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Abstract

First Story Detection is hard because
the most accurate systems become pro-
gressively slower with each document
processed. We present a novel ap-
proach to FSD, which operates in constant
time/space and scales to very high volume
streams. We show that when computing
novelty over a large dataset of tweets, our
method performs 192 times faster than a
state-of-the-art baseline without sacrific-
ing accuracy. Our method is capable of
performing FSD on the full Twitter stream
on a single core of modest hardware.

1 Introduction

First Story Detection (FSD), also called New
Event Detection, is the task of identifying the
very first document in a stream to mention a new
event1. FSD was introduced as port of the TDT2

initiative and has direct applications in finance,
news and government security. The most accurate
approaches to FSD involve a runtime ofO(n2) and
cannot scale to unbounded high volume streams
such as Twitter. We present a novel approach to
FSD that operates in O(1) per tweet. Our method
is able to process the load of the average Twit-
ter Firehose3 stream on a single core of mod-
est hardware while retaining effectiveness on par
with one of the most accurate FSD systems. Dur-
ing the TDT program, FSD was applied to news
wire documents and solely focused on effective-
ness, neglecting efficiency and scalability. The tra-
ditional approach to FSD (Petrovic et al., 2010)
computes the distance of each incoming document

1e.g. a natural disaster or a scandal
2TDT by NIST - 1998-2004. http://www.itl.nist.gov/

iad/mig/tests/tdt/resources.html (Last Update: 2008)
3 5,700 tweets per second https://about.twitter

.com/company (last updated: March 31, 2015)

to all previously seen documents and the mini-
mum distance determines the novelty score. Doc-
uments, whose minimum distance falls above a
certain threshold are considered to talk about a
new event and declared as first stories. Conse-
quently, the computational effort increases with
each document processed.

1.1 Related Work

Researchers have proposed a range of approaches
to scale FSD to large data streams. Sankara-
narayanan et al. (2009) were one of the first to
apply FSD to Twitter. They reduced the volume
by classifying documents into news/non-news and
only compared to tweets within a 3-day window.
They did not perform a quantitative evaluation of
their approach. Sakaki et al. (2010) and Li et
al. (2012) applied keyword filtering in conjunc-
tion with classification algorithms, which allowed
them to efficiently detect certain events with high
precision. These two approaches, although effi-
cient and effective, require a user to explicitly de-
fine a set of keywords or to provide a set of exam-
ples that he wants to track. The approach cannot
detect previously unknown events.
Phuvipadawat and Murata (2010), Ozdikis et al.
(2012) and Cordeiro (2012), scale their systems by
only considering tweets containing hashtags. Al-
though efficient, this method don’t consider 90%
of the tweets (Petrovic, 2013), which limits their
scope.
Cataldi et al. (2010), Weng et al.(2011) and
Cordeiro (2012) use the degree of burstiness of
terms during a time interval to detect new events.
This approach is not suitable for FSD as events are
detected with a time lag, once they grow in popu-
larity.
Petrovic et al. (2010) were the first to demonstrate
FSD on Twitter in constant time and space, while
maintaining effectiveness comparable to those of
pair-wise comparison systems. The key was to
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reduce the search space using Locality Sensitive
Hashing (LSH). Each tweet was hashed, placing
it into buckets that contain other similar tweets,
which are subsequently compared. Operation in
constant space was ensured by keeping the number
of tweets per bucket constant. Because LSH alone
performed ineffectively, Petrovic et al. (2010) ad-
ditionally compared each incoming tweet with the
k most recent tweets.
Allan et al. (2003) analysed scoring functions for
novelty detection while focusing on their effec-
tiveness. They presented a language-model (LM)
based novelty measure using the KL divergence
between the LM of a document and a single LM
built on all previously scored documents, which
they referred to as an aggregate measure language
model. The idea of maintaining a single repre-
sentation covering all previously seen documents,
instead of performing pairwise comparisons with
every document is closely related to the approach
presented in this paper.

2 Approach

First Story Detection is a challenging task (Al-
lan et al., 2000). The highest FSD accuracy is
achieved by nearest-neighbour methods, where
each incoming document (tweet) is compared to
all documents that came before it, and the nov-
elty score is determined by the most-similar doc-
uments in the past. This approach requires us to
make n−1 comparisons4 to determine the novelty
of document dn. The approach becomes progres-
sively slower with each processed document, and
cannot scale up to unbounded streams like Twitter.
Prior attempts to speed up FSD involve organising
previously seen documents d1. . .dn−1 into clus-
ters (Allan et al., 1989) or LSH buckets (Petrovic
et al., 2010). The document dn is then compared
only to past documents in the nearest cluster or
LSH bucket, resulting in substantially fewer than
n comparisons. While this approach is reasonably
effective, it does lead to decreased accuracy, as
potentially relevant past documents may exist in
other clusters/buckets and would not be compared
against.

