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Abstract

Parsing accuracy using efficient greedy transi-
tion systems has improved dramatically in re-
cent years thanks to neural networks. Despite
striking results in dependency parsing, how-
ever, neural models have not surpassed state-
of-the-art approaches in constituency parsing.
To remedy this, we introduce a new shift-
reduce system whose stack contains merely
sentence spans, represented by a bare min-
imum of LSTM features. We also design
the first provably optimal dynamic oracle for
constituency parsing, which runs in amortized
O(1) time, compared to O(n?) oracles for
standard dependency parsing. Training with
this oracle, we achieve the best F'; scores on
both English and French of any parser that
does not use reranking or external data.

1 Introduction

Parsing is an important problem in natural language
processing which has been studied extensively for
decades. Between the two basic paradigms of pars-
ing, constituency parsing, the subject of this paper,
has in general proved to be the more difficult than
dependency parsing, both in terms of accuracy and
the run time of parsing algorithms.

There has recently been a huge surge of interest
in using neural networks to make parsing decisions,
and such models continue to dominate the state of
the art in dependency parsing (Andor et al., 2016).
In constituency parsing, however, neural approaches
are still behind the state-of-the-art (Carreras et al.,
2008; Shindo et al., 2012; Thang et al., 2015); see
more details in Section 5.

To remedy this, we design a new parsing frame-
work that is more suitable for constituency parsing,
and that can be accurately modeled by neural net-
works. Observing that constituency parsing is pri-
marily focused on sentence spans (rather than indi-
vidual words, as is dependency parsing), we propose

a novel adaptation of the shift-reduce system which
reflects this focus. In this system, the stack consists
of sentence spans rather than partial trees. It is also
factored into two types of parser actions, structural
and label actions, which alternate during a parse.
The structural actions are a simplified analogue of
shift-reduce actions, omitting the directionality of
reduce actions, while the label actions directly as-
sign nonterminal symbols to sentence spans.

Our neural model processes the sentence once for
each parse with a recurrent network. We represent
parser configurations with a very small number of
span features (4 for structural actions and 3 for label
actions). Extending Wang and Chang (2016), each
span is represented as the difference of recurrent out-
put from multiple layers in each direction. No pre-
trained embeddings are required.

We also extend the idea of dynamic oracles from
dependency to constituency parsing. The latter is
significantly more difficult than the former due to F;
being a combination of precision and recall (Huang,
2008), and yet we propose a simple and extremely
efficient oracle (amortized O(1) time). This oracle is
proved optimal for F'; as well as both of its compo-
nents, precision and recall. Trained with this oracle,
our parser achieves what we believe to be the best
results for any parser without reranking which was
trained only on the Penn Treebank and the French
Treebank, despite the fact that it is not only linear-
time, but also strictly greedy.

We make the following main contributions:

e A novel factored transition parsing system
where the stack elements are sentence spans
rather than partial trees (Section 2).

e A neural model where sentence spans are rep-
resented as differences of output from a multi-
layer bi-directional LSTM (Section 3).

e The first provably optimal dynamic oracle for
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constituency parsing which is also extremely
efficient (amortized O(1) time) (Section 4).

e The best F'; scores of any single-model, closed
training set, parser for English and French.

We are also publicly releasing the source code for
one implementation of our parser.'

2 Parsing System

We present a new transition-based system for con-
stituency parsing whose fundamental unit of com-
putation is the sentence span. It uses a stack in a
similar manner to other transition systems, except
that the stack contains sentence spans with no re-
quirement that each one correspond to a partial tree
structure during a parse.

The parser alternates between two types of ac-
tions, structural and label, where the structural ac-
tions follow a path to make the stack spans corre-
spond to sentence phrases in a bottom-up manner,
while the label actions optionally create tree brack-
ets for the top span on the stack. There are only two
structural actions: shift is the same as other transi-
tion systems, while combine merges the top two sen-
tence spans. The latter is analogous to a reduce ac-
tion, but it does not immediately create a tree struc-
ture and is non-directional. Label actions do create
a partial tree on top of the stack by assigning one or
more non-terminals to the topmost span.

Except for the use of spans, this factored approach
is similar to the odd-even parser from Mi and Huang
(2015). The fact that stack elements do not have to
be tree-structured, however, means that we can cre-
ate productions with arbitrary arity, and no binariza-
tion is required either for training or parsing. This
also allows us to remove the directionality inherent
in the shift-reduce system, which is at best an im-
perfect fit for constituency parsing. We do follow
the practice in that system of labeling unary chains
of non-terminals with a single action, which means
our parser uses a fixed number of steps, (4n — 2) for
a sentence of n words.

