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Abstract

Center-embedding is difficult to process and is
known as a rare syntactic construction across
languages. In this paper we describe a method
to incorporate this assumption into the gram-
mar induction tasks by restricting the search
space of a model to trees with limited center-
embedding. The key idea is the tabulation
of left-corner parsing, which captures the de-
gree of center-embedding of a parse via its
stack depth. We apply the technique to learn-
ing of famous generative model, the depen-
dency model with valence (Klein and Man-
ning, 2004). Cross-linguistic experiments on
Universal Dependencies show that often our
method boosts the performance from the base-
line, and competes with the current state-of-
the-art model in a number of languages.

1 Introduction

Human languages in the world are divergent, but
they also exhibit many striking similarities (Green-
berg, 1963; Hawkins, 2014). At the level of syn-
tax, one attractive hypothesis for such regularities is
that any grammars of languages have evolved un-
der the pressures, or biases, to avoid structures that
are difficult to process. For example it is known that
many languages have a preference for shorter depen-
dencies (Gildea and Temperley, 2010; Futrell et al.,
2015), which originates from the difficulty in pro-
cessing longer dependencies (Gibson, 2000).

Such syntactic regularities can also be useful in
applications, in particular in unsupervised (Klein
and Manning, 2004; Mareček and Žabokrtský,

2012; Bisk and Hockenmaier, 2013) or weakly-
supervised (Garrette et al., 2015) grammar induc-
tion tasks, where the models try to recover the syn-
tactic structure of language without access to the
syntactically annotated data, e.g., from raw or part-
of-speech tagged text only. In these settings, find-
ing better syntactic regularities universal across lan-
guages is essential, as they work as a small cue to
the correct linguistic structures. A preference ex-
ploited in many previous works is favoring shorter
dependencies, which has been encoded in various
ways, e.g., initialization of EM (Klein and Man-
ning, 2004), or model parameters (Smith and Eis-
ner, 2006), and this has been the key to success of
learning (Gimpel and Smith, 2012).

In this paper, we explore the utility for another
universal syntactic bias that has not yet been ex-
ploited in grammar induction: a bias against center-
embedding. Center-embedding is a syntactic con-
struction on which a clause is embedded into another
one. An example is “The reporter [who the senator
[who Mary met] attacked] ignored the president.”,
where “who Mary met” is embedded in a larger
relative clause. These constructions are known to
cause memory overflow (Miller and Chomsky, 1963;
Gibson, 2000), and also are rarely observed cross-
linguistically (Karlsson, 2007; Noji and Miyao,
2014). Our learning method exploits this universal
property of language. Intuitively during learning our
models explore the restricted search space, which
excludes linguistically implausible trees, i.e., those
with deeper levels of center-embedding.

We describe how these constraints can be imposed
in EM with the inside-outside algorithm. The central
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SHIFT σd−1 a7−→ σd−1|Ad A→ a ∈ P
SCAN σd−1|B/Ad a7−→ σd−1|Bd A→ a ∈ P
PRED σd−1|Ad ε7−→ σd−1|B/Cd B → A C ∈ P
COMP σd−1|D/Bd|Ad+1 ε7−→ σd−1|D/Cd B → A C ∈ P

Figure 1: A set of transitions in left-corner parsing.
The rules on the right side are the side conditions, in
which P is the set of rules of a given CFG.

idea is to tabulate left-corner parsing, on which its
stack depth captures the degree of center-embedding
of a partial parse. Each chart item keeps the cur-
rent stack depth and we discard all items where the
depth exceeds some threshold. The technique is gen-
eral and can be applicable to any model on PCFG;
in this paper, specifically, we describe how to ap-
ply the idea on the dependency model with valence
(DMV) (Klein and Manning, 2004), a famous gen-
erative model for dependency grammar induction.

We focus our evaluation on grammar induction
from part-of-speech tagged text, comparing the ef-
fect of several biases including the one against
longer dependencies. Our main empirical finding is
that though two biases, avoiding center-embedding
and favoring shorter dependencies, are conceptually
similar (both favor simpler grammars), often they
capture different aspects of syntax, leading to dif-
ferent grammars. In particular our bias cooperates
well with additional small syntactic cue such as the
one that the sentence root tends to be a verb or
a noun, with which our models compete with the
strong baseline relying on a larger number of hand
crafted rules on POS tags (Naseem et al., 2010).