2.1 First Story Detection in constant time

Our method computes the novelty of document dn

in a time that is constant with respect to n. The

4Each comparison requires |dn| scalar multiplications; |d|
denotes the number of distinct words in document d.

main difference from previous approaches is that
we do not compare dn to individual documents
that came before it. Instead, we store the content
of past documents d1. . .dn−1 in a single lookup
table Hn−1. When dn arrives, we count what frac-
tion of its content is novel by looking it up in
Hn−1. The number of lookups is polynomial in
|dn| (the length of the document), and is indepen-
dent of n.
Formally, let dn denote the set of distinct words
occurring in the n’th document in the stream.
Let a k-term t={w1, w2, . . .} denote a non-empty
set of up to k distinct words. We define the
content cn to be the set of all k-terms that
can be formed from the words in the document
dn : cn = { t : t ⊂ dn, |t| ≤ k}. We
estimate the novelty of document dn as the pro-
portion of novel k-terms, i.e. k-terms that do not
appear in the history Hn−1:

N(dn) =
∑
t∈cn

α|t|

(|dn|
|t|
)−1{1 : t 6∈Hn−1

0 : t∈Hn−1

}
(1)

Here α|t| is the weight assigned to k-terms of size
|t|, and

(|dn|
|t|
)

is the total number of such k-terms
formed from dn. After the novelty is computed,
we update the history H to include all k-terms
formed from dn:

Hn ← Hn−1 ∪ cn (2)

The computational cost of equations (1) and (2)
is determined by the number of k-terms formed
from the document dn, and can be bounded at
O(|dn|k) operations. The complexity is manage-
able, as tweets are short and we keep k small.

2.2 Operating in constant time and space
We use a Bloom filter (Bloom, 1970) to maintain
the history Hn−1 of previously seen k-terms. For
each k-term t we compute a 32-bit Murmur5 hash-
code, and use it as an index into a fixed-length
bit-array. This ensures that both membership test-
ing (t∈H) and history update can be performed
in constant time. Constraining H to be a fixed-
length array also means that our method operates
in constant space, irrespective of the size of the
stream and its vocabulary growth. In contrast to
our method, previous approaches to FSD required
more and more memory to maintain the history of
the stream (see Figure 3).

5https://en.wikipedia.org/wiki/MurmurHash
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A potential downside of using a Bloom filter is that
it introduces a small probability of false matches:
a novel k-term ti may collide with a previously
observed k-term tj and would be reported as non-
novel. The probability of collision is directly pro-
portional to the load factor of the Bloom filter, i.e.
the fraction of non-zero bits in the array. By Heaps
law (Egghe, 2007) the number of distinct words
(and k-terms) will continue to grow and will even-
tually saturate the bit-array. To mitigate this prob-
lem, we introduce a deletion strategy: whenever
the load factor exceeds a pre-determined threshold
ρ, we zero out a random bit in H . This allows us
to keep low the probability of false matches, at the
cost of forgetting some previously-seen k-terms.

2.3 Parameter settings

We make the following parameter choices based
on initial experiments on our training dataset. We
set the maximum size of k-terms to be k = 3 and
keep the Bloom filter load factor under ρ = 0.6.
We tokenize the tweets on punctuation, treat all
hashtags and mentions as words, stem them using
the stemmer by Krovetz (1993), but do not remove
stopwords. We optimise the weights α1. . .αk us-
ing grid search on the same training data set.

3 Experiments

In a streaming setting, documents arrive one at a
time on a continual basis. FSD requires computing
a novelty score for each document in a single-pass
over the data. High novelty scores indicate new
topics. We use the standard TDT evaluation pro-
cedure (Allan, 2002) and the official TDT3 eval-
uation scripts with standard settings for evaluat-
ing FSD accuracy. The Detection Error Trade-off
(DET) curve shows the trade-off between miss and
false alarm probability for the full range of novelty
scores. The normalized Topic Weighted Minimum
Cost (Cmin) is a linear combination of miss and
false alarm probabilities, which allows comparing
different methods based on a single value metric.
Efficiency is measured by the throughput of tweets
per second and the memory footprint. To ensure
a fair comparison, all reported numbers are aver-
aged over 5 runs on an idle machine using a single
core (Intel-Xeon CPU with 2.27GHz).

3.1 Data set

We use the data set developed by Petrovic (2013),
Petrovic et al. (2013b) as a test set, which consists

of 27 topics and 116,000 tweets from the period of
April till September 2011. Parameters were tuned
using a sample of the data set annotated by Wurzer
et al. (2015) as a training set.