Figure 1 shows the formal deductive system for
this parser. The stack o is modeled as a list of strictly
increasing integers whose first element is always

Icode: https://github.com/jhcross/span-parser
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Figure 1: Deductive system for the Structure/Label transition
parser. The stack o is represented as a list of integers where the
span defined by each consecutive pair of elements is a sentence
segment on the stack. Each X is a nonterminal symbol or an
ordered unary chain. The set ¢ contains labeled spans of the

form ; X j, which at the end of a parse, fully define a parse tree.

zero. These numbers are word boundaries which de-
fine the spans on the stack. In a slight abuse of no-
tation, however, we sometimes think of it as a list of
pairs (4, 7), which are the actual sentence spans, i.e.,
every consecutive pair of indices on the stack, ini-
tially empty. We represent stack spans by trapezoids
(;42\;) in the figures to emphasize that they may or
not have tree stucture.

The parser alternates between structural actions
and label actions according to the parity of the parser
step z. In even steps, it takes a structural action, ei-
ther combining the top two stack spans, which re-
quires at least two spans on the stack, or introducing
a new span of unit length, as long as the entire sen-
tence is not already represented on the stack

In odd steps, the parser takes a label action. One
possibility is labeling the top span on the stack, (3, j)
with either a nonterminal label or an ordered unary
chain (since the parser has only one opportunity to
label any given span). Taking no action, designated
nolabel, is also a possibility. This is essentially a
null operation except that it returns the parser to an
even step, and this action reflects the decision that
(i,7) is not a (complete) labeled phrase in the tree.
In the final step, (4n — 2), nolabel is not allowed



/S\ steps | structural action label action | stack after bracket
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(a) gold parse tree

(b) static oracle actions

Figure 2: The running example. It contains one ternary branch and one unary chain (S-VP), and NP-PRP-I and NP-NN-fish are

not unary chains in our system. Each stack is just a list of numbers but is visualized with spans here.

since the parser must produce a tree.

Figure 2 shows a complete example of applying
this parsing system to a very short sentence (“I do
like eating fish”) that we will use throughout this
section and the next. The action in step 2 is label-
NP because “I” is a one-word noun phrase (parts
of speech are taken as input to our parser, though
it could easily be adapted to include POS tagging
in label actions). If a single word is not a complete
phrase (e.g., “do”), then the action after a shift is
nolabel.

The ternary branch in this tree (VP — MD VBP S)
is produced by our parser in a straightforward man-
ner: after the phrase “do like” is combined in step
7, no label is assigned in step 8, successfully delay-
ing the creation of a bracket until the verb phrase is
fully formed on the stack. Note also that the unary
production in the tree is created with a single action,
label-S-VP, in step 14.

The static oracle to train this parser simply con-
sists of taking actions to generate the gold tree
with a “short-stack” heuristic, meaning combine first
whenever combine and shift are both possible.

3 LSTM Span Features

Long short-term memory networks (LSTM) are a
type of recurrent neural network model proposed by
Hochreiter and Schmidhuber (1997) which are very
effective for modeling sequences. They are able
to capture and generalize from interactions among
their sequential inputs even when separated by a
long distance, and thus are a natural fit for analyz-

ing natural language. LSTM models have proved to
be a powerful tool for many learning tasks in natural
language, such as language modeling (Sundermeyer
et al., 2012) and translation (Sutskever et al., 2014).

LSTMs have also been incorporated into parsing
in a variety of ways, such as directly encoding an en-
tire sentence (Vinyals et al., 2015), separately mod-
eling the stack, buffer, and action history (Dyer et
al., 2015), to encode words based on their character
forms (Ballesteros et al., 2015), and as an element
in a recursive structure to combine dependency sub-
trees with their left and right children (Kiperwasser
and Goldberg, 2016a).

For our parsing system, however, we need a way
to model arbitrary sentence spans in the context of
the rest of the sentence. We do this by representing
each sentence span as the elementwise difference of
the vector outputs of the LSTM outputs at different
time steps, which correspond to word boundaries.
If the sequential output of the recurrent network for
the sentence is fy, ..., f5, in the forward direction and
bn, ..., by in the backward direction then the span
(i,7) would be represented as the concatenation of
the vector differences (f; — f;) and (b; — b;).