Our contributions are: the idea to utilize left-
corner parsing for a tool to constrain the models of
syntax (Section 3), the formulation of this idea for
DMV (Section 4), and cross-linguistic experiments
across 25 languages to evaluate the universality of
the proposed approach (Sections 5 and 6).

2 Left-corner parsing

We first describe (arc-eager) left-corner (LC) pars-
ing as a push-down automaton (PDA), and then re-
formulate it as a grammar transform. In previous
work this algorithm has been called right-corner
parsing (e.g., Schuler et al. (2010)); we avoid this
term and instead treat it as a variant of LC parsing
following more recent studies, e.g., van Schijndel
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Figure 2: COMP combines two subtrees on the top
of the stack. i, j, k are indices of spans.

and Schuler (2013). The central motivation for this
technique is to detect center-embedding in a parse
efficiently. We describe this mechanism after pro-
viding the algorithm itself. We then give historical
notes on LC parsing at the end of this section.

PDA Let us assume a CFG is given, and it is in
CNF. We formulate LC parsing as a set of transi-
tions between configurations, each of which is a pair
of the stack and the input position (next input sym-
bol). In Figure 1 a transition σ1

a7−→ σ2 means that
the stack is changed from σ1 to σ2 by reading the
next input symbol a. We use a vertical bar to sig-
nify the append operation, e.g., σ = σ′|σ1 denotes
σ1 is the topmost symbol of σ. Each stack symbol is
either a nonterminal, or a pair of nonterminals, e.g.,
A/B, which represents a subtree rooted at A and is
awaiting symbol B. We also decorate each symbol
with depth; for example, σd−1|Ad means the current
stack depth is d, and the depth of the topmost sym-
bol in σ is d− 1. The bottom symbol on the stack is
always the empty symbol ε0 with depth 0. Parsing
begins with ε0. Given the start symbol of CFG S, it
finishes when S1 is found on the stack.

The key transition here is COMP (Figure 2).1 Ba-
sically the algorithm builds a tree by expanding the
hypothesis from left to right. In COMP, a subtree
rooted at A is combined with the second top subtree
(D/B) on the stack. This can be done by first pre-
dicting that A’s parent symbol is B and its sibling is
C; then it unifies two different Bs to combine them.
PRED is simpler, and it just predicts the parent and
sibling symbols of A. The input symbols are read
by SHIFT and SCAN: SHIFT addes a new element
on the stack while SCAN fills in the predicted sib-
ling symbol. For an example, Figure 3 shows how

1van Schijndel and Schuler (2013) employ different transi-
tion names, e.g., L- and L+; we avoid them as they are less
informative.
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Step Transition Stack Next input symbol
0 ε e
1 SHIFT E1 f
2 PRED D/B1 f
3 SHIFT D/B1 F 2 g
4 PRED D/B1 A/G2 g
5 SCAN D/B1 A2 c
6 COMP D/C1 c
7 SCAN D1

Figure 3: Sequence of transitions in LC PDA to
parse the tree in Figure 4(a).
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Figure 4: An example of LC transform: (a) the orig-
inal parse; and (b) the transformed parse.

this PDA works for parsing a tree in Figure 4(a).

Grammar transform The algorithm above can be
reformulated as a grammar transform, which be-
comes the starting point for our application to gram-
mar induction. This can be done by extracting the
operated top symbols on the stack in each transition:

SHIFT: Ad → a (A→ a ∈ P );
SCAN: Bd → B/Ad a (A→ a ∈ P );
PRED: B/Cd → Ad (B → A C ∈ P );
COMP: D/Cd → D/Bd Ad+1 (B → A C ∈ P ).

where a rule on the right side is a condition given the
set of rules P in the CFG.

Figure 4 shows an example of this transform. The
essential point is that each CFG rule in the trans-
formed parse (b) corresponds to a transition in the
original algorithm (Figure 1). For example a rule
D/C1 → D/B1 A2 in the parse indicates that the
stack configuration D/B1|A2 occurs during parsing
(just corresponding to the step 5 in Figure 3) and
COMP is then applied. This can also be seen as an
instantiation of Figure 2.

