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Abstract

Neural network based methods have ob-
tained great progress on a variety of nat-
ural language processing tasks. However,
it is still a challenge task to model long
texts, such as sentences and documents. In
this paper, we propose a multi-timescale
long short-term memory (MT-LSTM) neu-
ral network to model long texts. MT-
LSTM partitions the hidden states of the
standard LSTM into several groups. Each
group is activated at different time peri-
ods. Thus, MT-LSTM can model very
long documents as well as short sentences.
Experiments on four benchmark datasets
show that our model outperforms the other
neural models in text classification task.

1 Introduction

Distributed representations of words have been
widely used in many natural language process-
ing (NLP) tasks (Collobert et al., 2011; Turian et
al., 2010; Mikolov et al., 2013b; Bengio et al.,
2003). Following this success, it is rising a sub-
stantial interest to learn the distributed represen-
tations of the continuous words, such as phrases,
sentences, paragraphs and documents (Mitchell
and Lapata, 2010; Socher et al., 2013; Mikolov
et al., 2013b; Le and Mikolov, 2014; Kalchbren-
ner et al., 2014). The primary role of these mod-
els is to represent the variable-length sentence or
document as a fixed-length vector. A good rep-
resentation of the variable-length text should fully
capture the semantics of natural language.

Recently, the long short-term memory neural
network (LSTM) (Hochreiter and Schmidhuber,
1997) has been applied successfully in many NLP
tasks, such as spoken language understanding
(Yao et al., 2014), sequence labeling (Chen et al.,
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2015) and machine translation (Sutskever et al.,
2014). LSTM is an extension of the recurrent neu-
ral network (RNN) (Elman, 1990), which can cap-
ture the long-term and short-term dependencies
and is very suitable to model the variable-length
texts. Besides, LSTM is also sensitive to word
order and does not rely on the external syntactic
structure as recursive neural network (Socher et
al., 2013). However, when modeling long texts,
such as documents, LSTM need to keep the useful
features for a quite long period of time. The long-
term dependencies need to be transmitted one-by-
one along the sequence. Some important features
could be lost in transmission process. Besides,
the error signal is also back-propagated one-by-
one through multiple time steps in the training
phase with back-propagation through time (BPTT)
(Werbos, 1990) algorithm. The learning efficiency
could also be decreased for the long texts. For ex-
ample, if a valuable feature occurs at the begin of
a long document, we need to back-propagate the
error through the whole document.

In this paper, we propose a multi-timescale long
short-term memory (MT-LSTM) to capture the
valuable information with different timescales. In-
spired by the works of (El Hihi and Bengio, 1995)
and (Koutnik et al., 2014), we partition the hidden
states of the standard LSTM into several groups.
Each group is activated and updated at different
time periods. The fast-speed groups keep the
short-term memories, while the slow-speed groups
keep the long-term memories. We evaluate our
model on four benchmark datasets of text classifi-
cation. Experimental results show that our model
can not only handle short texts, but can model long
texts.

Our contributions can be summarized as fol-
lows.

• With the multiple different timescale memo-
ries, MT-LSTM easily carries the crucial in-
formation over a long distance. MT-LSTM
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can well model both short and long texts.

• MT-LSTM has faster convergence speed than
the standard LSTM since the error signal
can be back-propagated through multiple
timescales in the training phase.

2 Neural Models for Sentences and
Documents

The primary role of the neural models is to repre-
sent the variable-length sentence or document as a
fixed-length vector. These models generally con-
sist of a projection layer that maps words, sub-
word units or n-grams to vector representations
(often trained beforehand with unsupervised meth-
ods), and then combine them with the different
architectures of neural networks. Most of these
models for distributed representations of sentences
or documents can be classified into four cate-
gories.

Bag-of-words models A simple and intuitive
method is the Neural Bag-of-Words (NBOW)
model, in which the representation of sentences
or documents can be generated by averaging con-
stituent word representations. However, the main
drawback of NBOW is that the word order is lost.
Although NBOW is effective for general docu-
ment classification, it is not suitable for short sen-
tences.

