
Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pages 2315–2325,
Lisbon, Portugal, 17-21 September 2015. c©2015 Association for Computational Linguistics.

Discriminative Neural Sentence Modeling
by Tree-Based Convolution

Lili Mou∗, Hao Peng∗, Ge Li†, Yan Xu, Lu Zhang, Zhi Jin
{doublepower.mou, penghao.pku}@gmail.com
{lige, xuyan14, zhanglu, zhijin}@sei.pku.edu.cn

Software Institute, Peking University, 100871, P. R. China

Abstract
This paper proposes a tree-based con-
volutional neural network (TBCNN) for
discriminative sentence modeling. Our
model leverages either constituency trees
or dependency trees of sentences. The
tree-based convolution process extracts
sentences structural features, which are
then aggregated by max pooling. Such ar-
chitecture allows short propagation paths
between the output layer and underlying
feature detectors, enabling effective struc-
tural feature learning and extraction. We
evaluate our models on two tasks: senti-
ment analysis and question classification.
In both experiments, TBCNN outperforms
previous state-of-the-art results, including
existing neural networks and dedicated
feature/rule engineering. We also make
efforts to visualize the tree-based convo-
lution process, shedding light on how our
models work.

1 Introduction

Discriminative sentence modeling aims to capture
sentence meanings, and classify sentences accord-
ing to certain criteria (e.g., sentiment). It is related
to various tasks of interest, and has attracted much
attention in the NLP community (Allan et al.,
2003; Su and Markert, 2008; Zhao et al., 2015).
Feature engineering—for example, n-gram fea-
tures (Cui et al., 2006), dependency subtree fea-
tures (Nakagawa et al., 2010), or more dedicated
ones (Silva et al., 2011)—can play an important
role in modeling sentences. Kernel machines, e.g.,
SVM, are exploited in Moschitti (2006) and Re-
ichartz et al. (2010) by specifying a certain mea-
sure of similarity between sentences, without ex-
plicit feature representation.

∗These authors contribute equally to this paper.
†To whom correspondence should be addressed.

Recent advances of neural networks bring new
techniques in understanding natural languages,
and have exhibited considerable potential. Bengio
et al. (2003) and Mikolov et al. (2013) propose un-
supervised approaches to learn word embeddings,
mapping discrete words to real-valued vectors in
a meaning space. Le and Mikolov (2014) ex-
tend such approaches to learn sentences’ and para-
graphs’ representations. Compared with human
engineering, neural networks serve as a way of au-
tomatic feature learning (Bengio et al., 2013).

Two widely used neural sentence models are
convolutional neural networks (CNNs) and recur-
sive neural networks (RNNs). CNNs can extract
words’ neighboring features effectively with short
propagation paths, but they do not capture inher-
ent sentence structures (e.g., parse trees). RNNs
encode, to some extent, structural information by
recursive semantic composition along a parse tree.
However, they may have difficulties in learning
deep dependencies because of long propagation
paths (Erhan et al., 2009). (CNNs/RNNs and a
variant, recurrent networks, will be reviewed in
Section 2.)

A curious question is whether we can com-
bine the advantages of CNNs and RNNs, i.e.,
whether we can exploit sentence structures (like
RNNs) effectively with short propagation paths
(like CNNs).

In this paper, we propose a novel neural ar-
chitecture for discriminative sentence modeling,
called the Tree-Based Convolutional Neural Net-
work (TBCNN).1 Our models can leverage differ-
ent sentence parse trees, e.g., constituency trees
and dependency trees. The model variants are de-
noted as c-TBCNN and d-TBCNN, respectively.
The idea of tree-based convolution is to apply a set
of subtree feature detectors, sliding over the entire

1The model of tree-based convolution was firstly pro-
posed to process program source code in our (unpublished)
previous work (Mou et al., 2014).

2315



1x … txEmbeddings

W

Extracted
features by
convolution

Pooling layer

Output layer

Word embeddings

Softmax
Representing hidden
layers as vectors
recursively

lW
rW

Parsing tree
of a sentence

Max pooling
by heuristics

Hidden Output
layer layer

Softmax

Softmax

lW
rW

(a) CNN (b) RNN (c) TBCNN

Extracted features
by tree-based convolution

Figure 1: A comparison of information flow in the convolutional neural network (CNN), the recursive
neural network (RNN), and the tree-based convolutional neural network (TBCNN).

parse tree of a sentence; then pooling aggregates
these extracted feature vectors by taking the max-
imum value in each dimension. One merit of such
architecture is that all features, along the tree, have
short propagation paths to the output layer, and
hence structural information can be learned effec-
tively.

TBCNNs are evaluated on two tasks, sentiment
analysis and question classification; our models
have outperformed previous state-of-the-art re-
sults in both experiments. To understand how
TBCNNs work, we also visualize the network by
plotting the convolution process. We make our
code and results available on our project website.2

2 Background and Related Work

In this section, we present the background and re-
lated work regarding two prevailing neural archi-
tectures for discriminative sentence modeling.

