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Abstract

We present LEMMING, a modular log-
linear model that jointly models lemmati-
zation and tagging and supports the inte-
gration of arbitrary global features. It is
trainable on corpora annotated with gold
standard tags and lemmata and does not
rely on morphological dictionaries or an-
alyzers. LEMMING sets the new state of
the art in token-based statistical lemmati-
zation on six languages; e.g., for Czech
lemmatization, we reduce the error by
60%, from 4.05 to 1.58. We also give em-
pirical evidence that jointly modeling mor-
phological tags and lemmata is mutually
beneficial.

1 Introduction

Lemmatization is important for many NLP tasks,
including parsing (Björkelund et al., 2010; Seddah
et al., 2010) and machine translation (Fraser et al.,
2012). Lemmata are required whenever we want
to map words to lexical resources and establish the
relation between inflected forms, particularly crit-
ical for morphologically rich languages to address
the sparsity of unlemmatized forms. This strongly
motivates work on language-independent token-
based lemmatization, but until now there has been
little work (Chrupała et al., 2008).

Many regular transformations can be described
by simple replacement rules, but lemmatization
of unknown words requires more than this. For
instance the Spanish paradigms for verbs end-
ing in ir and er share the same 3rd person plu-
ral ending en; this makes it hard to decide which
paradigm a form belongs to.1 Solving these kinds
of problems requires global features on the lemma.
Global features of this kind were not supported

1Compare admiten “they admit” → admitir “to admit”,
but deben “they must”→ deber “to must”.

by previous work (Dreyer et al., 2008; Chrupała,
2006; Toutanova and Cherry, 2009; Cotterell et al.,
2014).

There is a strong mutual dependency between
(i) lemmatization of a form in context and (ii)
disambiguating its part-of-speech (POS) and mor-
phological attributes. Attributes often disam-
biguate the lemma of a form, which explains
why many NLP systems (Manning et al., 2014;
Padró and Stanilovsky, 2012) apply a pipeline
approach of tagging followed by lemmatization.
Conversely, knowing the lemma of a form is of-
ten beneficial for tagging, for instance in the pres-
ence of syncretism; e.g., since German plural noun
phrases do not mark gender, it is important to
know the lemma (singular form) to correctly tag
gender on the noun.

We make the following contributions. (i) We
present the first joint log-linear model of mor-
phological analysis and lemmatization that oper-
ates at the token level and is also able to lem-
matize unknown forms; and release it as open-
source (http://cistern.cis.lmu.de/lemming).
It is trainable on corpora annotated with gold stan-
dard tags and lemmata. Unlike other work (e.g.,
(Smith et al., 2005)) it does not rely on morpho-
logical dictionaries or analyzers. (ii) We describe
a log-linear model for lemmatization that can eas-
ily be incorporated into other models and supports
arbitrary global features on the lemma. (iii) We
set the new state of the art in token-based sta-
tistical lemmatization on six languages (English,
German, Czech, Hungarian, Latin and Spanish).
(iv) We experimentally show that jointly model-
ing morphological tags and lemmata is mutually
beneficial and yields significant improvements in
joint (tag+lemma) accuracy for four out of six lan-
guages; e.g., Czech lemma errors are reduced by
>37% and tag+lemma errors by >6%.
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Figure 1: Edit tree for the inflected form umgeschaut “looked
around” and its lemma umschauen “to look around”. The
right tree is the actual edit tree we use in our model, the left
tree visualizes what each node corresponds to. The root node
stores the length of the prefix umge (4) and the suffix t (1).

2 Log-Linear Lemmatization

Chrupała (2006) formalizes lemmatization as a
classification task through the deterministic pre-
extraction of edit operations transforming forms
into lemmata. Our lemmatization model is in this
vein, but allows the addition of external lexical in-
formation, e.g., whether the candidate lemma is in
a dictionary. Formally, lemmatization is a string-
to-string transduction task. Given an alphabet Σ,
it maps an inflected form w ∈ Σ∗ to its lemma
l ∈ Σ∗ given its morphological attributes m. We
model this process by a log-linear model:

p(l | w,m) ∝ hw(l) · exp
(
f(l, w,m)Tθ

)
,

where f represents hand-crafted feature functions,
θ is a weight vector, and hw : Σ∗ → {0, 1} deter-
mines the support of the distribution, i.e., the set
of candidates with non-zero probability.