Sequence models Sequence models construct
the representation of sentences or documents
based on the recurrent neural network (RNN)
(Mikolov et al., 2010) or the gated versions of
RNN (Sutskever et al., 2014; Chung et al., 2014).
Sequence models are sensitive to word order, but
they have a bias towards the latest input words.
This gives the RNN excellent performance at lan-
guage modelling, but it is suboptimal for modeling
the whole sentence, especially for the long texts.
Le and Mikolov (2014) proposed a Paragraph Vec-
tor (PV) to learn continuous distributed vector rep-
resentations for pieces of texts, which can be re-
garded as a long-term memory of sentences as op-
posed to the short-memory in RNN.

Topological models Topological models com-
pose the sentence representation following a given
topological structure over the words (Socher et
al., 2011a; Socher et al., 2012; Socher et al.,
2013). Recursive neural network (RecNN) adopts

a more general structure to encode sentence (Pol-
lack, 1990; Socher et al., 2013). At every node in
the tree the contexts at the left and right children
of the node are combined by a classical layer. The
weights of the layer are shared across all nodes
in the tree. The layer computed at the top node
gives a representation for the sentence. However,
RecNN depends on external constituency parse
trees provided by an external topological structure,
such as parse tree.

Convolutional models Convolutional neural
network (CNN) is also used to model sentences
(Collobert et al., 2011; Kalchbrenner et al.,
2014; Hu et al., 2014). It takes as input the
embeddings of words in the sentence aligned
sequentially, and summarizes the meaning of
a sentence through layers of convolution and
pooling, until reaching a fixed length vectorial
representation in the final layer. CNN can main-
tain the word order information and learn more
abstract characteristics.

3 Long Short-Term Memory Networks

A recurrent neural network (RNN) (Elman, 1990)
is able to process a sequence of arbitrary length by
recursively applying a transition function to its in-
ternal hidden state vector ht of the input sequence.
The activation of the hidden state ht at time-step t
is computed as a function f of the current input
symbol xt and the previous hidden state ht−1

ht =

{
0 t = 0
f(ht−1,xt) otherwise

(1)

It is common to use the state-to-state transition
function f as the composition of an element-wise
nonlinearity with an affine transformation of both
xt and ht−1.

Traditionally, a simple strategy for modeling se-
quence is to map the input sequence to a fixed-
sized vector using one RNN, and then to feed the
vector to a softmax layer for classification or other
tasks (Sutskever et al., 2014; Cho et al., 2014).

Unfortunately, a problem with RNNs with tran-
sition functions of this form is that during training,
components of the gradient vector can grow or de-
cay exponentially over long sequences (Bengio et
al., 1994; Hochreiter et al., 2001; Hochreiter and
Schmidhuber, 1997). This problem with explod-
ing or vanishing gradients makes it difficult for the
RNN model to learn long-distance correlations in
a sequence.

2327



Figure 1: A LSTM unit. The dashed line is the
recurrent connection, and the solid link is the con-
nection at the current time.

Long short-term memory network (LSTM) was
proposed by (Hochreiter and Schmidhuber, 1997)
to specifically address this issue of learning long-
term dependencies. The LSTM maintains a sepa-
rate memory cell inside it that updates and exposes
its content only when deemed necessary. A num-
ber of minor modifications to the standard LSTM
unit have been made. While there are numerous
LSTM variants, here we describe the implementa-
tion used by Graves (2013).