2.1 Convolutional Neural Networks

Convolutional neural networks (CNNs), early
used for image processing (LeCun, 1995), turn
out to be effective with natural languages as well.
Figure 1a depicts a classic convolution process on
a sentence (Collobert and Weston, 2008). A set
of fixed-width-window feature detectors slide over
the sentence, and output the extracted features. Let
t be the window size, and x1, · · · ,xt ∈ Rne be
ne-dimensional word embeddings. The output of
convolution, evaluated at the current position, is

y = f (W · [x1; · · · ; xt] + b)

where y ∈ Rnc (nc is the number of feature detec-
tors). W ∈ Rnc×(t·ne) and b ∈ Rnc are parame-

2https://sites.google.com/site/tbcnnsentence/

ters; f is the activation function. Semicolons rep-
resent column vector concatenation. After convo-
lution, the extracted features are pooled to a fixed-
size vector for classification.

Convolution can extract neighboring informa-
tion effectively. However, the features are
“local”—words that are not in a same convolu-
tion window do not interact with each other, even
though they may be semantically related. Blun-
som et al. (2014) build deep convolutional net-
works so that local features can mix at high-level
layers. Similar CNNs include Kim (2014) and Hu
et al. (2014). All these models are “flat,” by which
we mean no structural information is used explic-
itly.

2.2 Recursive Neural Networks

Recursive neural networks (RNNs), proposed in
Socher et al. (2011b), utilize sentence parse trees.
In the original version, RNN is built upon a
binarized constituency tree. Leaf nodes corre-
spond to words in a sentence, represented by ne-
dimensional embeddings. Non-leaf nodes are sen-
tence constituents, coded by child nodes recur-
sively. Let node p be the parent of c1 and c2, vec-
tor representations denoted as p, c1, and c2. The
parent’s representation is composited by

p = f(W · [c1; c2] + b) (1)

where W and b are parameters. This process is
done recursively along the tree; the root vector is
then used for supervised classification (Figure 1b).

Dependency parse and the combinatory cate-
gorical grammar can also be exploited as RNNs’
skeletons (Hermann and Blunsom, 2013; Iyyer et
al., 2014). Irsoy and Cardie (2014) build deep
RNNs to enhance information interaction. Im-

2316



provements for semantic compositionality include
matrix-vector interaction (Socher et al., 2012),
tensor interaction (Socher et al., 2013). They are
more suitable for capturing logical information in
sentences, such as negation and exclamation.

One potential problem of RNNs is that the long
propagation paths—through which leaf nodes are
connected to the output layer—may lead to infor-
mation loss. Thus, RNNs bury illuminating in-
formation under a complicated neural architecture.
Further, during back-propagation over a long path,
gradients tend to vanish (or blow up), which makes
training difficult (Erhan et al., 2009). Long short
term memory (LSTM), first proposed for model-
ing time-series data (Hochreiter and Schmidhuber,
1997), is integrated to RNNs to alleviate this prob-
lem (Tai et al., 2015; Le and Zuidema, 2015; Zhu
et al., 2015).

Recurrent networks. A variant class of RNNs
is the recurrent neural network (Bengio et al.,
1994; Shang et al., 2015), whose architecture is
a rightmost tree. In such models, meaningful tree
structures are also lost, similar to CNNs.

3 Tree-based Convolution

This section introduces the proposed tree-based
convolutional neural networks (TBCNNs). Figure
1c depicts the convolution process on a tree.

First, a sentence is converted to a parse tree, ei-
ther a constituency or dependency tree. The corre-
sponding model variants are denoted as c-TBCNN
and d-TBCNN. Each node in the tree is repre-
sented as a distributed, real-valued vector.

Then, we design a set of fixed-depth subtree fea-
ture detectors, called the tree-based convolution
window. The window slides over the entire tree
to extract structural information of the sentence,
illustrated by a dashed triangle in Figure 1c. For-
mally, let us assume we have t nodes in the con-
volution window, x1, · · · ,xt, each represented as
an ne-dimensional vector. Let nc be the number
of feature detectors. The output of the tree-based
convolution window, evaluated at the current sub-
tree, is given by the following generic equation.

y = f

(
t∑

i=1

Wi ·xi + b

)
(2)

where Wi ∈ Rnc×ne is the weight parameter asso-
ciated with node xi; b ∈ Rnc is the bias term.

Extracted features are thereafter packed into
one or more fixed-size vectors by max pooling,

that is, the maximum value in each dimension is
taken. Finally, we add a fully connected hidden
layer, and a softmax output layer.

From the designed architecture (Figure 1c), we
see that our TBCNN models allow short propaga-
tion paths between the output layer and any posi-
tion in the tree. Therefore structural feature learn-
ing becomes effective.

Several main technical points in tree-based con-
volution include: (1) How can we represent hid-
den nodes as vectors in constituency trees? (2)
How can we determine weights, Wi, for depen-
dency trees, where nodes may have different num-
bers of children? (3) How can we pool varying
sized and shaped features to fixed-size vectors?