The spans are represented using output from both
backward and forward LSTM components, as can
be seen in Figure 3. This is essentially the LSTM-
Minus feature representation described by Wang and
Chang (2016) extended to the bi-directional case. In
initial experiments, we found that there was essen-
tially no difference in performance between using
the difference features and concatenating all end-
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Figure 3: Word spans are modeled by differences in LSTM
output. Here the span 3 eating fish 5 is represented by the vector
differences (fs — f3) and (bs — bs). The forward difference
corresponds to LSTM-Minus (Wang and Chang, 2016).

point vectors, but our approach is almost twice as
fast.

This model allows a sentence to be processed
once, and then the same recurrent outputs can be
used to compute span features throughout the parse.
Intuitively, this allows the span differences to learn
to represent the sentence spans in the context of the
rest of the sentence, not in isolation (especially true
for LSTM given the extra hidden recurrent connec-
tion, typically described as a “memory cell”). In
practice, we use a two-layer bi-directional LSTM,
where the input to the second layer combines the
forward and backward outputs from the first layer
at that time step. For each direction, the components
from the first and second layers are concatenated to
form the vectors which go into the span features. See
Cross and Huang (2016) for more details on this ap-
proach.

For the particular case of our transition con-
stituency parser, we use only four span features to
determine a structural action, and three to determine
a label action, in each case partitioning the sentence
exactly. The reason for this is straightforward: when
considering a structural action, the top two spans on
the stack must be considered to determine whether
they should be combined, while for a label action,
only the top span on the stack is important, since that
is the candidate for labeling. In both cases the re-
maining sentence prefix and suffix are also included.
These features are shown in Table 1.

The input to the recurrent network at each time
step consists of vector embeddings for each word

4

Action Stack LSTM Span Features
Structural | o|i|k|j | o 1 ;/\/\; 1,
Label O'|Z|j 0' Ii jl In

Table 1: Features used for the parser. No label or tree-structure

features are required.

and its part-of-speech tag. Parts of speech are pre-
dicted beforehand and taken as input to the parser,
as in much recent work in parsing. In our experi-
ments, the embeddings are randomly initialized and
learned from scratch together with all other network
weights, and we would expect further performance
improvement from incorporating embeddings pre-
trained from a large external corpus.

The network structure after the the span features
consists of a separate multilayer perceptron for each
type of action (structural and label). For each ac-
tion we use a single hidden layer with rectified linear
(ReLU) activation. The model is trained on a per-
action basis using a single correct action for each
parser state, with a negative log softmax loss func-
tion, as in Chen and Manning (2014).

4 Dynamic Oracle

The baseline method of training our parser is what
is known as a static oracle: we simply generate the
sequence of actions to correctly parse each training
sentence, using a short-stack heuristic (i.e., combine
first whenever there is a choice of shift and com-
bine). This method suffers from a well-documeted
problem, however, namely that it only “prepares”
the model for the situation where no mistakes have
been made during parsing, an inevitably incorrect
assumption in practice. To alleviate this problem,
Goldberg and Nivre (2013) define a dynamic oracle
to return the best possible action(s) at any arbitrary
configuration.

In this section, we introduce an easy-to-compute
optimal dynamic oracle for our constituency parser.
We will first define some concepts upon which the
dynamic oracle is built and then show how optimal
actions can be very efficiently computed using this
framework. In broad strokes, in any arbitrary parser
configuration c there is a set of brackets t*(c) from
the gold tree which it is still possible to reach. By
following dynamic oracle actions, all of those brack-
ets and only those brackets will be predicted.



Even though proving the optimality of our dy-
namic oracle (Sec. 4.3) is involved, computing the
oracle actions is extremely simple (Secs. 4.2) and
efficient (Sec. 4.4).

4.1 Preliminaries and Notations

Before describing the computation of our dynamic
oracle, we first need to rigorously establish the de-
sired optimality of dynamic oracle. The structure of
this framework follows Goldberg et al. (2014).

Definition 1. We denote ¢ -, ¢ iff. ¢’ is the result
of action 7 on configuration ¢, also denoted func-
tionally as ¢ = 7(c). We denote - to be the union
of -, for all actions 7, and H* to be the reflexive and
transitive closure of F.