We define the LSTM units at each time step t
to be a collection of vectors in Rd: an input gate
it, a forget gate ft, an output gate ot, a memory
cell ct and a hidden state ht. d is the number of
the LSTM units. The entries of the gating vectors
it, ft and ot are in [0, 1]. The LSTM transition
equations are the following:

it = σ(Wixt + Uiht−1 + Vict−1) (2)

ft = σ(Wfxt + Ufht−1 + Vfct−1), (3)

ot = σ(Woxt + Uoht−1 + Voct), (4)

c̃t = tanh(Wcxt + Ucht−1), (5)

ct = f i
t ⊙ ct−1 + it ⊙ c̃t, (6)

ht = ot ⊙ tanh(ct), (7)

where xt is the input at the current time step, σ de-
notes the logistic sigmoid function and ⊙ denotes
elementwise multiplication. Intuitively, the forget
gate controls the amount of which each unit of the
memory cell is erased, the input gate controls how
much each unit is updated, and the output gate
controls the exposure of the internal memory state.

Figure 1 shows the structure of a LSTM unit. In

particular, these gates and the memory cell allow a
LSTM unit to adaptively forget, memorize and ex-
pose the memory content. If the detected feature,
i.e., the memory content, is deemed important, the
forget gate will be closed and carry the memory
content across many time-steps, which is equiva-
lent to capturing a long-term dependency. On the
other hand, the unit may decide to reset the mem-
ory content by opening the forget gate.

4 Multi-Timescale Long Short-Term
Memory Neural Network

h1 h2 h3 h4 · · · hT softmax

x1 x2 x3 x4 xT y

(a) Unfolded LSTM

g3
1 g3

2 g3
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4 · · · g2
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1 g1
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4 · · · g1
T y
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(b) Unfolded MT-LSTM with Fast-to-Slow Feedback
Strategy

Figure 2: Illustration of the unfolded LSTM and
unfolded MT-LSTM. The dotted node indicates
the unit which is inactivated at current time, while
the solid node indicates the unit which is activated.
The dotted lines indicate the units which kept un-
changed, while the solid lines indicate the units
which will be updated at the next time step.

LSTM can capture the long-term and short-term
dependencies in a sequence. But the long-term
dependencies need to be transmitted one-by-one
along the sequence. Some important informa-
tion could be lost in transmission process for long
texts, such as documents. Besides, the error sig-
nal is back-propagated through multiple time steps
when we use the back-propagation through time
(BPTT) (Werbos, 1990) algorithm. The training
efficiency could also be low for the long texts. For
example, if a valuable feature occurs at the begin
of a long document, we need to back-propagate
the error through the whole document.

Inspired by the works of (El Hihi and Bengio,
1995) and (Koutnik et al., 2014), which use de-
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layed connections and units operating at different
timescales to improve the simple RNN, we sepa-
rate the LSTM units into several groups. Different
groups capture different timescales dependencies.

More formally, the LSTM units are parti-
tioned into g groups {G1, · · · , Gg}. Each group
Gk, (1 ≤ k ≤ g) is activated at different time pe-
riods Tk. Accordingly, the gates and weight ma-
trices are also partitioned to maintain the corre-
sponding LSTM groups. The MT-LSTM with just
one group is the same to the standard LSTM.

At each time step t, only the groups Gk that sat-
isfy (tMOD Tk) = 0 are executed. The choice
of the set of periods Tk ∈ {T1, · · · , Tg} is arbi-
trary. Here, we use the exponential series of peri-
ods: group Gk has the period of Tk = 2k−1. The
group G1 is the fastest one and can be executed
at every time step, which works like the standard
LSTM. The group Gk is the slowest one.

At time step t, the memory cell vector and hid-
den state vector of group Gk are calculate in two
cases:

(1) When group Gk is activated at time step t,
the LSMT units of this group are calculated by the
following equations:

ikt = σ(Wk
i xt +

g∑
j=1

Uj→k
i hj

t−1 +

g∑
j=1

Vj→k
i cj

t−1), (8)

fk
t = σ(Wk

fxt +

g∑
j=1

Uj→k
f hj

t−1 +

g∑
j=1

Vj→k
f cj

t−1), (9)

ok
t = σ(Wk

oxt +

g∑
j=1

Uj→k
o hj

t−1 +

g∑
j=1

Vj→k
o cj

t), (10)

c̃k
t = tanh(Wk

cxt +

g∑
j=1

Uj→k
c hj

t−1), (11)

ck
t = fk

t ⊙ ck
t−1 + ikt ⊙ c̃k

t , (12)

hk
t = ok

t ⊙ tanh(ck
t ), (13)

where ikt , fk
t and ok

t are the vectors of input gates,
forget gates, and output gates of group Gk at time
step t respectively; ck

t and hk
t are the memory cell

vector and hidden state vector of group Gk at time
step t respectively.