Stack depth and center-embedding We use the
term center-embedding to distinguish just the tree
structures, i.e., ignoring symbols. That is, the tree

in Figure 4(a) is the minimal, one degree of center-
embedded tree, where the constituent rooted at A
is embedded into a larger constituent rooted at D.
Multiple, or degree ≥ 2 of center-embedding oc-
curs if this constituent is also embedded into another
larger constituent.

Note that it is only COMP that consumes the top
two symbols on the stack. This means that a larger
stack depth occurs only when COMP is needed. Fur-
thermore, from Figure 2 COMP always induces a
subtree involving new center-embedding, and this is
the underlying mechanism that the stack depth of the
algorithm captures the degree of center-embedding.

One thing to note is that to precisely associate the
stack depth and the degree of center-embedding the
depth calculation in COMP should be revised as:

COMP: D/Cd → D/Bd Ad
′

(B → A C ∈ P )

d′ =
{

d (SPANLEN(A) = 1)
d+ 1 (otherwise),

(1)

where SPANLEN(A) calculates the span length of
the constituent rooted atA, which is 2 in Figure 4(b).
This modification is necessary since COMP for a sin-
gle token occurs for building purely right-branching
structures.2 Formally, then, given a tree with de-
gree λ of center-embedding the largest stack depth
d∗ during parsing this tree is: d∗ = λ+ 1.

Schuler et al. (2010) found that on English tree-
banks larger stack depth such as 3 or 4 rarely oc-
curs while Noji and Miyao (2014) validated the lan-
guage universality of this observation through cross-
linguistic experiments. These suggest we may uti-
lize LC parsing as a tool for exploiting universal syn-
tactic biases as we discuss in Section 3.

Historical notes Rosenkrantz and Lewis (1970)
first presented the idea of LC parsing as a gram-
mar transform. This is arc-standard, and has no
relevance to center-embedding; Resnik (1992) and
Johnson (1998) formulated an arc-eager variant by
extending this algorithm. The presented algorithm
here is the same as Schuler et al. (2010), and is
slightly different from Johnson (1998). The dif-
ference is in the start and end conditions: while

2Schuler et al. (2010) skip this subtlety by only concerning
stack depth after PRED or COMP. We do not take this approach
since ours allows a flexible extension described in Section 3.
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our parser begins with an empty symbol, Johnson’s
parser begins with the predicted start symbol, and
finishes with an empty symbol.

3 Learning with structural constraints

Now we discuss how to utilize LC parsing for gram-
mar induction in general. An important observation
in the above transform is that if we perform chart
parsing, e.g., CKY, we can detect center-embedded
trees efficiently in a chart. For example, by set-
ting a threshold of stack depth δ, we can eliminate
any parses involving center-embedding up to degree
δ−1. Note that in a probabilistic setting, each weight
of a transformed rule comes from the corresponding
underlying CFG rule (i.e., the condition).

For learning, our goal is to estimate θ of a gen-
erative model p(z, x|θ) for parse z and its yields
(words) x. We take an EM-based simplest approach,
and multiply the original model by a constraint fac-
tor f(z, x) ∈ [0, 1] to obtain a new model:

p′(z, x|θ) ∝ p(z, x|θ)f(z, x), (2)

and then optimize θ based on p′(z, x|θ). This is
essentially the same approach as Smith and Eisner
(2006). As shown in Smith (2006), when training
with EM we can increase the likelihood of p′(z, x|θ)
by just using the expected counts from an E-step on
the unnormalized distribution p(z, x|θ)f(z, x).

We investigate the following constraints in our ex-
periments:

f(z, x) =

{
0 (d∗z > δ)
1 (otherwise),

(3)

where d∗z is the largest stack depth for z in LC pars-
ing and δ is the threshold. This is a hard constraint,
and can easily be achieved by removing all chart
items (of LC transformed grammar) on which the
depth of the symbol exceeds δ. For example, when
δ = 1 the model only explores trees without center-
embedding, i.e., right- or left-linear trees.

Length-based constraints By δ = 2, the model is
allowed to explore trees with one degree of center-
embedding. Besides these simple ones, we also in-
vestigate relaxing δ = 1 that results in an intermedi-
ate between δ = 1 and 2. Specifically, we relax the

depth calculation in COMP (Eq. 1) as follows:

d′ =
{

d (SPANLEN(A) ≤ ξ)
d+ 1 (otherwise),

(4)

where ξ ≥ 1 controls the minimal length of a span
regarded as embedded into another one. For exam-
ple, when ξ = 2, the parse in Figure 4(a) is not re-
garded as center-embedded because the span length
of the constituent reduced by COMP (i.e., A) is 2.