Candidate selection. A proper choice of the
support function h(·) is crucial to the success of
the model – too permissive a function and the
computational cost will build up, too restrictive
and the correct lemma may receive no probability
mass. Following Chrupała (2008), we define h(·)
through a deterministic pre-extraction of edit trees.
To extract an edit tree e for a pair form-lemma
〈w, l〉, we first find the longest common substring
(LCS) (Gusfield, 1997) between them and then re-
cursively model the prefix and suffix pairs of the
LCS. When no LCS can be found the string pair is
represented as a substitution operation transform-
ing the first string to the second. The resulting edit
tree does not encode the LCSs but only the length
of their prefixes and suffixes and the substitution
nodes (cf. Figure 1); e.g., the same tree transforms
worked into work and touched into touch.

As a preprocessing step, we extract all edit trees
that can be used for more than one pair 〈w, l〉. To
generate the candidates of a word-form, we apply
all edit trees and also add all lemmata this form
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Figure 2: Our model is a 2nd-order linear-chain CRF aug-
mented to predict lemmata. We heavily prune our model and
can easily exploit higher-order (>2) tag dependencies.

was seen with in the training set (note that only
a small subset of the edit trees is applicable for
any given form because most require incompatible
substitution operations).2

Features. Our novel formalization lets us com-
bine a wide variety of features that have been
used in different previous models. All features are
extracted given a form-lemma pair 〈w, l〉 created
with an edit tree e.

We use the following three edit tree features of
Chrupała (2008). (i) The edit tree e. (ii) The pair
〈e, w〉. This feature is crucial for the model to
memorize irregular forms, e.g., the lemma of was
is be. (iii) For each form affix (of maximum length
10): its conjunction with e. These features are use-
ful in learning orthographic and phonological reg-
ularities, e.g., the lemma of signalling is signal,
not signall.

We define the following alignment features.
Similar to Toutanova and Cherry (2009) (TC), we
define an alignment between w and l. Our align-
ments can be read from an edit tree by aligning
the characters in LCS nodes character by character
and characters in substitution nodes block-wise.
Thus the alignment of umgeschaut - umschauen
is: u-u, m-m, ge-ε, s-s, c-c, h-h, a-a, u-u, t-en.
Each alignment pair constitutes a feature in our
model. These features allow the model to learn
that the substitution t/en is likely in German. We
also concatenate each alignment pair with its form
and lemma character context (of up to length 6) to
learn, e.g., that ge is often deleted after um.

We define two simple lemma features. (i) We
use the lemma itself as a feature, allowing us to
learn which lemmata are common in the language.
(ii) Prefixes and suffixes of the lemma (of maxi-

2Pseudo-code for edit tree creation and candidate
lemma generation with examples can be found in the ap-
pendix (http://cistern.cis.lmu.de/lemming/
appendix.pdf).
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mum length 10). This feature allows us to learn
that the typical endings of Spanish verbs are ir, er,
ar.

We also use two dictionary features (on lem-
mata): Whether l occurs > 5 times in Wikipedia
and whether it occurs in the dictionary ASPELL.3

We use a similar feature for different capitaliza-
tion variants of the lemma (lowercase, first letter
uppercase, all uppercase, mixed). This differenti-
ation is important for German, where nouns are
capitalized and en is both a noun plural marker
and a frequent verb ending. Ignoring capitaliza-
tion would thus lead to confusion.

POS & morphological attributes. For each fea-
ture listed previously, we create a conjunction with
the POS and each morphological attribute.4

3 Joint Tagging and Lemmatization

We model the sequence of morphological tags us-
ing MARMOT (Müller et al., 2013), a pruned
higher-order CRF. This model avoids the exponen-
tial runtime of higher-order models by employing
a pruning strategy. Its feature set consists of stan-
dard tagging features: the current word, its affixes
and shape (capitalization, digits, hyphens) and the
immediate lexical context. We combine lemmati-
zation and higher-order CRF components in a tree-
structured CRF. Given a sequence of formsw with
lemmata l and morphological+POS tags m, we
define a globally normalized model:

p(l,m | w) ∝ ∏
i hwi(li) exp(f(li, wi,mi)Tθ

+g(mi,mi−1,mi−2,w, i)Tλ),

where f and g are the features associated with
lemma and tag cliques respectively and θ and λ
are weight vectors. The graphical model is shown
in Figure 2. We perform inference with belief
propagation (Pearl, 1988) and estimate the pa-
rameters with SGD (Tsuruoka et al., 2009). We
greatly improved the results of the joint model by
initializing it with the parameters of a pretrained
tagging model.