3.2 Baselines
We compare our system (k-term) against 3
baselines.

UMass is a state-of-the-art FSD system, de-
veloped by Allan et al. (2000). It is known for
its high effectiveness in the TDT2 and TDT3
competitions (Fiscus, 2001) and widely used
as a benchmark for FSD systems (Petrovic et
al., 2010; Kasiviswanathan et al., 2011; Petrovic
2013;). UMass makes use of an inverted index and
k-nearest-neighbour clustering, which optimize
the system for speed by ensuring a minimal num-
ber of comparisons. To maximise efficiency, we
set-up UMass to operate in-memory by turning off
its default memory mapping to disk. This ensures
fair comparisons, as all algorithms operate in
memory.

LSH-FSD is a highly-scalable system by Petrovic
et al. (2010). It is based on Locality Sensitive
Hashing (LSH) and claims to operate in constant
time and space while performing on a comparable
level of accuracy as UMass. We configure their
system using the default parameters (Petrovic et
al., 2010).

KL-FSD We also compare our approach with the
aggregate measure language model (Allan et al.,
2003) because it builds upon a similar principle.

3.3 Effectiveness and Efficiency
In Table 1, the UMass system shows state-of-the-
art accuracy (Cmin = 0.79, lower is better), but
can only process 30 tweets per second. LSH-FSD
operates 17 times faster, at the cost of a 13%
decrease in accuracy (Cmin = 0.90). Our system
(k-term) operates on par with UMass in terms of
accuracy, while being 197 times faster. KL-FSD,
which is based on uni-grams, reveals the highest
throughput at a considerable cost of efficiency
(Cmin = 0.96).

To further investigate accuracy we also compare
the systems over the full range of the novelty
thresholds illustrated by the DET plot in Figure 1.
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Algorithm Cmin %-diff tweets/sec speed-up
UMass 0.7981 - 30 -
LSH-FSD 0.9061 -13.5% 500 17x
KL-FSD 0.9648 -21% 6,600 220x
k-term 0.7966 +0.2% 5,900 197x

Table 1: Comparing the effectiveness and efficiency of our
system (k-term) with the 3 baselines
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Figure 1: DET plot of UMass, Kl-FSD, LSH-FSD and k-
term showing that LSH and k-term are statistically indistin-
guishable from UMass in terms of effectiveness;

Additionally we show the 90% confidence interval
of UMass in two solid lines. We observer that
both, FSD-LSH and our system (k-term) are
statistically indistinguishable form UMass at any
Miss-False Alarm trade-off point: their DET
curves fall entirely within the 90% confidence
interval of UMass. Note that DET curve of UMass
is formed by the middle of it’s 90% confidence
interval curves. KL-FSD in contrast results in
significantly worse accuracy than UMass in the
mid-range and in particular the high recall area
of the DET plot. We conclude that uni-grams are
insufficient for determining the novelty of tweets.

3.4 FSD in constant time and space

High-volume streams require operation in con-
stant time and space. Figure 2 compares the
change in throughput of LSH-FSD, UMass and k-
term as we process more and more tweets in the
stream. Additionally, the plot also shows the aver-
age rate of tweets in the Twitter Firehose6 at 5,787
tweets per second. Note that our system processes
the equivalent of the full Twitter stream on a sin-
gle core of modest hardware. This surpasses the
throughput of LSH-FSD, a system known for high

6https://about.twitter.com/company (last updated: March
31, 2015)
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Figure 2: Throughput of UMass, LSH-FSD and k-term in
comparison to the full Twitter stream (Firehose)

efficiency, by more than an order of magnitude.
The throughput of LSH-FSD and k-term increases
up until 20k documents because both approaches
require initialisation of their data structures, which
makes them slow when the number of documents
is low. UMass has no initialization and performs
the fastest when the number of documents is kept
low. The pair-wise comparison of UMass causes
it’s throughput to decrease drastically with every
new document. In Figure 2 we compare the mem-
ory requirements of k-term and LSH-FSD at dif-
ferent points in the stream. Although Petrovic et
al. (2010) designed their system (LSH-FSD) to
operate in constant space, we found that the mem-
ory requirement gradually increases with the num-
ber of documents processed, as seen in Figure 3.
We hypothesise that this increase results from new
terms added to the vocabulary. Our system has a
strictly constant memory footprint.
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Figure 3: Space requirement for LSH-FSD and k-term;
showing constant space for k-term

4 Conclusion

We presented an approach to FSD in a high vol-
ume streaming setting in constant time and space.
Our approach computes novelty based on a single
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lookup table that represents past documents. Shift-
ing from direct comparisons with previous doc-
uments to comparisons with a single model that
combines them, accounts for a great increase in
efficiency. For the first time, we showed that it is
possible to perform FSD on the full Twitter stream
on a single core of modest hardware. This greatly
outperforms state-of-the-art systems by an order
of magnitude without sacrificing accuracy.
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