Definition 2 (descendant/reachable trees). We de-
note D(c) to be the set of final descendant trees
derivable from ¢, i.e., D(c) = {t | ¢ F* (2, o, t)}.
This set is also called “reachable trees” from c.

Definition 3 (F'1). We define the standard F'{ metric

of a tree t with respect to gold tree tg as Fi(t) =

2rp _ Itﬁtg| _ ‘tﬂtg|
Hp,wherer— il P =

The following two definitions are similar to those
for dependency parsing by Goldberg et al. (2014).

Definition 4. We extend the F; function to config-
urations to define the maximum possible F'; from a
given configuration: Iy (c) = max;, ep(.) F1(t1).

Definition 5 (oracle). We can now define the desired
dynamic oracle of a configuration c to be the set of
actions that retrain the optimal F:

oracle(c) = {7 | F1(7(c)) = F1(c)}.

This abstract oracle is implemented by dyna(-) in
Sec. 4.2, which we prove to be correct in Sec. 4.3.

Definition 6 (span encompassing). We say span
(i, j) is encompassed by span (p, q), notated (i, j) =
(p,q).iff.p <i<j<q.

Definition 7 (strict encompassing). We say span
(i,7) is strictly encompassed by span (p, ¢), notated
(4,7) < (p,q),iff. (i, 5) = (p,q) and (i, ) # (p,q).
We then extend this relation from spans to brackets,
and notate ; X; < ,Yg iff. (i,7) < (p,q).

like eating fish

Figure 4: Reachable brackets (w.r.t. gold tree in Fig. 1) for
¢ = (10, [0,1,2,4], {oNP;}) which mistakenly combines
“like eating”. Trapezoids indicate stack spans (the top one in
red), and solid triangles denote reachable brackets, with left(c)
in blue and right(c) in cyan. The next reachable bracket,
next(c) = 1VPs, is in bold. Brackets 3VPs and 3Ss (in dot-
ted triangle) cross the top span (thus unreachable), and (NP; is

already recognized (thus not in reach(c) either).

We next define a central concept, reachable
brackets, which is made up of two parts, the left ones
left(c) which encompass (7, j) without crossing any
stack spans, and the right ones right(c) which are
completely on the queue. See Fig. 4 for examples.

Definition 8 (reachable brackets). For any configu-
ration ¢ = (z, o|i|j, t), we define the set of reach-
able gold brackets (with respect to gold tree t¢) as

reach(c) = left(c) U right(c)
where the left- and right-reachable brackets are

left(c):{qu € tag | (Za.]) = (p7 Q), JAAS U|Z}
right(c)={,X, €ta | p>j}

for even z, with the < replaced by =< for odd z.
Special case (initial): reach((0, [0], 0)) = tg.
The notation p € o | ¢ simply means (p, q) does

not “cross” any bracket on the stack. Remember our

stack is just a list of span boundaries, so if p coin-
cides with one of them, (p, ¢)’s left boundary is not
crossing and its right boundary ¢ is not crossing ei-

ther since ¢ > j dueto (4,5) < (p, q).

Also note that reach(c) is strictly disjoint from ¢,

i.e., reach(c) Nt = 0 and reach(c) C tg — t. See

Figure 6 for an illustration.



Definition 9 (next bracket). For any configuration
¢ = (z, oli|j, t), the next reachable gold bracket
(with respect to gold tree tg) is the smallest reach-
able bracket (strictly) encompassing (i, j):

= minz left(c).

4.2 Structural and Label Oracles

next(c)

For an even-step configuration ¢ = (z, o | i | j, ),
we denote the next reachable gold bracket nezt(c)
to be , X, and define the dynamic oracle to be:

{sh}
{comb}
{sh, comb}

ifp=iandqg>j
dyna(c) = ifp<iandqg=j (1)

ifp<iandq > )

As a special case dyna((0, [0], 0)) = {sh}.

Figure 5 shows examples of this policy. The key
insight is, if you follow this policy, you will not miss
the next reachable bracket, but if you do not follow
it, you certainly will. We formalize this fact below
(with proof omitted due to space constraints) which
will be used to prove the central results later.

Lemma 1. For any configuration c, for any T €
dyna(c), we have reach(t(c)) = reach(c); for any
7' ¢ dyna(c), we have reach(7(c)) C reach(c).