In the rest of this section, we explain model
variants in detail. Particularly, Subsections 3.1 and
3.2 address the first and second problems; Sub-
section 3.3 deals with the third problem by intro-
ducing several pooling heuristics. Subsection 3.4
presents our training objective.

3.1 c-TBCNN

Figure 2a illustrates an example of the con-
stituency tree, where leaf nodes are words in the
sentence, and non-leaf nodes represent a grammat-
ical constituent, e.g., a noun phrase. Sentences
are parsed by the Stanford parser;3 further, con-
stituency trees are binarized for simplicity.

One problem of constituency trees is that non-
leaf nodes do not have such vector representations
as word embeddings. Our strategy is to pretrain
the constituency tree with an RNN by Equation 1
(Socher et al., 2011b). After pretraining, vector
representations of nodes are fixed.

We now consider the tree-based convolution
process in c-TBCNN with a two-layer-subtree
convolution window, which operates on a parent
node p and its direct children cl and cr, their vec-
tor representations denoted as p, cl, and cr. The
convolution equation, specific for c-TBCNN, is

y = f
(
W (c)

p ·p +W
(c)
l ·cl +W (c)

r ·cr + b(c)
)

where W (c)
p , W (c)

l , and W
(c)
r are weights asso-

ciated with the parent and its child nodes. Su-
perscript (c) indicates that the weights are for c-
TBCNN. For leaf nodes, which do not have chil-
dren, we set cl and cr to be 0.

3http://nlp.stanford.edu/software/lex-parser.shtml

2317



I

itloved
Constituency tree Dependency tree

it

Extracted features by
c-TBCNN

Extracted features by
d-TBCNN

(a) (b)

loved

nsubj dobj

I

Figure 2: Tree-based convolution in (a) c-TBCNN, and (b) d-TBCNN. The parse trees correspond to the
sentence “I loved it.” The dashed triangles illustrate a shared-weight convolution window sliding over
the tree. For clarity, only two positions are drawn in c-TBCNN. Notice that dotted arrows are not part of
neural connections; they merely indicate the topologies of tree structures. Specially, an edge a r→ b in
the dependency tree refers to a being governed by b with dependency type r.

Tree-based convolution windows can be ex-
tended to arbitrary depths straightforwardly. The
complexity is exponential to the depth of the
window, but linear to the number of nodes.
Hence, tree-based convolution, compared with
“flat” CNNs, does not add to computational cost,
provided the same amount of information to pro-
cess at a time. In our experiments, we use convo-
lution windows of depth 2.

3.2 d-TBCNN

Dependency trees are another representation of
sentence structures. The nature of dependency
representation leads to d-TBCNN’s major dif-
ference from traditional convolution: there ex-
ist nodes with different numbers of child nodes.
This causes trouble if we associate weight param-
eters according to positions in the window, which
is standard for traditional convolution, e.g., Col-
lobert and Weston (2008) or c-TBCNN.

To overcome the problem, we extend the no-
tion of convolution by assigning weights accord-
ing to dependency types (e.g, nsubj) rather than
positions. We believe this strategy makes much
sense because dependency types (de Marneffe et
al., 2006) reflect the relationship between a gov-
erning word and its child words. To be concrete,
the generic convolution formula (Equation 2) for
d-TBCNN becomes

y = f

(
W (d)

p ·p +
n∑

i=1

W
(d)
r[ci]
·ci + b(d)

)

where W (d)
p is the weight parameter for the par-

ent p (governing word); W (d)
r[ci]

is the weight for
child ci, who has grammatical relationship r[ci]

… …

Each slot chooses the
maximum value
in a dimension

k pooling slots (k = 2)

(a) Global pooling (b) 3-slot pooling for c-TBCNN

GLOBAL

LEFT RIGHT

TOP

Extracted features by tree-based convolution in the order of words

LOWER LOWER

(c) k-slot pooling for d-TBCNN

Figure 3: Pooling heuristics. (a) Global pooling.
(b) 3-slot pooling for c-TBCNN. (c) k-slot pooling
for d-TBCNN.

to its parent, p. Superscript (d) indicates the pa-
rameters are for d-TBCNN. Note that we keep 15
most frequently occurred dependency types; oth-
ers appearing rarely in the corpus are mapped to
one shared weight matrix.

Both c-TBCNN and d-TBCNN have their own
advantages: d-TBCNN exploits structural features
more efficiently because of the compact expres-
siveness of dependency trees; c-TBCNN may be
more effective in integrating global features due
to the underneath pretrained RNN.

3.3 Pooling Heuristics

As different sentences may have different lengths
and tree structures, the extracted features by tree-
based convolution also have topologies varying in
size and shape. Dynamic pooling (Socher et al.,
2011a) is a common technique for dealing with

2318



Task Data samples Label

Sentiment
Analysis

Offers that rare combination of entertainment and education. ++
An idealistic love story that brings out the latent 15-year-old romantic in everyone. +
Its mysteries are transparently obvious, and it’s too slowly paced to be a thriller. −

Question
Classification

What is the temperature at the center of the earth? number
What state did the Battle of Bighorn take place in? location

Table 1: Data samples in sentiment analysis and question classification. In the first task, “++” refers to
strongly positive; “+” and “−” refer to positive and negative, respectively.

this problem. We propose several heuristics for
pooling along a tree structure. Our generic de-
sign criteria for pooling include: (1) Nodes that
are pooled to one slot should be “neighboring”
from some viewpoint. (2) Each slot should have
similar numbers of nodes, in expectation, that are
pooled to it. Thus, (approximately) equal amount
of information is aggregated along different parts
of the tree. Following the above intuition, we pro-
pose pooling heuristics as follows.