This modification is motivated with our observa-
tion that in many cases center-embedded construc-
tions arise due to embedding of small chunks, rather
than clauses. An example is “... prepared [the cat
’s] dinner”, where “the cat ’s” is center-embedded
in our definition. For this sentence, by relaxing the
condition with, e.g., ξ = 3, we can suppress the in-
crease of stack depth. We treat ξ as a hyperparameter
in our experiments, and in practice, we find that this
relaxed constraint leads to higher performance.

4 Dependency grammar induction

In this section we discuss how we can formulate
the dependency model with valence (DMV) (Klein
and Manning, 2004), a famous generative model
for dependency grammar induction, on LC parsing.
Though as we will see, applying LC parsing for a de-
pendency model is a little involved compared to sim-
ple PCFG models, dependency models have been
the central for the grammar induction tasks, and we
consider it is most appropriate for assessing effec-
tiveness of our approach.

DMV is a head-outward generative model of a
dependency tree, controlled by two types of multi-
nomial distributions. For stop ∈ {STOP,¬STOP},
θS(stop|h, dir, adj) is a Bernoulli random variable to
decide whether or not to attach further dependents
in dir ∈ {←,→} direction. The adjacency adj ∈
{TRUE, FALSE} is the key factor to distinguish the
distributions of the first and the other dependents,
which is TRUE if h has no dependent yet in dir di-
rection. Another type of parameter is θA(a|h, dir), a
probability that h takes a as a dependent in dir di-
rection.

For this particular model, we take the following
approach to formulate it in LC parsing: 1) convert-
ing a dependency tree into a binary CFG parse; 2)
applying LC transform on it; and 3) encoding DMV
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Figure 5: Two CFG parses for “dogs ran fast” and
the results of LC transform ((a) → (b); (c) → (d)).
X[a/b] is an abbreviation for X[a]/X[b].

parameters into each CFG rule of the transformed
grammar.3 Below we discuss a problem for (1) and
(2), and then consider parameterization.4

Spurious ambiguity The central issue for apply-
ing LC parsing is the spurious ambiguity in depen-
dency grammars. That is, there are more than one
(binary) CFG parses corresponding to a given de-
pendency tree. This is problematic mainly for two
reasons: 1) we cannot specify the degree of center-
embedding in a dependency tree uniquely; and
2) this one-to-many mapping prevents the inside-
outside algorithm to work correctly (Eisner, 2000).

As a concrete example, Figures 5(a) and 5(c)
show two CFG parses corresponding to the depen-
dency tree dogsxranyfast. We approach this prob-
lem by first providing a grammar transform, which
generates all valid LC transformed parses (e.g., Fig-
ures 5(b) and 5(d)) and then restricting the grammar

3Another approach might be just applying the technique in
Section 3 to some PCFG that encodes DMV, e.g., Headden III
et al. (2009). The problem with this approach, in particular
with split-head grammars (Johnson, 2007), is that the calculated
stack depth no longer reflects the degree of center-embedding in
the original parse correctly. As we discuss later, instead, we can
speed up inference by applying head-splitting after obtaining
the LC transformed grammar.

4Technical details including the chart algorithm for split-
head grammars can be found in the Ph.D. thesis of the first au-
thor (Noji, 2016).
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Figure 6: The senses of the symbols as a chart item.
X[wh/wp] predicts the next dependent outside of the
span while X[wp/wp] predicts the head.
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Figure 7: Implicit binarization of the restricted
grammar. For each token, if its parent is in the right
side (e.g., b), it attaches all left children first. The be-
havior is opposed when the parent is in its left (e.g.,
d). A dummy root token is placed at the end.

for generating particular parses only.

Naive method Let us begin with the grammar be-
low, which suffers from the spurious ambiguity:

SHIFT: X[wh]
d → wh

SCAN: X[wh]
d → X[wh/wp]

d wp

L-PRED: X[wp/wp]
d → X[wh]

d (wx
h wp);

R-PRED: X[wh/wp]
d → X[wh]

d (wy
h wp);

L-COMP: X[wh/wp]
d → X[wh/wp]

dX[wa]
d′

(wx
a wp);

R-COMP: X[wh/wa]
d → X[wh/wp]

dX[wp]
d′

(wy
p wa).

