevant phrases
such as “please help me”. Since all the datasets are
generated from online forums, we carefully exam-
ined and removed problems from SOL-2K that are
identical to problems in ALG-514 and DRAW-1K,
to ensure fairness. We set the number of iterations

8https://aka.ms/datadraw
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to 15 and the learning rate η to be 1.
For all experiments, we report solution accuracy

(whether the solution was correct). Following Kush-
man et al. (2014), we ignore the ordering of answers
when calculating the solution accuracy. We report
the 5-fold cross validation accuracy on ALG-514 in
order to have a fair comparison with previous work.
For DRAW-1K, we report the results on the test set.
In all the experiments, we only use the templates that
appear in the corresponding explicit supervision.

Following (Zhou et al., 2015), we do not model
the alignments between noun phrases and vari-
ables. We use a similar set of features introduced
in (Zhou et al., 2015), except that our solver does not
use rich NLP features from dependency parsing or
coreference-resolution systems. We follow (Kush-
man et al., 2014) and set the beam-size K to 10,
unless stated otherwise.

6.1 Joint Learning from Mixed Supervision

Supervision Protocols We compare the following
training protocols:

• Explicit (D = {(xe,ye)}): the standard set-
ting, where fully annotated examples are used
to train the model (we use the structured Per-
ceptron algorithm as our training algorithm
here).

• Implicit (D = {(xm, zm))}): the model is
trained on SOL-2K dataset only (i.e., only im-
plicit supervision). This setting is similar to the
one in (Liang et al., 2013; Clarke et al., 2010).

• Pseudo (D = {(xm, Z̃
−1(zm,xm))}): where

we use Z̃−1(z,x) to denote a pseudo deriva-
tion whose solutions match the mined solu-
tions. Similar to the approach in (Yih et al.,
2015) for question answering, here we attempts
to recover (possibly incorrect) explicit supervi-
sion from the implicit supervision by finding
parses whose solution matches the mined so-
lution. For each word problem, we generated
a pseudo derivation Z̃−1(z,x) by finding the
equation systems whose solutions that match
the mined solutions. We conduct a brute force
search to find Z̃−1(z,x) by enumerating all
possible derivations. Note that this process can

be very slow for datasets like DRAW-1K be-
cause the brute-force search needs to examine
more than 200 templates for each word prob-
lem. Ties are broken by random.

• E+P (D = {(xe,ye)}∪ {(xm, Z̃
−1(zm,xm))}):

a baseline approach that jointly learns by com-
bining the dataset generated by Pseudo with the
Explicit supervision.

• MixedSP (D = {(xe,ye)}∪{(xm, zm))}): the
setting used by our proposed algorithm. The al-
gorithm trained the word problem solver using
both explicit and implicit supervision jointly.
We set the parameter γ to 0.5 unless otherwise
stated. In other words, the first half of the train-
ing iterations use only explicit supervision.

Note that Explicit, E+P, and MixedSP use the
same amount of labeled equations, although E+P
and MixedSP use additional implicit supervised re-
sources.

Results Table 3 lists the main results. With
implicit supervision from mined question-solution
pairs, MixedSP outperforms Explicit by around
4.5% on both datasets. This verifies the claim that
the joint learning approach can benefit from the
noisy implicit supervision. Note that with the same
amount of supervision signals, E+P performs poorly
and even under-performs Explicit. The reason is that
the derived derivations in SOL-2K can be noisy. In-
deed, we found that about 70% of the problems in
the implicit set have more than one template that
can produce a derivation which matches the mined
solutions. Therefore, the pseudo derivation selected
by the system might be wrong, even if they generate
the correct answers. As a result, E+P can commit
to the possibly incorrect pseudo derivations before
training, and suffer from error propagation. In con-
trast, MixedSP does not commit to a derivation and
allows the model to choose the one best explaining
the implicit signals as training progresses.

As expected, using only the implicit set Dm per-
forms poorly. The reason is that in both Implicit
and Pseudo settings, the algorithm needs to select
one from many derivations that match the labeled
solutions, and use the selected derivation to update
the model. When there are no explicit supervision
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Dataset
De Dm De and Dm

Expl. Pseudo Impl. E+P MixedSP
ALG-514 78.4 54.1 63.7 73.3 83.0
DRAW-1K 55.0 33.5 39.0 48.5 59.5

Table 3: The solution accuracies of different protocols on
ALG-514 and DRAW-1K.

signals, the model can use incorrect derivations to
update the model. As a result, models on both
Implicit and Pseudo settings perform significantly
worse than the Explicit baseline in both datasets,
even if the size of SOL-2K is larger than the fully
supervised data.

6.2 Comparisons to Previous Work

We now compare to previous approaches for solving
algebra word problems, both in fully supervised and
weakly supervised settings.