(2) When group Gk is non-activated at time step
t, its LSMT units keep unchanged.

ck
t = ck

t−1, (14)

hk
t = hk

t−1. (15)

Figure 3 shows the different between the stan-
dard LSTM and MT-LSTM.

(a) Fast-to-Slow Strategy (b) Slow-to-Fast Strategy

Figure 3: Two feedback strategies of our model.
The dashed line shows the feedback connection,
and the solid link shows the connection at current
time.

4.1 Two Feedback Strategies

The feedback mechanism of LSTM is imple-
mented by the recurrent connections from time
step t − 1 to t. Since the MT-LSTM groups are
updated with the different frequencies, we can re-
gard the different group as the human memory.
The fast-speed groups are short-term memories,
while the slow-speed groups are long-term mem-
ories. Therefore, an important consideration is
what feedback mechanism is between the short-
term and long-term memories.

For the proposed MT-LSTM, we consider two
feedback strategies to define the connectivity pat-
terns among the different groups.

Fast-to-Slow (F2S) Strategy Intuitively, when
we accumulate the short-term memory to a certain
degree, we store some valuable information from
the short-term memory into the long-term mem-
ory. Therefore, we firstly define a fast to slow
strategy, which updates the slower group using the
faster group. The connections from group j to
group k exist if and only if Tj ≤ Tk. The weight
matrices Uj→k

i , Uj→k
f , Uj→k

o , Uj→k
c , Vj→k

i ,

Vj→k
f , Vj→k

o are set to zero when Tj > Tk.
The F2S updating strategy is shown in Figure

3a.

Slow-to-Fast (S2F) Strategy Following the
work of (Koutnik et al., 2014), we also investigate
another update scheme from slow-speed group to
fast-speed group. The motivation is that a long
term memory can be “distilled” into a short-term
memory. The connections from group j to group i
exist only if Tj ≥ Ti. The weight matrices Uj→k

i ,
Uj→k

f , Uj→k
o , Uj→k

c , Vj→k
i , Vj→k

f , Vj→k
o are set

to zero when Tj < Tk.
The S2F update strategy is shown in Figure 3b.
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Dataset Type Train Size Dev. Size Test Size Class Averaged Length Vocabulary Size
SST-1 Sentence 8544 1101 2210 5 19 18K
SST-2 Sentence 6920 872 1821 2 18 15K

QC Sentence 5452 - 500 6 10 9.4K
IMDB Document 25,000 - 25,000 2 294 392K

Table 1: Statistics of the four datasets used in this paper.

4.2 Dynamic Selection of the Number of the
MT-LSTM Unit Groups

Another consideration is how many groups need
to be used. An intuitive way is that we need more
groups for long texts than short texts. The number
of the group depends the length of the texts.

Here, we use a simple dynamic strategy to
choose the maximum number of groups, and then
the best g is chosen as a hyperparameter according
to different tasks. The upper bound of the number
of groups is calculated by

g = log2 L− 1, (16)

where L is the average length of the corpus. Thus,
the slowest group is activated at least twice.

5 Training

In each of the experiments, the hidden layer at
the last moment has a fully connected layer fol-
lowed by a softmax non-linear layer that predicts
the probability distribution over classes given the
input sentence. The network is trained to min-
imise the cross-entropy of the predicted and true
distributions; the objective includes an L2 regu-
larization term over the parameters. The network
is trained with backpropagation and the gradient-
based optimization is performed using the Ada-
grad update rule (Duchi et al., 2011).