• Global pooling. All features are pooled to
one vector, shown in Figure 3a. We take
the maximum value in each dimension. This
simple heuristic is applicable to any structure,
including c-TBCNN and d-TBCNN.
• 3-slot pooling for c-TBCNN. To preserve

more information over different parts of con-
stituency trees, we propose 3-slot pooling
(Figure 3b). If a tree has maximum depth
d, we pool nodes of less than α · d lay-
ers to a TOP slot (α is set to 0.6); lower
nodes are pooled to slots LOWER LEFT or
LOWER RIGHT according to their relative
position with respect to the root node.
For a constituency tree, it is not completely
obvious how to pool features to more than
3 slots and comply with the aforementioned
criteria at the same time. Therefore, we re-
gard 3-slot pooling for c-TBCNN is a “hard
mechanism” temporarily. Further improve-
ment can be addressed in future work.
• k-slot pooling for d-TBCNN. Different from

constituency trees, nodes in dependency trees
are one-one corresponding to words in a sen-
tence. Thus, a total order on features (af-
ter convolution) can be defined according
to their corresponding word orders. For k-
slot pooling, we can adopt an “equal allo-
cation” strategy, shown in Figure 3c. Let
i be the position of a word in a sentence
(i = 1, 2, · · · , n). Its extracted feature vec-
tor is pooled to the j-th slot, if

(j − 1)
n

k
≤ i ≤ j n

k

We assess the efficacy of pooling quantitatively
in Section 4.3.1. As we shall see by the exper-
imental results, complicated pooling methods do
preserve more information along tree structures to
some extent, but the effect is not large. TBCNNs
are not very sensitive to pooling methods.

3.4 Training Objective

After pooling, information is packed into one or
more fixed-size vectors (slots). We add a hidden
layer, and then a softmax layer to predict the prob-
ability of each target label in a classification task.
The error function of a sample is the standard cross
entropy loss, i.e., J = −∑c

i=1 ti log yi, where t is
the ground truth (one-hot represented), y the out-
put by softmax, and c the number of classes. To
regularize our model, we apply both `2 penalty and
dropout (Srivastava et al., 2014). Training details
are further presented in Section 4.1 and 4.2.

4 Experimental Results

In this section, we evaluate our models with two
tasks, sentiment analysis and question classifica-
tion. We also conduct quantitative and qualitative
model analysis in Subsection 4.3.

4.1 Sentiment Analysis

4.1.1 The Task and Dataset
Sentiment analysis is a widely studied task for
discriminative sentence modeling. The Stanford
sentiment treebank4 consists of more than 10,000
movie reviews. Two settings are considered for
sentiment prediction: (1) fine-grained classifi-
cation with 5 labels (strongly positive,
positive, neutral, negative, and
strongly negative), and (2) coarse-gained
polarity classification with 2 labels (positive
versus negative). Some examples are shown in

4http://nlp.stanford.edu/sentiment/

2319



Table 1. We use the standard split for training, val-
idating, and testing, containing 8544/1101/2210
sentences for 5-class prediction. Binary classifi-
cation does not contain the neutral class.

In the dataset, phrases (sub-sentences) are also
tagged with sentiment labels. RNNs deal with
them naturally during the recursive process. We
regard sub-sentences as individual samples during
training, like Blunsom et al. (2014) and Le and
Mikolov (2014). The training set therefore has
more than 150,000 entries in total. For validating
and testing, only whole sentences (root labels) are
considered in our experiments.

Both c-TBCNN and d-TBCNN use the Stanford
parser for data preprocessing.

4.1.2 Training Details

This subsection describes training details for d-
TBCNN, where hyperparameters are chosen by
validation. c-TBCNN is mostly tuned syn-
chronously (e.g., optimization algorithm, activa-
tion function) with some changes in hyperparam-
eters. c-TBCNN’s settings can be found on our
website.

In our d-TBCNN model, the number of units
is 300 for convolution and 200 for the last hid-
den layer. Word embeddings are 300 dimensional,
pretrained ourselves using word2vec (Mikolov
et al., 2013) on the English Wikipedia corpus. 2-
slot pooling is applied for d-TBCNN. (c-TBCNN
uses 3-slot pooling.)

To train our model, we compute gradient by
back-propagation and apply stochastic gradient
descent with mini-batch 200. We use ReLU (Nair
and Hinton, 2010) as the activation function .

For regularization, we add `2 penalty for
weights with a coefficient of 10−5. Dropout (Sri-
vastava et al., 2014) is further applied to both
weights and embeddings. All hidden layers are
dropped out by 50%, and embeddings 40%.