Here X[a/b] denotes X[a]/X[b] while wh denotes
the h-th word in the sentence w. We can interpret
these rules as the operations on chart items (Figure
6). Note that only PRED and COMP create new de-
pendency arcs and we divide them depending on the
direction of the created arcs (L and R). d′ is calcu-
lated by Eq. 4. Note also that for L-COMP and R-
COMP h might equal p; X[ran/fast]1 → X[ran/ran]1

X[ran]2 in Figure 5(d) is such a case for R-COMP.

Removing spurious ambiguity We can show that
by restricting conditions for some rules, the spurious
ambiguity can be eliminated (the proof is omitted).

1. Prohibit R-COMP when h = p;

2. Assume the span of X[wp]
d′ is (i, j) (i ≤ p ≤

j). Then allow R-COMP only when i = p.

Intuitively, these conditions constraint the order that
each word collects its left and right children. For
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example, by the condition 1, this grammar is pro-
hibited to generate the parse of Figure 5(d).

Binarization Note that two CFG parses in Fig-
ures 5(a) and 5(c) differ in how we binarize a given
dependency tree. This observation indicates that
our restricted grammar implicitly binarizes a depen-
dency tree, and the incurred stack depth (or the de-
gree of center-embedding) is determined based on
the structure of the binarized tree. Specifically, we
can show that the presented grammar performs op-
timal binarization; i.e., it minimizes the incurred
stack depth. Figure 7 shows an example, which is
not regarded as center-embedded in our procedure.
In summary, our method detects center-embedding
for a dependency tree, but the degree is determined
based on the structure of the binarized CFG parse.

Parameterization We can encode DMV parame-
ters into each rule. A new arc is introduced by one
of {L/R}-{PRED/COMP}, and the stop probabilities
can be assigned appropriately in each rule by cal-
culating the valence from indices in the rule. For
example, after L-PRED, wh does not take any right
dependents so θS(stop|wh,→, h = j), where j is the
right span index of X[wh], is multiplied.

Improvement Though we omit the details, we can
improve the time complexity of the above grammar
from O(n6) to O(n4) applying the technique simi-
lar to Eisner and Satta (1999) without changing the
binarization mechanism mentioned above. We im-
plemented this improved grammar.

5 Experimental setup

A sound evaluation metric in grammar induction is
known as an open problem (Schwartz et al., 2011;
Bisk and Hockenmaier, 2013), which essentially
arises from the ambiguity in the notion of head. For
example, Universal dependencies (UD) is the recent
standard in annotation and prefers content words to
be heads, but as shown below this is very different
from the conventional style, e.g., the one in CoNLL
shared tasks (Johansson and Nugues, 2007):

Ivan is the best dancer

nsbj
cop

det
amod

sbj
nmod

nmod

prd

UD

CONLL

The problem is that both trees are correct under
some linguistic theories but the standard metric, un-
labeled attachment score (UAS), only takes into ac-
count the annotation of the current gold data.

Our goal in this experiment is to assess the ef-
fect of our structural constraints. To this end, we try
to eliminate such arbitrariness in our evaluation as
much as possible in the following way:

• We experiment on UD, in which every treebank
follows the consistent UD style annotation.

• We restrict the model to explore only trees that
follow the UD style annotation during learn-
ing5, by prohibiting every function word6 in a
sentence to have any dependents.

• We calculate UAS in a standard way.

We use UD of version 1.2. Some treebanks are very
small, so we select the top 25 largest languages.
The input to the model is coarse universal POS tags.
Punctuations are stripped off. All models are trained
on sentences of length ≤ 15 and tested on ≤ 40.

Initialization Much previous work of dependency
grammar induction relies on the technique called
harmonic initialization, which also biases the model
towards shorter dependencies (Klein and Manning,
2004). Since our focus is to see the effect of struc-
tural constraints, we do not try this and initialize
models uniformly. However, we add a baseline
model with this initialization in our comparison to
see the relative strength of our approach.

Models For the baseline, we employ a variant of
DMV with features (Berg-Kirkpatrick et al., 2010),
which is simple yet known to boost the performance
well. The feature templates are almost the same;
the only change is that we add backoff features for
STOP probabilities that ignore both direction and ad-
jacency, which we found slightly improves the per-
formance in a preliminary experiment. We set the
regularization parameter to 10 though in practice we
found the model is less sensitive to this value. We
run 100 iterations of EM for each setting. The dif-

5We remove the restriction at test time though we found it
does not affect the performance.