Comparisons of Overall Systems We first com-
pare our systems to the systems that use the same
level of explicit supervision (fully labeled exam-
ples). The comparison between our system and ex-
isting systems are in Fig 2a and 2b. Compared to
previous systems that were trained only on explicit
signals, our Explicit baseline is quite competitive.
On ALG-514, the accuracy of our baseline system
is 78.4%, which is 1.3% lower than the best reported
accuracy achieved by the system ZDC15 (Zhou et
al., 2015). We suspect that this is due to the richer
feature set used by ZDC15, which includes fea-
tures based on POS tags, coreference and depen-
dency parses, whereas our system only uses fea-
tures based on POS tags. Our system is also the
best system on DRAW-1K, and performs much better
than the system KAZB14 (Kushman et al., 2014).
Note that we could not run the system ZDC15 on
DRAW-1K because it can only handle limited types
of equation systems. Although the Explicit baseline
is strong, the MixedSP algorithm is still able to im-
prove the solver significantly through noisy implicit
supervision signals without using manual annotation
of equation systems.

Comparisons of Weakly Supervised Algorithms
In the above comparisons, MixedSP benefits from
the mined implicit supervision as well as using Al-
gorithm 1. Since there are several practical limita-

tions for us to run previously proposed weakly su-
pervised algorithms in our settings, in the following,
we perform a direct comparison between MixedSP
and existing algorithms in their corresponding set-
tings. Note that the implicit supervision in weak su-
pervision settings proposed in earlier work is noise-
free, as it was simulated by hiding equation systems
of a manually annotated dataset.

Zhou et al. (2015) proposed a weak supervision
setting where the system was provided with the set
of all templates, as well as the solutions of all prob-
lems during training. Under this setting, they re-
ported 72.3% accuracy on ALG-514. Note that such
high accuracy can be achieved mainly because that
the complete and correct templates were supplied.

In this setting, running the MixedSP algorithm is
equivalent to using the Implicit setting with clean
implicit supervision signals. Surprisingly, MixedSP
can obtain 74.3% accuracy, surpassing the weakly
supervised model in (Zhou et al., 2015) on ALG-
514. Compared to the results in Table 3, note that
when using noisy implicit signals, it cannot obtain
the same level of results, even though we had more
training problems (2,000 mined problems instead of
514 problems). This shows that working with real,
noisy weak supervision is much more challenging
than working on simulated, noise-free, weak super-
vision.

Kushman et al. (2014) proposed another weak su-
pervision setting (5EQ+ANS in the paper), in which
explicit supervision is provided for only 5 prob-
lems in the training data. For the rest of problems,
only their solutions are provided. The 5 problems
are chosen such that their templates constitute the 5
most common templates in the dataset. This weak
supervision setting is harder than that of (Zhou et
al., 2015), as the solver only has the templates for
5 problems, instead of the templates for all prob-
lems. Under this setting, our MixedSP algorithm
achieves 53.8%, which is better than 46.1% reported
in (Kushman et al., 2014).

6.3 Analysis
In Figure 2c, we investigate the impact of tuning γ
in MixedSP on the dataset ALG-514. Recall that
γ controls the fraction of the training time that
the model uses solely explicit supervision. At first
glance, it may appear that we should utilize the im-
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Figure 2: (a) Comparisons between our system to state-of-the-art systems on ALG-514. ZDC15 is the system pro-
posed in (Zhou et al., 2015), and KAZB14 is the system proposed in (Kushman et al., 2014). (b) Comparisons
between our system and other systems on DRAW-1K. Note that we are not able to run ZDC15 on DRAW-1K because
it cannot handle some equation systems in the dataset. (c) Analysis of the impact of γ in MixedSP.

plicit supervision throughout training (set γ = 0).
But setting γ to 0 hurts overall performance, sug-
gesting in this setting that the algorithm uses a weak
model to guide the exploration for using implicit
supervision. On the other hand, by delaying ex-
ploration (γ > 0.5) for too long, the model could
not fully utilize the implicit supervision. We ob-
serve similar trend on DRAW-1K as well. We found
γ = 0.5 works well across the experiments.

We also analyze the impact of the parameter K,
which controls the size of the candidate set Ω in
MixedSP. Specifically, for DRAW-1K, when setting
K to 5 and 10, the accuracy of MixedSP is at 59.5%.
On setting K to 15, the accuracy of MixedSP im-
proves to 61%. We suspect that enlarging K in-
creases the chance to have good structures in the
candidate set that can match the correct responses.

7 Conclusion

In this paper, we propose an algorithmic approach
for training a word problem solver based on both
explicit and implicit supervision signals. By extract-
ing the question answer pairs from a Web-forum,
we show that the algebra word problem solver can
be improved significantly using our proposed tech-
nique, surpassing the current state-of-the-art.

Recent advances in deep learning techniques
demonstrate that the error rate of machine learning
models can decrease dramatically when large quan-
tities of labeled data are presented (Krizhevsky et
al., 2012). However, labeling natural language data
has been shown to be expensive, and it has become

one of the major bottleneck for advancing natural
language understanding techniques (Clarke et al.,
2010). We hope the proposed approach can shed
light on how to leverage data on the web, and even-
tually improves other semantic parsing tasks such
as knowledge base question answering and mapping
natural instructions to actions.
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