4.1.3 Performance

Table 2 compares our models to state-of-the-art
results in the task of sentiment analysis. For 5-
class prediction, d-TBCNN yields 51.4% accu-
racy, outperforming the previous state-of-the-art
result, achieved by the RNN based on long-short
term memory (Tai et al., 2015). c-TBCNN is
slightly worse. It achieves 50.4% accuracy, rank-
ing third in the state-of-the-art list (including our
d-TBCNN model).

Regarding 2-class prediction, we adopted a sim-
ple strategy in Irsoy and Cardie (2014),5 where the
5-class network is “transferred” directly for binary
classification, with estimated target probabilities
(by 5-way softmax) reinterpreted for 2 classes.
(The neutral class is discarded as in other stud-
ies.) This strategy enables us to take a glance at the
stability of our TBCNN models, but places itself
in a difficult position. Nonetheless, our d-TBCNN
model achieves 87.9% accuracy, ranking forth in
the list.

In a more controlled comparison—with shal-
low architectures and the basic interaction (lin-
early transformed and non-linearly squashed)—
TBCNNs, of both variants, consistently outper-
form RNNs (Socher et al., 2011b) to a large ex-
tent (50.4–51.4% versus 43.2%); they also con-
sistently outperform “flat” CNNs by more than
10%. Such results show that structures are im-
portant when modeling sentences; tree-based con-
volution can capture these structural information
more effectively than RNNs.

We also observe d-TBCNN achieves higher per-
formance than c-TBCNN. This suggests that com-
pact tree expressiveness is more important than in-
tegrating global information in this task.

4.2 Question Classification

We further evaluate TBCNN models on a ques-
tion classification task.6 The dataset contains
5452 annotated sentences plus 500 test sam-
ples in TREC 10. We also use the stan-
dard split, like Silva et al. (2011). Target la-
bels contain 6 classes, namely abbreviation,
entity, description, human, location,
and numeric. Some examples are also shown in
Table 1.

We chose this task to evaluate our models be-
cause the number of training samples is rather
small, so that we can know TBCNNs’ perfor-
mance when applied to datasets of different sizes.
To alleviate the problem of data sparseness, we set
the dimensions of convolutional layer and the last
hidden layer to 30 and 25, respectively. We do
not back-propagate gradient to embeddings in this

5Richard Socher, who first applies neural networks to this
task, thinks direct transfer is fine for binary classification. We
followed this strategy for simplicity as it is non-trivial to deal
with the neutral sub-sentences in the training set if we train a
separate model. Our website reviews some related work and
provides more discussions.

6http://cogcomp.cs.illinois.edu/Data/QA/QC/

2320



Group Method 5-class accuracy 2-class accuracy Reported in

Baseline SVM 40.7 79.4 Socher et al. (2013)
Naı̈ve Bayes 41.0 81.8 Socher et al. (2013)

CNNs

1-layer convolution 37.4 77.1 Blunsom et al. (2014)
Deep CNN 48.5 86.8 Blunsom et al. (2014)
Non-static 48.0 87.2 Kim (2014)

Multichannel 47.4 88.1 Kim (2014)

RNNs

Basic 43.2 82.4 Socher et al. (2013)
Matrix-vector 44.4 82.9 Socher et al. (2013)

Tensor 45.7 85.4 Socher et al. (2013)
Tree LSTM (variant 1) 48.0 – Zhu et al. (2015)
Tree LSTM (variant 2) 51.0 88.0 Tai et al. (2015)
Tree LSTM (variant 3) 49.9 88.0 Le and Zuidema (2015)

Deep RNN 49.8 86.6† Irsoy and Cardie (2014)

Recurrent LSTM 45.8 86.7 Tai et al. (2015)
bi-LSTM 49.1 86.8 Tai et al. (2015)

Vector Word vector avg. 32.7 80.1 Socher et al. (2013)
Paragraph vector 48.7 87.8 Le and Mikolov (2014)

TBCNNs c-TBCNN 50.4 86.8† Our implementation
d-TBCNN 51.4 87.9† Our implementation

Table 2: Accuracy of sentiment prediction (in percentage). For 2-class prediction, “†” remarks indicate
that the network is transferred directly from that of 5-class.

Method Acc. (%) Reported in
SVM 95.0 Silva et al. (2011)10k features + 60 rules

CNN-non-static 93.6 Kim (2014)
CNN-mutlichannel 92.2 Kim (2014)

RNN 90.2 Zhao et al. (2015)
Deep-CNN 93.0 Blunsom et al. (2014)
Ada-CNN 92.4 Zhao et al. (2015)
c-TBCNN 94.8 Our implementation
d-TBCNN 96.0 Our implementation

Table 3: Accuracy of 6-way question classification.

task. Dropout rate for embeddings is 30%; hidden
layers are dropped out by 5%.