The back propagation of the error propagation
is similar to LSTM as well. The only difference
is that the error propagates only from groups that
were executed at time step t. The error of non-
activated groups gets copied back in time (simi-
larly to copying the activations of nodes not ac-
tivated at the time step t during the correspond-
ing forward pass), where it is added to the back-
propagated error.

6 Experiments

In this section, we investigate the empirical per-
formances of our proposed MT-LSTM model on
four benchmark datasets for sentence and docu-
ment classification and then compare it to other
competitor models.

6.1 Datasets

We evaluate our model on four different datasets.
The first three datasets are sentence-level, and the
last dataset is document-level. The detailed statis-
tics about the four datasets are listed in Table 1.
Each dataset is briefly described as follows.

• SST-1 The movie reviews with five classes
(negative, somewhat negative, neutral, some-
what positive, positive) in the Stanford Senti-
ment Treebank1 (Socher et al., 2013).

• SST-2 The movie reviews with binary
classes. It is also from the Stanford Senti-
ment Treebank.

• QC The TREC questions dataset2 involves
six different question types, e.g. whether the
question is about a location, about a person
or about some numeric information (Li and
Roth, 2002).

• IMDB The IMDB dataset3 consists of
100,000 movie reviews with binary classes
(Maas et al., 2011). One key aspect of this
dataset is that each movie review has several
sentences.

6.2 Competitor Models

We compare our model with the following models:

• NB-SVM and MNB. Naive Bayes SVM and
Multinomial Naive Bayes with uni and bi-
gram features (Wang and Manning, 2012).

• NBOW The NBOW sums the word vectors
and applies a non-linearity followed by a
softmax classification layer.

• RAE Recursive Autoencoders with pre-
trained word vectors from Wikipedia (Socher
et al., 2011b).

• MV-RNN Matrix-Vector Recursive Neural
Network with parse trees (Socher et al.,
2012).

1http://nlp.stanford.edu/sentiment.
2http://cogcomp.cs.illinois.edu/Data/

QA/QC/.
3http://ai.stanford.edu/˜amaas/data/

sentiment/
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SST-1 SST-2 QC IMDB
Embedding size 100 100 100 100
hidden layer size 60 60 55 100
Initial learning rate 0.1 0.1 0.1 0.1
Regularization 10−5 10−5 10−5 10−5

Number of Groups 3 3 3 5

Table 2: Hyper-parameter settings for the LSTM
and MT-LSTM.

• RNTN Recursive Neural Tensor Network
with tensor-based feature function and parse
trees (Socher et al., 2013).

• AdaSent Self-adaptive hierarchical sentence
model with gated mechanism (Zhao et al.,
2015).

• DCNN Dynamic Convolutional Neural Net-
work with dynamic k-max pooling (Kalch-
brenner et al., 2014).

• CNN-non-static and CNN-multichannel
Convolutional Neural Network (Kim, 2014).

• PV Logistic regression on top of paragraph
vectors (Le and Mikolov, 2014). Here, we
use the popular open source implementation
of PV in Gensim4.

• LSTM The standard LSTM for text classifi-
cation. We use the implementation of Graves
(2013). The unfolded illustration is shown in
Figure 2a.

6.3 Hyperparameters and Training
In all of our experiments, the word embeddings are
trained using word2vec (Mikolov et al., 2013a) on
the Wikipedia corpus (1B words). The vocabu-
lary size is about 500,000. The the word embed-
dings are fine-tuned during training to improve the
performance (Collobert et al., 2011). The other
parameters are initialized by randomly sampling
from uniform distribution in [-0.1, 0.1]. The hy-
perparameters which achieve the best performance
on the development set will be chosen for the fi-
nal evaluation. For datasets without development
set, we use 10-fold cross-validation (CV) instead.
The final hyper-parameters for the LSTM and MT-
LSTM are set as Figure 2.