The label oracles are much easier than struc-
tural ones. For an odd-step configuration ¢ =
(z, o |i|j, t), we simply check if (¢, ) is a valid
span in the gold tree ¢z and if so, label it accord-
ingly, otherwise no label. More formally,

dyna(c) = {label-X'} if some ;X € tg )
na
Y {nolabel}  otherwise

4.3 Correctness

To show the optimality of our dynamic oracle, we
begin by defining a special tree t*(c) and show that
it is optimal among all trees reachable from config-
uration c. We then show that following our dynamic
oracle (Egs. 1-2) from ¢ will lead to t*(c).

Definition 10 (¢*(c)). For any configuration ¢ =
(z, o, t), we define the optimal tree t*(c) to include
all reachable gold brackets and nothing else. More
formally, t*(c) = t U reach(c).

. oracle
configuration . .
static | dynamic
YASVAVVAV comb| {comb, sh}
I do like Q/Dg\
0/ LN {sh}
t={...,TVPs} é \
I do like
0@1@2&4 {comb, Sh}
undef. /\
I do like eating 18904 \s
0@1@2&455 {comb}
I do like eating fish 1/4X5

Figure 5: Dynamic oracle with respect to the gold parse in
Fig. 2. The last three examples are off the gold path with strike
out indicating structural or label mistakes. Trapezoids denote
stack spans (top one in red) and the blue triangle denotes the

next reachable bracket next(c) which is | VPs in all cases.

We can show by induction that t*(c) is attainable:
Lemma 2. For any configuration c, the optimal tree
is a descendant of ¢, i.e., t*(c) € D(c).

The following Theorem shows that t*(c) is indeed
the best possible tree:

Theorem 1 (optimality of t*). For any configura-
tion ¢, F1(t*(c)) = F1(c).

Proof. (SKETCH) Since t*(c) adds all possible addi-
tional gold brackets (the brackets in reach(c)), it is
not possible to get higher recall. Since it adds no in-
correct brackets, it is not possible to get higher pre-

t ta reach(c)

1 t*(c) = t U reach(c)

Figure 6: The optimal tree t*(c) adds all reachable brackets

and nothing else. Note that reach(c) and ¢ are disjoint.



cision. Since F'; is the harmonic mean of precision
and recall, it also leads to the best possible F;. [

Corollary 1. For any ¢ = (z, o, t), for any t' €
D(c) and t' # t*(c), we have F1(t') < Fi(c).

We now need a final lemma about the policy
dyna(-) (Egs. 1-2) before proving the main result.

Lemma 3. From any ¢ = (z, o, t), for any action
T € dyna(c), we have t*(7(c)) = t*(c). For any
action 7' ¢ dyna(c), we have t*(7'(c)) # t*(c).

Proof. (SKETCH) By case analysis on even/odd z.
O

We are now able to state and prove the main the-
oretical result of this paper (using Lemma 3, Theo-
rem 1 and Corollary 1):

Theorem 2. The function dyna(-) in Egs. (1-2) sat-
isfies the requirement of a dynamic oracle (Def. 5):

dyna(c) = oracle(c) for any configuration c.

4.4 Implementation and Complexity

For any configuration, our dynamic oracle can be
computed in amortized constant time since there
are only O(n) gold brackets and thus bounding
|reach(c)| and the choice of next(c). After each
action, next(c) either remains unchanged, or in
the case of being crossed by a structural action or
mislabeled by a label action, needs to be updated.
This update is simply tracing the parent link to
the next smallest gold bracket repeatedly until the
new bracket encompasses span (i,7). Since there
are at most O(n) choices of next(c) and there are
O(n) steps, the per-step cost is amortized constant
time. Thus our dynamic oracle is much faster than
the super-linear time oracle for arc-standard depen-
dency parsing in Goldberg et al. (2014).

5 Related Work

Neural networks have been used for constituency
parsing in a number of previous instances. For
example, Socher et al. (2013) learn a recursive
network that combines vectors representing partial
trees, Vinyals et al. (2015) adapt a sequence-to-
sequence model to produce parse trees, Watanabe
and Sumita (2015) use a recursive model applying
a shift-reduce system to constituency parsing with

Network architecture

Word embeddings 50

Tag embeddings 20
Morphological embeddings' 10
LSTM layers 2

LSTM units 200 / direction
ReLU hidden units 200 / action type

Training settings

Embedding intialization random
Training epochs 10
Minibatch size 10 sentences
Dropout (on LSTM output) p=20.5
ADADELTA parameters p=099e=1x10"7

Table 2: Hyperparameters. 'French only.

beam search, and Dyer et al. (2016) adapt the Stack-
LSTM dependency parsing approach to this task.
Durrett and Klein (2015) combine both neural and
sparse features for a CKY parsing system. Our own
previous work (Cross and Huang, 2016) use a recur-
rent sentence representation in a head-driven tran-
sition system which allows for greedy parsing but
does not achieve state-of-the-art results.