Table 3 compares our models to various other
methods. The first entry presents the previous
state-of-the-art result, achieved by traditional fea-
ture/rule engineering (Silva et al., 2011). Their
method utilizes more than 10k features and 60
hand-coded rules. On the contrary, our TBCNN
models do not use a single human-engineered fea-
ture or rule. Despite this, c-TBCNN achieves
similar accuracy compared with feature engineer-
ing; d-TBCNN pushes the state-of-the-art result to
96%. To the best of our knowledge, this is the first
time that neural networks beat dedicated human
engineering in this question classification task.

The result also shows that both c-TBCNN and
d-TBCNN reduce the error rate to a large extent,
compared with other neural architectures in this
task.

4.3 Model Analysis

In this part, we analyze our models quantitatively
and qualitatively in several aspects, shedding some
light on the mechanism of TBCNNs.

4.3.1 The Effect of Pooling
The extracted features by tree-based convolution
have topologies varying in size and shape. We pro-
pose in Section 3.3 several heuristics for pooling.
This subsection aims to provide a fair comparison
among these pooling methods.

One reasonable protocol for comparison is to
tune all hyperparameters for each setting and com-
pare the highest accuracy. This methodology,
however, is too time-consuming, and depends
largely on the quality of hyperparameter tuning.
An alternative is to predefine a set of sensible hy-
perparameters and report the accuracy under the
same setting. In this experiment, we chose the
latter protocol, where hidden layers are all 300-
dimensional; no `2 penalty is added. Each config-
uration was run five times with different random
initializations. We summarize the mean and stan-
dard deviation in Table 4.

As the results imply, complicated pooling is bet-
ter than global pooling to some degree for both
model variants. But the effect is not strong; our
models are not that sensitive to pooling methods,
which mainly serve as a necessity for dealing with
varying-structure data. In our experiments, we ap-
ply 3-slot pooling for c-TBCNN and 2-slot pool-
ing for d-TBCNN.

2321



Model Pooling method 5-class accuracy (%)

c-TBCNN Global 48.48 ± 0.54
3-slot 48.69 ± 0.40

d-TBCNN Global 49.39 ± 0.24
2-slot 49.94 ± 0.63

Table 4: Accuracies of different pooling methods,
averaged over 5 random initializations. We chose
sensible hyperparameters manually in advance to
make a fair comparison. This leads to performance
degradation (1–2%) vis-a-vis Table 2.

≤9 10−14 15−19 20−24 25−29 30−34 ≥35
Setence length

0
10
20
30
40
50

Ac
cu

ra
cy

 (%
)

RNN
c-TBCNN
d-TBCNN

Figure 4: Accuracies versus sentence lengths.

Comparing with other studies in the literature,
we also notice that pooling is very effective and ef-
ficient in information gathering. Irsoy and Cardie
(2014) report 200 epochs for training a deep RNN,
which achieves 49.8% accuracy in the 5-class sen-
timent classification. Our TBCNNs are typically
trained within 25 epochs.

4.3.2 The Effect of Sentence Lengths
We analyze how sentence lengths affect our mod-
els. Sentences are split into 7 groups by length,
with granularity 5. A few too long or too short
sentences are grouped together for smoothing; the
numbers of sentences in each group vary from 126
to 457. Figure 4 presents accuracies versus lengths
in TBCNNs. For comparison, we also reimple-
mented RNN, achieving 42.7% overall accuracy,
slightly worse than 43.2% reported in Socher et
al. (2011b). Thus, we think our reimplementation
is fair and that the comparison is sensible.

We observe that c-TBCNN and d-TBCNN yield
very similar behaviors. They consistently outper-
form the RNN in all scenarios. We also notice the
gap, between TBCNNs and RNN, increases when
sentences contain more than 20 words. This re-
sult confirms our theoretical analysis in Section
2—for long sentences, the propagation paths in
RNNs are deep, causing RNNs’ difficulty in in-
formation processing. By contrast, our models ex-
plore structural information more effectively with

tree-based convolution. As information from any
part of the tree can propagate to the output layer
with short paths, TBCNNs are more capable for
sentence modeling, especially for long sentences.

4.3.3 Visualization
Visualization is important to understanding the
mechanism of neural networks. For TBCNNs, we
would like to see how the extracted features (af-
ter convolution) are further processed by the max
pooling layer, and ultimately related to the super-
vised task.

To show this, we trace back where the max
pooling layer’s features come from. For each di-
mension, the pooling layer chooses the maximum
value from the nodes that are pooled to it. Thus,
we can count the fraction in which a node’s fea-
tures are gathered by pooling. Intuitively, if a
node’s features are more related to the task, the
fraction tends to be larger, and vice versa.

Figure 5 illustrates an example processed by d-
TBCNN in the task of sentiment analysis.7 Here,
we applied global pooling because information
tracing is more sensible with one pooling slot.
As shown in the figure, tree-based convolution
can effectively extract information relevant to the
task of interest. The 2-layer windows correspond-
ing to “visual will impress viewers,” “the stunning
dreamlike visual,” say, are discriminative to the
sentence’s sentiment. Hence, large fractions (0.24
and 0.19) of their features, after convolution, are
gathered by pooling. On the other hand, words
like the, will, even are known as stop words (Fox,
1989). They are mostly noninformative for sen-
timent; hence, no (or minimal) features are gath-
ered. Such results are consistent with human intu-
ition.