6A word with one of the following POS tags: ADP, AUX,
CONJ, DET, PART, and SCONJ.
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ference of each model is then the type of constraints
imposed during the E-step7, or initialization:

• Baseline (FUNC): Function word constraints;

• HARM: FUNC with harmonic initialization;

• DEP: FUNC + stack depth constraints (Eq. 3);

• LEN: FUNC + soft dependency length bias,
which we describe below.

For DEP, we use δ = 1.ξ to denote the relaxed max-
imum depth allowing span length up to ξ (Eq. 4).

LEN is the previously explored structural bias
(Smith and Eisner, 2006), which penalizes longer
dependencies by modifying each attachment score:

θ′A(a|h, dir) = θA(a|h, dir) · e−γ·(|h−a|−1), (5)

where γ (≥ 0) determines the strength of the bias
and |h− a| is (string) distance between h and a.

Note that DEP and LEN are closely related; gen-
erally center-embedded constructions are accompa-
nied by longer dependencies so LEN also penalizes
center-embedding implicitly. However, the opposite
is not true and there exist many constructions with
longer dependencies without center-embedding. By
comparing these two settings, we discuss the worth
of focusing on constraining center-embedding rela-
tive to the simpler bias on dependency length.

Finally we also add the system of Naseem et al.
(2010) in our comparison. This system encodes
many manually crafted rules between POS tags with
the posterior regularization technique. For example,
the model is encouraged to find NOUN → ADJ re-
lationship. Our systems cannot access to these core
grammatical rules so it is our strongest baseline.8

Constraining root word We also see the effects
of the constraints when a small amount of grammat-
ical rule is provided. In particular, we restrict the
candidate root words of the sentence to a noun or a
verb; similar rules have been encoded in past work
such as Gimpel and Smith (2012) and the CCG in-
duction system of Bisk and Hockenmaier (2013).

7We again remove the restrictions at decoding as we ob-
served that the effects are very small.

8We encode the customized rules that follow UD scheme.
The following 13 rules are used: ROOT → VERB, ROOT →
NOUN, VERB→ NOUN, VERB→ ADV, VERB→ VERB, VERB

→ AUX, NOUN→ ADJ, NOUN→ DET, NOUN→ NUM, NOUN

→ NOUN, NOUN→ CONJ, NOUN→ ADP, ADJ→ ADV.

0
0

1
0.1

1.2
0.2

1.3
0.3

1.4
0.4

2
0.5

Parameters (upper=δ; bottom=γ)

20

30

40

50

60

U
A

S
(%

)

Depth bound δ
Length bias γ

Figure 8: UAS for various settings on (UD) WSJ.

Hyperparameters Selecting hyperparameters in
multilingual grammar induction is difficult; some
works tune values for each language based on the
development set (Smith and Eisner, 2006; Bisk et
al., 2015), but this violates the assumption of unsu-
pervised learning. We instead follow many works
(Mareček and Žabokrtský, 2012; Naseem et al.,
2010) and select the values with the English data.
For this, we use the WSJ data, which we obtain in
UD style from the Stanford CoreNLP (ver. 3.6.0).9

6 Experiments

WSJ Figure 8 shows the result on WSJ. Both DEP

and LEN have one parameter: the maximum depth
δ, and γ (Eq. 5), and the figure shows the sensitivity
on them. Note that x-axis = 0 represents FUNC.

For LEN, we can see the optimal parameter γ is
0.1, and degrades the performance when increasing
the value; i.e., the small bias is the best. For DEP, we
find the best setting is 1.3, i.e., allowing embedded
constituents of length 3 or less (ξ = 3 in Eq. 4). We
can see that allowing depth 2 degrades the perfor-
mance, indicating that depth 2 allows too many trees
and does not reduce the search space effectively.10

Multilingual results Table 1 shows the main mul-
tilingual results. When we see “No root constraint”
block, we notice that our DEP boosts the perfor-
mance in many languages (e.g., Bulgarian, French,

9Note that the English data in UD is Web Treebank (Silveira
et al., 2014), not the standard WSJ Penn treebank.