The concept of “oracles” for constituency parsing
(as the tree that is most similar to ¢g among all pos-
sible trees) was first defined and solved by Huang
(2008) in bottom-up parsing. In transition-based
parsing, the dynamic oracle for shift-reduce depen-
dency parsing costs worst-case O(n?) time (Gold-
berg et al., 2014). On the other hand, after the sub-
mission of our paper we became aware of a paral-
lel work (Coavoux and Crabbé, 2016) that also pro-
posed a dynamic oracle for their own incremental
constituency parser. However, it is not optimal due
to dummy non-terminals from binarization.

6 Experiments

We present experiments on both the Penn English
Treebank (Marcus et al., 1993) and the French Tree-
bank (Abeillé et al., 2003). In both cases, all state-
action training pairs for a given sentence are used
at the same time, greatly increasing training speed
since all examples for the same sentence share the
same forward and backward pass through the recur-
rent part of the network. Updates are performed
in minibatches of 10 sentences, and we shuffle the
training sentences before each epoch. The results
we report are trained for 10 epochs.



The only regularization which we employ during
training is dropout (Hinton et al., 2012), which is
applied with probability 0.5 to the recurrent outputs.
It is applied separately to the input to the second
LSTM layer for each sentence, and to the input to
the ReLU hidden layer (span features) for each state-
action pair. We use the ADADELTA method (Zeiler,
2012) to schedule learning rates for all weights. All
of these design choices are summarized in Table 2.

In order to account for unknown words during
training, we also adopt the strategy described by
Kiperwasser and Goldberg (2016b), where words
in the training set are replaced with the unknown-
word symbol UNK with probability p.;, = —=

z+f(w)
where f(w) is the number of times the word ap-

pears in the training corpus. We choose the pa-
rameter z so that the training and validation cor-
pora have approximately the same proportion of un-
known words. For the Penn Treebank, for exam-
ple, we used z = 0.8375 so that both the validation
set and the (rest of the) training set contain approx-
imately 2.76% unknown words. This approach was
helpful but not critical, improving F; (on dev) by
about 0.1 over training without any unknown words.

6.1 Training with Dynamic Oracle

The most straightforward use of dynamic oracles to
train a neural network model, where we collect all
action examples for a given sentence before updat-
ing, is “training with exploration” as proposed by
Goldberg and Nivre (2013). This involves parsing
each sentence according to the current model and us-
ing the oracle to determine correct actions for train-
ing. We saw very little improvement on the Penn
treebank validation set using this method, however.
Based on the parsing accuracy on the training sen-
tences, this appears to be due to the model overfitting
the training data early during training, thus negating
the benefit of training on erroneous paths.
Accordingly, we also used a method recently pro-
posed by Ballesteros et al. (2016), which specifi-
cally addresses this problem. This method intro-
duces stochasticity into the training data parses by
randomly taking actions according to the softmax
distribution over action scores. This introduces re-
alistic mistakes into the training parses, which we
found was also very effective in our case, leading
to higher F; scores, though it noticeably sacrifices

recall in favor of precision.

This technique can also take a parameter « to flat-
ten or sharpen the raw softmax distribution. The re-
sults on the Penn treebank development set for var-
ious values of « are presented in Table 3. We were
surprised that flattening the distribution seemed to
be the least effective, as training accuracy (taking
into account sampled actions) lagged somewhat be-
hind validation accuracy. Ultimately, the best results
were for « = 1, which we used for final testing.

Model LR LP Fy

Static Oracle 91.34 9143 91.38
Dynamic Oracle 91.14 91.61 91.38
+ Explore (¢=0.5) | 90.59 92.18 91.38
+ Explore («=1.0) | 91.07 92.22 91.64
+ Explore («=1.5) | 91.07 92.12 91.59

Table 3: Comparison of performance on PTB development set

using different oracle training approaches.

6.2 Penn Treebank

Following the literature, we used the Wall Street
Journal portion of the Penn Treebank, with stan-
dard splits for training (secs 2-21), development
(sec 22), and test sets (sec 23). Because our pars-
ing system seamlessly handles non-binary produc-
tions, minimal data preprocessing was required. For
the part-of-speech tags which are a required input to
our parser, we used the Stanford tagger with 10-way
jackknifing.