We further observe that tree-based convolution
does integrate information of different words in
the window. For example, the word stunning ap-
pears in two windows: (a) the window “stunning”
itself, and (b) the window of “the stunning dream-
like visual,” with root node visual, stunning acting
as a child. We see that Window b is more rel-
evant to the ultimate sentiment than Window a,
with fractions 0.19 versus 0.07, even though the
root visual itself is neutral in sentiment. In fact,

7We only have space to present one example in the paper.
This example was not chosen deliberately. Similar traits can
be found through out the entire gallery, available on our web-
site. Also, we only present d-TBCNN, noticing that depen-
dency trees are intrinsically more suitable for visualization
since we know the “meaning” of every node.

2322



The
c(0)

stunning
ccc(.07)

dreamlike
ccc(.02)

visualc(.19) viewersc(.05)willc(.01)

impressc(.26)

even
cc(0)

those
(.03)

havec(.06)

who
(.10)

patiencec(.01)

little
(.06)

forc(.01)

pretensionc(.09)

Euro-film
ccc(.04)

Figure 5: Visualizing how features (after convolution) are related to the sentiment of a sentence. The
sample corresponds a sentence in the dataset, “The stunning dreamlike visual will impress even those
viewers who have little patience for Euro-film pretension.” The numbers in brackets denote the fraction
of a node’s features that are gathered by the max pooling layer (also indicated by colors).

Window a has a larger fraction than the sum of its
children’s (the windows of “the,” “stunning,” and
“dreamlike”).

5 Conclusion

In this paper, we proposed a novel neural discrim-
inative sentence model based on sentence parsing
structures. Our model can be built upon either
constituency trees (denoted as c-TBCNN) or de-
pendency trees (d-TBCNN).

Both variants have achieved high performance
in sentiment analysis and question classification.
d-TBCNN is slightly better than c-TBCNN in our
experiments, and has outperformed previous state-
of-the-art results in both tasks. The results show
that tree-based convolution can capture sentences’
structural information effectively, which is useful
for sentence modeling.

Acknowledgments

This research is supported by the National Basic
Research Program of China (the 973 Program) un-
der Grant No. 2015CB352201 and the National
Natural Science Foundation of China under Grant
Nos. 61232015 and 91318301.

References
James Allan, Courtney Wade, and Alvaro Bolivar.

2003. Retrieval and novelty detection at the sen-
tence level. In Proceedings of the 26th Annual Inter-
national ACM SIGIR Conference on Research and
Development in Informaion Retrieval, pages 314–
321. ACM.

Yoshua Bengio, Patrice Simard, and Paolo Frasconi.
1994. Learning long-term dependencies with gradi-
ent descent is difficult. IEEE Transactions on Neu-
ral Networks, 5(2):157–166.

Yoshua Bengio, Rejean Ducharme, Pascal Vincent, and
Christian Jauvin. 2003. A neural probabilistic lan-
guage model. Journal of Machine Learning Re-
search, 3:1137–1155.

Yoshua Bengio, Aaron Courville, and Pierre Vincent.
2013. Representation learning: A review and new
perspectives. IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, 35(8):1798–1828.

Phil Blunsom, Edward Grefenstette, and Nal Kalch-
brenner. 2014. A convolutional neural network for
modelling sentences. In Proceedings of the 52nd
Annual Meeting of the Association for Computa-
tional Linguistics.

Ronan Collobert and Jason Weston. 2008. A unified
architecture for natural language processing: Deep
neural networks with multitask learning. In Pro-
ceedings of the 25th International Conference on
Machine learning, pages 160–167.

Hang Cui, Vibhu Mittal, and Mayur Datar. 2006.
Comparative experiments on sentiment classifica-
tion for online product reviews. In Proceedings
21st AAAI Conference on Artificial Intelligence, vol-
ume 6, pages 1265–1270.

Marie-Catherine de Marneffe, Bill MacCartney, and
Christopher D. Manning. 2006. Generating typed
dependency parses from phrase structure parses. In
Proceedings of Language Resource and Evaluation
Conference, volume 6, pages 449–454.

Dumitru Erhan, Pierre-Antoine Manzagol, Yoshua
Bengio, Samy Bengio, and Pascal Vincent. 2009.
The difficulty of training deep architectures and the

2323



effect of unsupervised pre-training. In Proceed-
ings of International Conference on Artificial Intel-
ligence and Statistics, pages 153–160.

Christopher Fox. 1989. A stop list for general text. In
ACM SIGIR Forum, volume 24, pages 19–21.

Karl M. Hermann and Phil Blunsom. 2013. The role
of syntax in vector space models of compositional
semantics. In Proceedings of the 51st Annual Meet-
ing of the Association for Computational Linguis-
tics, pages 894–904.

Sepp Hochreiter and Jurgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Baotian Hu, Zhengdong Lu, Hang Li, and Qingcai
Chen. 2014. Convolutional neural network archi-
tectures for matching natural language sentences.
In Advances in Neural Information Processing Sys-
tems, pages 2042–2050.