10We see the same effects when training with longer sen-
tences (e.g., length ≤ 20). This is probably because a looser
constraint does nothing for shorter sentences. In other words,
the model can restrict the search space only for longer sen-
tences, which are relatively small in the data.
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No root constraint + root constraint
FUNC DEP LEN HARM FUNC DEP LEN HARM N10

A-Greek 35.9 31.6 34.7 37.8 37.9 45.0 34.4 37.7 40.1
Arabic 48.6 38.7 49.8 42.8 45.9 44.3 49.6 31.4 37.8
Basque 41.7 46.1 45.0 24.9 42.5 44.8 44.8 25.3 50.1
Bulgarian 45.6 69.0 64.8 66.4 69.1 71.1 61.9 68.0 58.6
Croatian 40.8 32.2 50.7 47.8 40.7 42.2 47.6 47.7 41.0
Czech 56.0 62.0 52.7 53.7 47.2 62.2 56.0 52.2 52.0
Danish 42.5 42.7 42.3 47.2 42.6 42.8 42.3 46.6 42.8
Dutch 25.7 26.6 28.0 26.2 25.7 27.5 28.7 26.4 40.6
English 37.2 39.8 52.1 37.5 37.5 40.0 38.4 38.2 51.4
Estonian 68.5 67.4 68.0 68.6 68.0 67.8 65.1 68.5 67.3
Finnish 26.2 24.5 27.9 25.7 25.7 27.3 27.9 20.5 44.6
French 36.7 48.0 36.8 36.5 36.5 54.6 36.3 36.7 53.3
German 44.6 48.0 46.3 43.6 43.9 50.4 47.9 43.9 53.5
Hebrew 58.4 54.4 58.5 59.1 55.4 59.7 59.4 59.0 56.9
Hindi 54.7 52.6 16.0 55.8 55.8 52.6 48.8 55.7 55.8
Indonesian 36.0 52.9 45.6 40.1 30.4 53.1 40.5 40.0 51.1
Italian 63.8 67.8 68.4 65.0 63.1 65.7 68.8 62.9 56.3
Japanese 46.8 44.5 73.8 47.9 47.6 46.7 72.3 47.9 51.3
Latin-ITT 42.3 43.8 42.1 41.0 42.4 43.7 38.4 41.6 38.4
Norwegian 44.7 45.3 45.1 51.9 44.8 45.4 45.2 45.7 55.4
Persian 44.9 39.0 37.3 36.6 44.1 46.6 37.2 43.6 55.2
Portuguese 48.4 61.1 61.6 55.9 49.2 61.1 61.4 44.6 47.1
Slovenian 65.6 61.0 50.1 62.7 65.1 60.7 49.4 63.6 53.1
Spanish 52.2 54.6 62.5 49.1 44.4 53.8 60.0 48.4 55.3
Swedish 42.7 48.1 51.4 48.1 43.1 42.8 42.7 47.6 46.7
Avg 46.0 48.1 48.5 46.9 45.9 50.1 48.2 45.8 50.2

Table 1: Attachment scores on UD with or without
root POS constraints. A-Greek = Ancient Greek.
N10 = Naseem et al. (2010) with modified rules.

Indonesian, and Portuguese), though LEN performs
equally well and in average, LEN performs slightly
better. Harmonic initialization does not work well.

We then move on to the settings with the con-
straint on root tags. Interestingly, in these settings
DEP performs the best. The model competes with
Naseem et al.’s system in average, and outperforms
it in many languages, e.g., Bulgarian, Czech, etc.
LEN, on the other hand, decreases the average score.

Analysis Why does DEP perform well in particu-
lar with the restriction on root candidates? To shed
light on this, we inspected the output parses of En-
glish with no root constraints, and found that the
types of errors are very different across constraints.

Figure 9 shows a typical example of the differ-
ence. One difference between trees is in the con-
structions of phrase “On ... pictures”. LEN pre-
dicts that “On the next two” comprises a constituent,
which modifies “pictures” while DEP predicts that
“the ... pictures” comprises a constituent, which is
correct, although the head of the determiner is in-
correctly predicted. On the other hand, LEN works
well to find more primitive dependency arcs between
POS tags, such as arcs from verbs to nouns, which
are often incorrectly recognized by DEP.