Table 4 compares test our results on PTB to a
range of other leading constituency parsers. De-
spite being a greedy parser, when trained using dy-
namic oracles with exploration, it achieves the best
F1 score of any closed-set single-model parser.

6.3 French Treebank

We also report results on the French treebank, with
one small change to network structure. Specifically,
we also included morphological features for each
word as input to the recurrent network, using a small
embedding for each such feature, to demonstrate
that our parsing model is able to exploit such ad-
ditional features.

We used the predicted morphological features,
part-of-speech tags, and lemmas (used in place of
word surface forms) supplied with the SPMRL 2014



Closed Training & Single Model | LR LP  F,
Sagae and Lavie (2006) 88.1 87.8 879
Petrov and Klein (2007) 90.1 90.3 90.2
Carreras et al. (2008) 90.7 914 91.1
Shindo et al. (2012) 91.1
tSocher et al. (2013) 90.4
Zhu et al. (2013) 90.2 90.7 90.4
Mi and Huang (2015) 90.7 909 90.8
tWatanabe and Sumita (2015) 90.7
Thang et al. (2015) (A*) 909 912 091.1
t*Dyer et al. (2016) (discrim.) 89.8
1*Cross and Huang (2016) 90.0
t*static oracle 90.7 914 91.0
1*dynamic/exploration 90.5 92.1 913
External/Reranking/Combo

tHenderson (2004) (rerank) 89.8 904 90.1
McClosky et al. (2006) 922 926 924
Zhu et al. (2013) (semi) 91.1 915 91.3
Huang (2008) (forest) 91.7
fVinyals et al. (2015) (ws)* 90.5
tVinyals et al. (2015) (semi) 92.8
tDurrett and Klein (2015)% 91.1
iDyer et al. (2016) (gen. rerank.) 92.4

Table 4: Comparison of performance of different parsers on
PTB test set. tNeural. *Greedy. *External embeddings.

Parser LR LP Fq

Bjorkelund et al. (2014)*F 82.53
Durrett and Klein (2015)* 81.25
Coavoux and Crabbé (2016) 80.56

83.50 82.87 83.18
81.90 84.77 83.31

static oracle
dynamic/exploration

Table 5: Results on French Treebank. *reranking, external.

data set (Seddah et al., 2014). It is thus possible that
results could be improved further using an integrated
or more accurate predictor for those features. Our
parsing and evaluation also includes predicting POS
tags for multi-word expressions as is the standard
practice for the French treebank, though our results
are similar whether or not this aspect is included.

We compare our parser with other recent work in
Table 5. We achieve state-of-the-art results even in
comparison to Bjorkelund et al. (2014), which uti-
lized both external data and reranking in achieving
the best results in the SPMRL 2014 shared task.

6.4 Notes on Experiments

For these experiments, we performed very little hy-
perparameter tuning, due to time and resource con-
traints. We have every reason to believe that per-
formance could be improved still further with such
techniques as random restarts, larger hidden lay-
ers, external embeddings, and hyperparameter grid
search, as demonstrated by Weiss et al. (2015).

We also note that while our parser is very accu-
rate even with greedy decoding, the model is eas-
ily adaptable for beam search, particularly since the
parsing system already uses a fixed number of ac-
tions. Beam search could also be made considerably
more efficient by caching post-hidden-layer feature
components for sentence spans, essentially using the
precomputation trick described by Chen and Man-
ning (2014), but on a per-sentence basis.

7 Conclusion and Future Work

We have developed a new transition-based con-
stituency parser which is built around sentence
spans. It uses a factored system alternating between
structural and label actions. We also describe a fast
dynamic oracle for this parser which can determine
the optimal set of actions with respect to a gold
training tree in an arbitrary state. Using an LSTM
model and only a few sentence spans as features, we
achieve state-of-the-art accuracy on the Penn Tree-
bank for all parsers without reranking, despite using
strictly greedy inference.

In the future, we hope to achieve still better re-
sults using beam search, which is relatively straight-
forward given that the parsing system already uses
a fixed number of actions. Dynamic programming
(Huang and Sagae, 2010) could be especially pow-
erful in this context given the very simple feature
representation used by our parser, as noted also by
Kiperwasser and Goldberg (2016b).
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