4 Related Work

In functionality, our system resembles MORFETTE

(Chrupała et al., 2008), which generates lemma
3ftp://ftp.gnu.org/gnu/aspell/dict
4Example: for the Spanish noun medidas “measures” with

attributes NOUN, COMMON, PLURAL and FEMININE, we
conjoin each feature above with NOUN, NOUN+COMMON,
NOUN+PLURAL and NOUN+FEMININE.

candidates by extracting edit operation sequences
between lemmata and surface forms (Chrupała,
2006), and then trains two maximum entropy
Markov models (Ratnaparkhi, 1996) for mor-
phological tagging and lemmatization, which are
queried using a beam search decoder.

In our experiments we use the latest version5 of
MORFETTE. This version is based on structured
perceptron learning (Collins, 2002) and edit trees
(Chrupała, 2008). Models similar to MORFETTE

include those of Björkelund et al. (2010) and Ges-
mundo and Samardzic (2012) and have also been
used for generation (Dušek and Jurčı́ček, 2013).
Wicentowski (2002) similarly treats lemmatiza-
tion as classification over a deterministically cho-
sen candidate set, but uses distributional informa-
tion extracted from large corpora as a key source
of information.

Toutanova and Cherry (2009)’s joint morpho-
logical analyzer predicts the set of possible lem-
mata and coarse-grained POS for a word type.
This is different from our problem of lemmatiza-
tion and fine-grained morphological tagging of to-
kens in context. Despite the superficial similarity
of the two problems, direct comparison is not pos-
sible. TC’s model is best thought of as inducing a
tagging dictionary for OOV types, mapping them
to a set of tag and lemma pairs, whereas LEM-
MING is a token-level, context-based morphologi-
cal tagger.

We do, however, use TC’s model of lemmati-
zation, a string-to-string transduction model based
on Jiampojamarn et al. (2008) (JCK), as a stand-
alone baseline. Our tagging-in-context model is
faced with higher complexity of learning and in-
ference since it addresses a more difficult task;
thus, while we could in principle use JCK as a re-
placement for our candidate selection, the edit tree
approach – which has high coverage at a low aver-
age number of lemma candidates (cf. Section 5) –
allows us to train and apply LEMMING efficiently.

Smith et al. (2005) proposed a log-linear model
for the context-based disambiguation of a morpho-
logical dictionary. This has the effect of joint tag-
ging, morphological segmentation and lemmatiza-
tion, but, critically, is limited to the entries in the
morphological dictionary (without which the ap-
proach cannot be used), causing problems of re-
call. In contrast, LEMMING can analyze any word,

5https://github.com/
gchrupala/morfette/commit/
ca886556916b6cc1e808db4d32daf720664d17d6
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cs de en es hu la
all unk all unk all unk all unk all unk all unk

1 MARMOT tag 89.75 76.83 82.81 61.60 96.45 90.68 97.05 90.07 93.64 84.65 82.37 53.73
2

JC
K lemma 95.95 81.28 96.63 85.84 99.08 94.28 97.69 87.19 96.69 88.66 90.79 58.23

3 tag+lemma 87.85 67.00 81.60 55.97 96.17 87.32 95.44 80.62 92.15 78.89 79.51 39.07
4

L
E

M
M

IN
G

-P

+d
ic

t

lemma 97.46 89.14 97.70 91.27 99.21 95.59 98.48 92.98 97.53 92.10 93.07 69.83
5 tag+lemma 88.86 72.51 82.27 59.42 96.27 88.49 96.12 85.80 92.59 80.77 80.49 44.26
6

+m
rp

h lemma 97.29 88.98 97.51 90.85 NA NA 98.68 94.32 97.53 92.15 92.54 67.81
7 tag+lemma 89.23 74.24 82.49 60.42 NA NA 96.35 87.25 93.11 82.56 80.67 45.21
8