These observations may partially answer the

On the next two pictures he took ...
ADP DET ADJ NUM NOUN PRON VERB ...

DEP

LEN

Figure 9: A comparison of output parses by DEP

and LEN (with no root constraints). Dashed arcs are
misclassified ones.

Prec. Recall F1
FUNC (English) 11.6 18.4 14.1
DEP (English) 22.4 37.1 27.9
LEN (English) 21.6 31.0 25.5
FUNC (Avg.) 22.5 30.0 25.6
DEP (Avg.) 27.8 34.5 30.5
LEN (Avg.) 24.0 33.7 27.9
FUNC + ROOT (Avg.) 22.0 29.4 25.0
DEP + ROOT (Avg.) 28.1 35.2 31.0
LEN + ROOT (Avg.) 21.8 31.2 25.6

Table 2: Unlabeled bracket scores in various set-
tings. Avg. is the average score across languages.

question above. The main source of improvements
by DEP is detections of constituents, but this con-
straint itself does not help to resolve some core
dependency relationships, e.g., arcs from verbs to
nouns. The constraint on root POS tags is thus or-
thogonal to this approach, and it may help to find
such core dependencies. On the other hand, the de-
pendency length bias is the most effective to find
basic dependency relationships between POS tags
while the resulting tree may involve implausible
constituents. Thus the effect of the length bias seems
somewhat overlapped with the root POS constraints,
which may be the reason why they do not well col-
laborate with each other.

Bracket scores We verify the above intuition
quantitatively. To this end, we convert both the pre-
dicted and gold dependency trees into the unlabeled
bracket structures, and then compare them on the
standard PARSEVAL metrics. This bracket tree is
not binarized; for example, we extract (X a b (X
c d)) from the tree axbycyd. Table 2 shows the
results, and we can see that DEP always performs
the best, showing that DEP leads to the models that
find better constituent structures. Of particular note
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UAS F1
DEP 48.1 30.5
LEN 48.5 27.9
DEP+LEN 49.2 27.0

Table 3: Average scores of DEP, LEN, and the com-
bination.

is in Enlgish the bracket and dependency scores are
only loosely correlated. In Table 1, UASs for FUNC,
DEP, and LEN are 37.2, 39.8, and 52.1, respectively,
though F1 of DEP is substantially higher. This sug-
gests that DEP often finds more linguistically plausi-
ble structures even when the improvement in UAS is
modest. We conjecture that this performance change
between constraints essentially arise due to the na-
ture of DEP, which eliminates center-embedding,
i.e., implausible constituent structures, rather than
dependency arcs.

Combining DEP and LEN These results suggest
DEP and LEN capture different aspects of syntax. To
furuther understand this difference, we now evaluate
the models with both constraints. Table 3 shows the
average scores across languages (without root con-
straints). Interestingly, the combination (DEP+LEN)
performs the best in UAS while the worst in bracket
F1. This indicates the ability of DEP to find good
constituent boundaries is diminished by combining
LEN. We feel the results are expected observing that
center-embedded constructions are a special case of
longer dependency constructions. In other words,
LEN is a stronger constraint than DEP in that the
structures penalized by DEP are only a subset of
structures penalized by LEN. Thus when LEN and
DEP are combined LEN overwhelms, and the ad-
vantage of DEP is weakened. This also suggests not
penalizing all longer dependencies is important for
learning accurate grammars. The improvement of
UAS suggests there are also collaborative effects in
some aspect.

7 Conclusion

We have shown that a syntactic constraint that elim-
inates center-embedding is helpful in dependency
grammar induction. In particular, we found that
our method facilitates to find linguistically correct
constituent structures, and given an additional cue
on dependency, the models compete with the sys-

tem relying on a significant amount of prior lin-
guistic knowledge. Future work includes applying
our DEP constraint into other PCFG-based gram-
mar induction tasks beyond dependency grammars.
In particular, it would be fruitful to apply our idea
into constituent structure induction for which, to
our knowledge, there has been no successful PCFG-
based learning algorithm. As discussed in de Mar-
cken (1999) one reason for the failures of previous
work is the lack of necessary syntactic biases, and
our approach could be useful to alleviate this issue.
Finally, though we have focused on unsupervised
learning for simplicity, we believe our syntactic bias
also leads to better learning in more practical scenar-
ios, e.g., weakly supervised learning (Garrette et al.,
2015).
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