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Word Segmentation as a Case Study
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Abstract

We propose a novel framework for im-
proving a word segmenter using informa-
tion acquired from symbol grounding. We
generate a term dictionary in three steps:
generating a pseudo-stochastically seg-
mented corpus, building a symbol ground-
ing model to enumerate word candidates,
and filtering them according to the ground-
ing scores. We applied our method to
game records of Japanese chess with com-
mentaries. The experimental results show
that the accuracy of a word segmenter can
be improved by incorporating the gener-
ated dictionary.

1 Introduction

Today we can easily obtain a large amount of
text associated with multi-modal information, and
there is a growing interest in the use of non-
textual information in the natural language pro-
cessing (NLP) community. Many of these studies
aim to output natural language sentences from a
nonlinguistic modality, such as image (Farhadi et
al., 2010; Yang et al., 2011; Rohrbach et al., 2013).
Kiros et al. (2014) showed that multi-modal infor-
mation improves the performance of a language
model.

Inspired by these studies, we explore a method
for improving the performance of a low-level NLP
task using multi-modal information. In this work,
we focus on the task of word segmentation (WS)
in Japanese. WS is often performed as the first
processing step for languages without clear word
boundaries, and it is as important as part-of-speech
(POS) tagging in English. We assume that a
large set of pairs of non-textual data and sentences
describing them is available as the information
source. In our experiments, the pairs consist of
game states in Shogi (Japanese chess) and textual

comments on them, which were made by Shogi
experts. We enumerate substrings (character se-
quences) in the sentences and match them with
Shogi states by a neural network model. The ra-
tionale here is that substrings which match with
non-language data well tend to be real words.

Our method consists of three steps (see Figure
1). First, we segment commentary sentences for a
game state in various ways to produce word can-
didates. Then, we match them with game states of
a Shogi playing program. Finally, we compile the
symbol grounding results at all states and incorpo-
rate them to an automatic WS. To the best of our
knowledge, this is the first result reporting a per-
formance improvement in an NLP task by symbol
grounding.

2 Stochastically Segmented Corpus

Before symbol grounding, we need to segment
the text into words that include probable candi-
date words. For this purpose, we use a stochasti-
cally segmented corpus (SSC) (Mori and Takuma,
2004). Then we propose to simulate it by a normal
(deterministically) segmented corpus to avoid the
problem of computational cost.

2.1 Stochastically Segmented Corpora

An SSC is defined as a combination of a raw
corpus C, (hereafter referred to as the character
sequence x|") and word boundary probabilities
of the form F;, which is the probability that a
word boundary exists between two characters x;
and x;4+1. These probabilities are estimated by a
model based on logistic regression (LR) (Fan et
al., 2008) trained on a manually segmented cor-
pus by referring to the surrounding characters'.
Since there are word boundaries before the first
character and after the last character of the corpus,
Py = P,, = 1. The expected frequency of a word

'In the experiment we used the same features as those
used in Neubig et al., (2011). .
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Figure 1: Overview of our method.

w in an SSC is calculated as follows: f,.(w) =
Sico PATIZN (1= Piyj)} Pray, where O =

{i | T = w} is the set of all the occurrences

of the string matching with w?.

2.2 Pseudo-Stochastically Segmented
Corpora

The computational cost (in terms of both time
and space) for calculating the expected frequen-
cies in an SSC is very high?, so it is not a prac-
tical approach for symbol grounding. In this
work, we approximate an SSC using a determinis-
tically segmented corpus, which we call a pseudo-
stochastically segmented corpus (pSSC). The fol-
lowing is the process we use to produce a pSSC
from an SSC.

e Fort=1ton, —1
1. output a character x;,
2. generate a random number 0 < p < 1,

3. output a word boundary if p < P; or
output nothing otherwise.

Now we have a corpus in the same format as
a standard segmented corpus with variable (non-
constant) segmentation, where x; and x;y; are
segmented with the probability of P;. We exe-
cute the above procedure m times and divide the
counts by m. The law of large numbers guarantees
that the approximation errors decrease to 0 when
m — 0o.

3 Symbol Grounding

As the target of symbol grounding, we use states
(piece positions) of a Shogi game and commen-

For a detailed explanation and a mathematical proof of
this method, please refer to Mori and Takuma (2004) .

3This is because an SSC has many words and word frag-
ments. Additionally, word 1-gram frequencies must be cal-
culated using floating point numbers instead of integers.

taries associated with them. We should note, how-
ever, that our framework is general and applica-
ble to different types of combinations such as im-
age/description pairs (Regneri et al., 2013).

3.1 Game Commentary

The Japanese language is one of the languages
without clear word boundaries and we need an au-
tomatic WS as the first step of NLP. In Shogi, there
are many professional players and many commen-
taries about game states are available.