6.4 Results
Table 3 shows the classification accuracies of the
standard LSTM, MT-LSTM compared with the
competitor models.

Firstly, we compare two feedback strategies
of MT-LSTM. The fast-to-slow feedback strat-

4https://github.com/piskvorky/gensim/
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Figure 4: Convergence Speeds on IMDB dataset.

egy (MT-LSTM (F2S)) is better than the slow-to-
fast strategy (MT-LSTM (S2F)), which indicates
that MT-LSTM benefits from periodically stor-
ing some valuable information “purified” from the
short-term memory into the long-term memory. In
the following discussion, we use fast-to-slow feed-
back strategy as the default setting of MT-LSTM.

Compared with the standard LSTM, MT-LSTM
results in significantly improvements with the
same size of hidden layers.

MT-LSTM outperforms the competitor models
on the SST-1, QC and IMDB datasets, and is close
to the two best CNN based models on the SST-2
dataset. But MT-LSTM uses much fewer param-
eters than the CNN based models. The number
of parameters of LSTM range from 10K to 40K
while the number of parameters is about 400K in
CNN.

Moreover, MT-LSTM can not only handle short
texts, but can model long texts in classification
task.

Documents Modeling Most of the competitor
models cannot deal with the texts of with sev-
eral sentences (paragraphs, documents). For in-
stance, MV-RNN and RNTN (Socher et al., 2013)
are based on the parsing over each sentence and
it is unclear how to combine the representations
over many sentences. The convolutional models,
such as CNN (Kim, 2014) and AdaSent (Zhao et
al., 2015), need more hidden layers or nodes for
long texts and result in a very complicated model.
These models therefore are restricted to work-
ing on sentences instead of paragraphs or docu-
ments. Denil et al. (2014) used two-level version
of DCNN (Kalchbrenner et al., 2014) to model
documents. The first level uses a DCNN to trans-
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Model SST-1 SST-2 QC IMDB
NBOW (Kalchbrenner et al., 2014) 42.4 80.5 88.2 -
RAE (Socher et al., 2011b) 43.2 82.4 - -
MV-RNN (Socher et al., 2012) 44.4 82.9 - -
RNTN (Socher et al., 2013) 45.7 85.4 - -
DCNN (Kalchbrenner et al., 2014) 48.5 86.8 93.0 -
CNN-non-static (Kim, 2014) 48.0 87.2 93.6 -
CNN-multichannel (Kim, 2014) 47.4 88.1 92.2 -
AdaSent (Zhao et al., 2015) - - 92.4 -
NBSVM (Wang and Manning, 2012) - - - 91.2
MNB (Wang and Manning, 2012) - - - 86.6
Two-level DCNN (Denil et al., 2014) - - - 89.4
PV (Le and Mikolov, 2014) 44.6* 82.7* 91.8* 91.7*
LSTM 47.9 85.8 91.3 88.5
MT-LSTM (S2F) 48.9 86.7 93.3 90.2
MT-LSTM (F2S) 49.1 87.2 94.4 92.1

Table 3: Results of our MT-LSTM model against state-of-the-art neural models. All the results without
marks are reported in the corresponding paper.
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Figure 5: Performances of our model with the dif-
ferent numbers of memory groups g on four devel-
opment datasets: SST-1,SST-2, QC, and IMDB.
Y-axis represents the accuracy(%), and X-axis rep-
resents different numbers of memory groups. All
memory groups share a fixed-size memory layer
h, and here we set h=120.

form embeddings for the words in each sentence
into an embedding for the entire sentence. The
second level uses another DCNN to transform sen-
tence embeddings from the first level into a single
embedding vector that represents the entire docu-
ment. However, their result is unsatisfactory and
they reported that the IMDB dataset is too small
to train a CNN model.