L
E

M
M

IN
G

-J

+d
ic

t tag 90.34+ 78.47 83.10+ 62.36 96.32 89.70 97.11 90.13 93.64 84.78 82.89 54.69
9 lemma 98.27 92.67 98.10+ 92.79 99.21 95.23 98.67 94.07 98.02 94.15 95.58+ 81.74+

10 tag+lemma 89.69 75.44 82.64 60.49 96.17 87.87 96.23 86.19 92.84 81.89 81.92 49.97
11

+m
rp

h tag 90.20 79.72+× 83.10+ 63.10+× NA NA 97.16 90.66 93.67 85.12 83.49+× 58.76+×

12 lemma 98.42+× 93.46+× 98.10+ 93.02+ NA NA 98.78+× 94.86+× 98.08+ 94.26+ 95.36 80.94
13 tag+lemma 89.90+× 78.34+× 82.84+× 62.10+× NA NA 96.41× 87.47× 93.40+× 84.15+× 82.57+ 54.63+

Table 2: Test results for LEMMING-J, the joint model, and pipelines (lines 2–7) of MARMOT and (i) JCK and (ii) LEMMING-P.
In each cell, overall token accuracy is left (all), accuracy on unknown forms is right (unk). Standalone MARMOT tagging
accuracy (line 1) is not repeated for pipelines (lines 2–7). The best numbers are bold. LEMMING-J models significantly better
than LEMMING-P (+), or LEMMING models not using morphology (+dict) (×) or both (+×) are marked. More baseline numbers
in the appendix (Table A2).

including OOVs, and only requires the same train-
ing corpus as a generic tagger (containing tags and
lemmata), a resource that is available for many
languages.

5 Experiments

Datasets. We present experiments on the joint
task of lemmatization and tagging in six diverse
languages: English, German, Czech, Hungarian,
Latin and Spanish. We use the same data sets as
in Müller and Schütze (2015), but do not use the
out-of-domain test sets. The English data is from
the Penn Treebank (Marcus et al., 1993), Latin
from PROIEL (Haug and Jøhndal, 2008), Ger-
man and Hungarian from SPMRL 2013 (Seddah
et al., 2013), and Spanish and Czech from CoNLL
2009 (Hajič et al., 2009). For German, Hungar-
ian, Spanish and Czech we use the splits from the
shared tasks; for English the split from SANCL
(Petrov and McDonald, 2012); and for Latin a
8/1/1 split into train/dev/test. For all languages we
limit our training data to the first 100,000 tokens.
Dataset statistics can be found in Table A4 of the
appendix. The lemma of Spanish se is set to be
consistent.

Baselines. We compare our model to three
baselines. (i) MORFETTE (see Section 4). (ii)
SIMPLE, a system that for each form-POS pair, re-
turns the most frequent lemma in the training data
or the form if the pair is unknown. (iii) JCK, our
reimplementation of Jiampojamarn et al. (2008).
Recall that JCK is TC’s lemmatization model and
that the full TC model is a type-based model that

cannot be applied to our task.
As JCK struggles to memorize irregulars, we

only use it for unknown form-POS pairs and use
SIMPLE otherwise. For aligning the training data
we use the edit-tree-based alignment described in
the feature section. We only use output alpha-
bet symbols that are used for ≥ 5 form-lemma
pairs and also add a special output symbol that
indicates that the aligned input should simply be
copied. We train the model using a structured av-
eraged perceptron and stop after 10 training itera-
tions. In preliminary experiments we found type-
based training to outperform token-based training.
This is understandable as we only apply our model
to unseen form-POS pairs. The feature set is an
exact reimplementation of (Jiampojamarn et al.,
2008), it consists of input-output pairs and their
character context in a window of 6.

Results. Our candidate selection strategy re-
sults in an average number of lemma candidates
between 7 (Hungarian) and 91 (Czech) and a cov-
erage of the correct lemma on dev of >99.4 (ex-
cept 98.4 for Latin).6 We first compare the base-
lines to LEMMING-P, a pipeline based on Sec-
tion 2, that lemmatizes a word given a predicted
tag and is trained using L-BFGS (Liu and No-
cedal, 1989). We use the implementation of MAL-
LET (McCallum, 2002). For these experiments we
train all models on gold attributes and test on at-
tributes predicted by MORFETTE. MORFETTE’s
lemmatizer can only be used with its own tags. We
thus use MORFETTE tags to have a uniform setup,

6Note that our definition of lemmatization accuracy and
unknown forms ignores capitalization.