3.2 Grounding Words

We build a symbol grounding model using a Shogi
commentary dataset. We use a set of pairs of a
Shogi state S; and a commentary sentence C; as
the training set. A Shogi state .S; is converted into
a feature vector f(S;). We generate m (in our ex-
periment, m = 4) pSSC C! from C;. C! contains
m corpora of the same text body but with differ-
ent word segmentation, C’{j (g =1,...,m). We
treat these as m pairs of a feature vector of Shogi
state f(.S;) and a sequence of words C;;. We train
a model which predicts words in C}; using f(.5;)
as input.

We use a multi-layer perceptron as the predic-
tion model. The input is a vector of the features
of a state. The hidden layer is a 100-dimensional
vector and is activated by a bipolar sigmoid func-
tion. Its output is a d-dimensional real-valued vec-
tor, each of whose elements indicates whether a
word in the vocabulary of d words appears in the
commentary or not. The output layer is activated
by a binary sigmoid function.

We use features of Shogi states which a com-
puter Shogi program called Gekisashi (Tsuruoka
et al., 2002) uses to evaluate the states in game
tree search as input. The features of Shogi states
used in this experiment are below:

a) Positions of pieces (e.g. my rook is at 2h).
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b) Pieces captured (e.g.
bishop).

¢) Combinations of a) and b) (e.g. my king is at
7h and the opponent’s rook is at 7b).

d) Other heuristic features.

the opponent has a

Among them, a), b) and c) occupy the majority.

Unlike normal symbol grounding, the vocabu-
lary contains many word candidates appearing in
the pSSC generated from the commentaries. Some
are real words and some are wrong fragments.
These wrong fragments will appear more or less
randomly in the commentaries than real words.
The perceptron therefore cannot acquire strong re-
lation between states and fragments and the output
values of the perceptron will be smaller than those
of real words.

4 Word Segmentation Using Symbol
Grounding Result

This section describes a baseline automatic word
segmenter and a method for incorporating the
symbol grounding result to it.

4.1 Baseline Word Segmenter

Among many Japanese WS and morphological an-
alyzers (word segmentation and POS tagging), we
adopt pointwise WS (Neubig et al., 2011), because
it is the only word segmenter which is capable of
adding new words without POS information.

The input of the pointwise WS is an unseg-
mented character sequence * = x1x2 - - - xk. The
word segmenter decides if there is a word bound-
ary t; = 1 or not {; = 0 by using support vector
machines (SVMs) (Fan et al., 2008). The features
are character n-grams and character type n-grams
(n = 1,2, 3) around the decision points in a win-
dow with a width of 6 characters. Additional fea-
tures are triggered if character n-grams in the win-
dow match with character sequences in the dictio-
nary.

4.2 Training a Word Segmenter with
Grounded Words

As a first trial for incorporating symbol ground-
ing results to an NLP task, we propose to gener-
ate a dictionary based on the symbol grounding
result. We can expect that the word candidates
that are given high scores by the perceptron in the
symbol grounding result have strong relationship
to the positions. In other words, we can make a
good dictionary by selecting word candidates in
descending order of the scores. As a method for

Table 1: Corpus specifications.

#sent. #words #char.

Training

BCCWJ 56,753 | 1,324,951 | 1,911,660

Newspaper 8,164 240,097 361,843

Conversation | 11,700 147,809 197,941
Develepment

Shogi-dev. 170 2,501 3,340
Test

BCCW]J-test 6,025 148,929 212,261

Shogi-test 3,299 24,966 32,481

taking all the occurrences into account, we test the
following three functions:

sum: the summation of the scores of all the out-
put vectors,

ave: the average of them,

max: the maximum in them.

First, we acquire a V' -dimensional real-valued vec-
tor for each Shogi state .S; as the result of symbol
grounding. Then, for each candidate in C’{j, we
get the element of the vector which corresponds to
the candidate as the score of the candidate. After
that, we get the summation of, the average of, or
the maximum in the scores of the same candidate
over the whole dataset.

Finally we select the top R percent of word can-
didates in descending order of the value of sum,
ave, or max and add them to the WS dictionary
and retrain the model.

5 Evaluation

We conducted word segmentation experiments in
the following settings.

5.1 Corpora

The annotated corpus we used to build the base-
line word segmenter is the manually annotated
part (core data) of the Balanced Corpus of Con-
temporary Written Japanese (BCCWIJ) (Maekawa,
2008), plus newspaper articles and daily conver-
sation sentences. We also used a 234,652-word
dictionary (UniDic) provided with the BCCWJ.
A small portion of the BCCWJ core data is re-
served for testing. In addition, we manually seg-
mented sentences randomly obtained from Shogi
commentaries. We divided these sentences into
two parts: a development set and a test set. Ta-
ble 1 shows the details of these corpora.

To make a pSSC, we prepared 33,151 pairs of
a Shogi position and a commentary sentence. The
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Table 2: WS accuracy on BCCW/J.

Recall | Prec. | F-meas.