The standard LSTM has an advantage to model
documents due to its simplification. However, it is
also difficult to train LSTM since the error signals
need to be back-propagated over a long distance

with the BPTT algorithm.
Our MT-LSTM can alleviate this problem with

multiple timescale memories. The experiment on
IMDB dataset demonstrates this advantage. MT-
LSTM achieves the accuracy of 92.1% , which are
better than the other models.

Moreover, MT-LSTM converges at a faster rate
than the standard LSTM. Figure 4 plots the con-
vergence on the IMDB dataset. In practice, MT-
LSTM is approximately three times faster than the
standard LSTM since the hidden states of low-
speed group often keep unchanged and need not
to be re-calculated at each time step.

Impact of the Different Number of Memory
Groups In our model, the number of memory
groups is a hyperparameter. Here we plotted the
accuracy curves of our model with the different
numbers of memory groups in Figure 5 to show
its impacts on the four datasets.

When the length of text (SST-1, SST-2 and
QC) is small, not all memory groups can be acti-
vated if we set too many groups, which may harm
the performance. When dealing with the long
texts (IMBD), more groups lead to a better per-
formance. The performance can be improved with
the increase of the number of memory groups.

According to our dynamic strategy, the maxi-
mum numbers of groups is 3, 3, 2, 7 for the four
datasets. The best numbers of groups from exper-
iments are 3, 3, 3, 5 respectively. Therefor, our
dynamic strategy is reasonable. All the datasets
except QC, the best number of groups is equal to
or smaller than our calculated upper bound. MT-
LSMT suffers underfitting when the number of
groups is larger than the upper bound.
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Figure 6: The dynamical changes of the predicted sentiment score over time. Y-axis represents the
sentiment score, while X-axis represents the input words in chronological order. The red horizontal line
gives a border between the positive and negative sentiments.

6.5 Case Study

To get an intuitive understanding of what is hap-
pening when we use LSTM or MT-LSTM to pre-
dict the class of text, we design an experiment
to analyze the output of LSTM and MT-LSTM at
each time step.

We sample three sentences from the SST-2 test
dataset, and the dynamical changes of the pre-
dicted sentiment score over time are shown in Fig-
ure 6. It is intriguing to notice that our model can
handle the rhetorical question well.

The first sentence “Is this progress ?”
has a negative sentiment. Although the word
“progress” is positive, our model can adjust the
sentiment correctly after seeing the question mark
“?”, and finally gets a correct prediction.

The second sentence “He ’d create a
movie better than this .” also has a
negative sentiment. The word “better” is posi-
tive. Our model finally gets a correct negative pre-
diction after seeing “than this”, while LSTM gets
a wrong prediction.

The third sentence “ It ’s not exactly
a gourmet meal but fare is fair
, even coming from the drive .”
is positive and has more complicated semantic
composition. Our model can still capture the
useful long-term features and gets the correct
prediction, while LSTM does not work well.

7 Related Work

There are many previous works to model the
variable-length text as a fixed-length vector. Spe-
cific to text classification task, most of the mod-
els cannot deal with the texts of several sen-
tences (paragraphs, documents), such as MV-RNN
(Socher et al., 2012), RNTN (Socher et al., 2013),
CNN (Kim, 2014), AdaSent (Zhao et al., 2015),
and so on. The simple neural bag-of-words model
can deal with long texts, but it loses the word order
information. PV (Le and Mikolov, 2014) works in
unsupervised way, and the learned vector cannot
be fine-tuned on the specific task.

Our proposed MT-LSTM can handle short texts
as well as long texts in classification task.

8 Conclusion

In this paper, we introduce the MT-LSTM, a gen-
eralization of LSTMs to capture the information
with different timescales. MT-LSTM can well
model both short and long texts. With the multi-
ple different timescale memories. Intuitively, MT-
LSTM easily carries the crucial information over
a long distance. Another advantage of MT-LSTM
is that the training speed is faster than the standard
LSTM (approximately three times faster in prac-
tice).

In future work, we would like to investigate the
other feedback mechanism between the short-term
and long-term memories.
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