2271



cs de en es hu la
ba

se
lin

es SIMPLE 87.22 93.27 97.60 92.92 86.09 85.19
JCK 96.24 97.67 98.71 97.61 97.48 93.26
MORFETTE 96.25 97.12 98.43 97.97 97.22 91.89

L
E

M
M

IN
G

-P edittree 96.29 97.84+ 98.71 97.91 97.31 93.00
+align,+lemma 96.74+ 98.17+ 98.76+ 98.05 97.70+ 93.76+

+dict 97.50+ 98.36+ 98.84+ 98.39+ 97.98+ 94.64+

+mrph 96.59+ 97.43+ NA 98.46+ 97.77+ 93.60

Table 1: Lemma accuracy on dev for the baselines and the
different versions of LEMMING-P. POS and morphological
attributes are predicted using MORFETTE. The best baseline
numbers are underlined, the best numbers are bold. Models
significantly better than the best baseline are marked (+).

which isolates the effects of the different taggers.
Numbers for MARMOT tags are in the appendix
(Table A1). For the initial experiments, we only
use POS and ignore additional morphological at-
tributes. We use different feature sets to illustrate
the utility of our templates.

The first model uses the edit tree features (edit-
tree). Table 1 shows that this version of LEM-
MING outperforms the baselines on half of the lan-
guages.7 In a second experiment we add the align-
ment (+align) and lemma features (+lemma) and
show that this consistently outperforms all base-
lines and edittree. We then add the dictionary fea-
ture (+dict). The resulting model outperforms all
previous models and is significantly better than the
best baselines for all languages.8 These experi-
ments show that LEMMING-P yields state-of-the-
art results and that all our features are needed to
obtain optimal performance. The improvements
over the baselines are >1 for Czech and Latin and
≥.5 for German and Hungarian.

The last experiment also uses the additional
morphological attributes predicted by MORFETTE

(+mrph). This leads to a drop in lemmatization
performance in all languages except Spanish (En-
glish has no additional attributes). However, pre-
liminary experiments showed that correct mor-
phological attributes would substantially improve
lemmatization as they help in cases of ambigu-
ity. As an example, number helps to lemmatize
the singular German noun Raps “canola”, which
looks like the plural of Rap “rap”. Numbers can be
found in Table A3 of the appendix. This motivates
the necessity of joint tagging and lemmatization.

For the final experiments, we run pipeline mod-
els on tags predicted by MARMOT (Müller et
al., 2013) and compare them to LEMMING-J, the

7Unknown word accuracies in the appendix (Table A1).
8We use the randomization test (Yeh, 2000) and p = .05.

joint model described in Section 3. All LEMMING

versions use exactly the same features. Table 2
shows that LEMMING-J outperforms LEMMING-
P in three measures (see bold tag, lemma &
joint (tag+lemma) accuracies) except for English,
where we observe a tie in lemma accuracy and
a small drop in tag and tag+lemma accuracy.
Coupling morphological attributes and lemmatiza-
tion (lines 8–10 vs 11–13) improves tag+lemma
prediction for five languages. Improvements in
lemma accuracy of the joint over the best pipeline
systems range from .1 (Spanish), over >.3 (Ger-
man, Hungarian) to ≥.96 (Czech, Latin).

Lemma accuracy improvements for our best
models (lines 4–13) over the best baseline (lines
2–3) are >1 (German, Spanish, Hungarian), >2
(Czech, Latin) and even more pronounced on un-
known forms: >1 (English), >5 (German, Span-
ish, Hungarian) and >12 (Czech, Latin).

6 Conclusion

LEMMING is a modular lemmatization model that
supports arbitrary global lemma features and joint
modeling of lemmata and morphological tags. It is
trainable on corpora annotated with gold standard
tags and lemmata, and does not rely on morpho-
logical dictionaries or analyzers. We have shown
that modeling lemmatization and tagging jointly
benefits both tasks, and we set the new state of the
art in token-based lemmatization on six languages.
LEMMING is available under an open-source li-
cence (http://cistern.cis.lmu.de/lemming).
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Djamé Seddah, Grzegorz Chrupała, Özlem Çetinoğlu,
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