Ozan Irsoy and Claire Cardie. 2014. Deep recursive
neural networks for compositionality in language.
In Advances in Neural Information Processing Sys-
tems, pages 2096–2104.

Mohit Iyyer, Jordan Boyd-Graber, Leonardo Claudino,
Richard Socher, and Hal Daumé III. 2014. A neural
network for factoid question answering over para-
graphs. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Process-
ing, pages 633–644.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing.

Quoc V. Le and Tomas Mikolov. 2014. Distributed
representations of sentences and documents. In Pro-
ceedings of the 31st International Conference on
Machine Learning.

Phong Le and Willem Zuidema. 2015. Compositional
distributional semantics with long short term mem-
ory. arXiv preprint arXiv:1503.02510.

Yann LeCun. 1995. Comparison of learning algo-
rithms for handwritten digit recognition. In Pro-
ceedings of International Conference on Artificial
Neural Networks, volume 60, pages 53–60.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S. Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in Neural Information Processing
Systems, pages 3111–3119.

Alessandro Moschitti. 2006. Efficient convolution ker-
nels for dependency and constituent syntactic trees.
In Proceedings of European Conference of Machine
Learning, pages 318–329. Springer.

Lili Mou, Ge Li, Zhi Jin, Lu Zhang, and Tao Wang.
2014. TBCNN: A tree-based convolutional neu-
ral network for programming language processing.
arXiv preprint arXiv:1409.5718.

Vinod Nair and Geoffrey E. Hinton. 2010. Rectified
linear units improve restricted Boltzmann machines.
In Proceedings of the 27th International Conference
on Machine Learning, pages 807–814.

Tetsuji Nakagawa, Kentaro Inui, and Sadao Kurohashi.
2010. Dependency tree-based sentiment classifica-
tion using CRFs with hidden variables. In Human
Language Technologies: The 2010 Annual Confer-
ence of the North American Chapter of the Associa-
tion for Computational Linguistics, pages 786–794.

Frank Reichartz, Hannes Korte, and Gerhard Paass.
2010. Semantic relation extraction with kernels over
typed dependency trees. In Proceedings of the 16th
ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, pages 773–782.

Lifeng Shang, Zhengdong Lu, and Hang Li. 2015.
Neural responding machine for short-text conversa-
tion. In Proceedings of the 53rd Annual Meeting of
the Association for Computational Linguistics and
the 7th International Joint Conference on Natural
Language Processing, pages 1577–1586.

Joao Silva, Luı́sa Coheur, Ana C. Mendes, and Andreas
Wichert. 2011. From symbolic to sub-symbolic in-
formation in question classification. Artificial Intel-
ligence Review, 35(2):137–154.

Richard Socher, Eric H. Huang, Jeffrey Pennin,
Christopher D. Manning, and Andrew Y. Ng. 2011a.
Dynamic pooling and unfolding recursive autoen-
coders for paraphrase detection. In Advances in
Neural Information Processing Systems, pages 801–
809.

Richard Socher, Jeffrey Pennington, Eric H. Huang,
Andrew Y. Ng, and Christopher D. Manning. 2011b.
Semi-supervised recursive autoencoders for predict-
ing sentiment distributions. In Proceedings of the
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 151–161.

Richard Socher, Brody Huval, Christopher D. Man-
ning, and Andrew Y. Ng. 2012. Semantic composi-
tionality through recursive matrix-vector spaces. In
Proceedings of the 2012 Joint Conference on Empir-
ical Methods in Natural Language Processing and
Computational Natural Language Learning, pages
1201–1211.

Richard Socher, Alex Perelygin, Jean Y. Wu, Jason
Chuang, Christopher D. Manning, Andrew Y. Ng,
and Christopher Potts. 2013. Recursive deep mod-
els for semantic compositionality over a sentiment
treebank. In Proceedings of Conference on Empiri-
cal Methods in Natural Language Processing, pages
1631–1642.

2324



Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. Journal of Machine Learning Re-
search, 15(1):1929–1958.

Fangzhong Su and Katja Markert. 2008. From words
to senses: a case study of subjectivity recognition.
In Proceedings of the 22nd International Conference
on Computational Linguistics-Volume 1, pages 825–
832. Association for Computational Linguistics.

Kaisheng Tai, Richard Socher, and Christopher D.
Manning. 2015. Improved semantic representa-
tions from tree-structured long short-term memory
networks. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics
and the 7th International Joint Conference on Natu-
ral Language Processing, pages 1556–1566.

Han Zhao, Zhengdong Lu, and Pascal Poupart. 2015.
Self-adaptive hierarchical sentence model. In Pro-
ceedings of the Twenty-Fourth International Joint
Conference on Artificial Intelligence, pages 4069–
4076.

Xiaodan Zhu, Parinaz Sobhani, and Hongyu Guo.
2015. Long short-term memory over tree structures.
In Proceedings of The 32nd International Confer-
ence on Machine Learning, pages 1604–1612.

2325