Baseline 98.99 | 99.06 99.03

+ Sym.Gro. | 99.03 | 99.01 99.02
Table 3: WS accuracy on Shogi commentaries.

Recall | Prec. | F-meas.

Baseline 90.12 | 91.43 90.77

+ Sym.Gro. | 90.60 | 91.66 91.13

sentences are converted into pSSC m = 4 times
by an LR word segmentation model trained from
the training data in Table 1 and sent to the symbol
grounding module.

5.2 Word Segmentation Systems

We built the following two word segmentation
models (Neubig et al., 2011) to evaluate our
framework.

Baseline: The model is trained from training
data shown in Table 1 and UniDic.

+Sym.Gro.: The model is trained from the lan-
guage resources for the Baseline and the
symbol grounding result.

To decide the function and the value of R for
+Sym.Gro. (see Section 4.2), we measured the
accuracies on the development set of all the com-
binations. The best combination was sum and
R = 0.011*. In this case, 127 words were added
to the dictionary.

5.3 Results and Discussion

Following the standard in word segmentation ex-
periments, the evaluation criteria are recall, preci-
sion, and F-measure (their harmonic mean).

Table 2 and 3 show WS accuracies on BCCWJ-
test and Shogi-test, respectively. The difference in
accuracy of the baseline method on BCCW]J-test
and Shogi-test shows that WS of Shogi commen-
taries is very difficult. Like many other domains,
Shogi commentaries contain many special words
and expressions, which decrease the accuracy.

When we compare the F-measures on Shogi-
test (Table 3), +Sym.Gro. outperforms Baseline.
The improvement is statistically significant (at 5%
level). The error reduction ratio is comparable to a
natural annotation case (Liu et al., 2014), despite
the fact that our method is unsupervised except for

*In addition we measured the accuracies on the test set of
all the combinations and found that the same function and the

value of the parameter are the best. This indicates the stability
of the function and the parameter.

a hyperparameter. Thus we can say that WS im-
provement by symbol grounding is as valuable as
the annotation additions.

From a close look at the comparison of the re-
call and the precision, we see that the improve-
ment in the recall is higher than that of the preci-
sion. This result shows that the symbol grounding
successfully acquired new words with a few erro-
neous words. As the final remark, the result on the
general domain (Table 2) shows that our frame-
work does not cause a severe performance degra-
dation in the general domain.

6 Related Work

The NLP task we focus on in this paper is word
segmentation. One of the first empirical methods
was based on a hidden Markov model (Nagata,
1994). In parallel, there were attempts at solv-
ing Chinese word segmentation in a similar way
(Sproat and Chang, 1996). These methods take
words as the modeling unit.

Recently, Neubig et al. (2011) have presented
a method for directly deciding whether there is a
word boundary or not at each point between char-
acters. For Chinese word segmentation, there are
some attempts at tagging characters with BIES
tags (Xue, 2003) by a sequence labeller such as
CRFs (Lafferty et al., 2001), where B, I, E, and
S means the beginning of a word, intermediate of
a word, the end of a word, and a single charac-
ter word, respectively. The pointwise WS can be
seen as character tagging with the BI tag system,
in which there is no constraint between neighbor-
ing tags. For Japanese WS, our preliminary exper-
iments showed that the combination of the BI tag
system with SVMs is slightly better than the BIES
tag system with CRFs. This is another reason why
we used the former in this paper. Our extension of
word segmentation is, however, applicable to the
BIES/CRFs combination as well.

The method we describe in this paper is un-
supervised and requires a small amount of anno-
tated data to tune the hyperparameter. From this
viewpoint, the approach based on natural annota-
tion (Yang and Vozila, 2014; Jiang et al., 2013;
Liu et al., 2014) may come to readers’ mind. In
these studies, tags in hyper-texts were regarded
as partial annotations and used to improve WS
performance using CRFs trainable from such data
(Tsuboi et al., 2008). Mori and Nagao (1996) pro-
posed a method for extracting new words from a
large amount of raw text. Murawaki and Kuro-
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hashi (2008) proposed an online method in a sim-
ilar setting. In contrast to these studies, this paper
proposes to use other modalities, game states as
the first trial, than languages.

7 Conclusion

We have described an unsupervised method for
improving word segmentation based on symbol
grounding results. To extract word candidates
from raw sentences, we first segment sentences
stochastically, and then match the word candidate
sequences with game states that are described by
the sentences. Finally, we selected word candi-
dates referring to the grounding scores. The exper-
imental results showed that we can improve word
segmentation by using symbol grounding results.
Our framework is general and it is worth testing
on other NLP tasks. As future work, we will apply
other deep neural network models to our approach.
It is interesting to apply the symbol grounding re-
sults to an embedding model-based word segmen-
tation approach (Ma and Hinrichs, 2015). It is also
interesting to extend our method to deal with other
types of non-textual information such as images
and economic indices.
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