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Abstract

If intelligent systems are to interact with
humans in a natural manner, the ability
to describe daily life activities is impor-
tant. To achieve this, sensing human ac-
tivities by capturing multimodal informa-
tion is necessary. In this study, we con-
sider a smart environment for sensing ac-
tivities with respect to realistic scenarios.
We next propose a sentence generation
system from observed multimodal infor-
mation in a bottom up manner using mul-
tilayered multimodal latent Dirichlet allo-
cation and Bayesian hidden Markov mod-
els. We evaluate the grammar learning and
sentence generation as a complete process
within a realistic setting. The experimen-
tal result reveals the effectiveness of the
proposed method.

1 Introduction

Describing daily life activities is an important abil-
ity of intelligent systems. In fact, we can use
this ability to achieve a monitoring system that
is able to report on an observed situation, or cre-
ate an automatic diary of a user. Recently, sev-
eral studies have been performed to generate sen-
tences that describe images using Deep Learning
(Vinyals et al., 2014; Fang et al., 2014; Donahue
et al., 2014; Kiros et al., 2015). Although these
results were good, we are interested in unsuper-
vised frameworks. This is necessary to achieve
a system that can adapt to the user, that is, one
that can learn a user-unique language and gener-
ate it automatically. Moreover, the use of crowd-
sourcing should be avoided to respect the privacy

of the user. Regarding this, studies on sentence
generation from RGB videos have been discussed
in (Yu and Siskind, 2013; Regneri et al., 2013).
A promising result for language learning has been
shown in (Yu and Siskind, 2013) and a quite chal-
lenging effort to describe cooking activities was
made in (Regneri et al., 2013). However, these
studies rely only on visual information, while we
aim to build a system that is able to describe every-
day activities using multimodal information. To
realize such systems, we need to consider two
problems. The first problem is the sensing of daily
life activities. In this paper, we utilize a smart
house (Motooka et al., 2010) for sensing human
activities. Thanks to the smart house, multimodal
information such as visual, motion, and audio data
can be captured. The second problem to be tack-
led is verbalization of the observed scenes. To
solve this problem, a multilayered multimodal la-
tent Dirichlet allocation (mMLDA) was proposed
in (Attamimi et al., 2014).

In this paper, we propose a sentence generation
system from observed scenes in a bottom up man-
ner using mMLDA and a Bayesian hidden Markov
model (BHMM) (Goldwater and Griffiths, 2007).
To generate sentences from scenes, we need to
consider the words that represent the scenes and
their order. Here, mMLDA is used to infer words
for given scenes. To determine the order of words,
inspired by (Kawai et al., 2014), a probabilis-
tic grammar that considers syntactic information
is learned using BHMM. In this study, the order
of concepts is generated by sampling the learned
grammar. The word selection for each generated
concept is then performed using the observed data.
Moreover, a language model that represents the re-
lationship between words is also used to calculate
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Figure 1: Language learning and sentence genera-
tion system.

Tag readerWearable
camera

Laser range

finder

Gyro-acceleration
sensor

Object 

with an 

RFID tag

RFID tag 

to detect 

the end of 

actions 

Figure 2: Multimodal information acquisition.

the transition probability between them. Consid-
ering the transition probability at word level, a lat-
tice of word candidates corresponding to the con-
cept sequence can be generated. Therefore, sen-
tence generation can be thought of as a problem
of finding the word sequence that has the high-
est probability from the lattice of word candidates,
which can be solved by the Viterbi algorithm. Fi-
nally, sampling from grammar is performed mul-
tiple times to generate sentence candidates and se-
lect the most probable one.

2 Proposed method

2.1 Overview

Figure 1 illustrates the overall system of proposed
language learning and sentence generation. In
this study, we use a smart environment for sens-
ing multimodal information. The system shown in
Figure 2 is part of a smart house (Motooka et al.,
2010) that is used to capture multimodal informa-
tion. Here, an RFID tag is attached to an object
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Object Concept

Position WordWordWord

Place Concept

Object

Figure 3: Graphical model of mMLDA.

to enable the object information to be read using a
wearable tag reader. To capture motion, five sen-
sors that consist of 3-axis acceleration with 3-axis
gyroscope sensors are attached to the upper body,
as shown in Figure 2. Moreover, a particle filter-
based human tracker (Glas et al., 2007) applied
to four laser range finders is used to estimate the
location of a person while performing an action.
This is a setup designed to demonstrate that lan-
guage can be learned and generated from real hu-
man actions. Ultimately, our goal is sensing based
on image recognition.

The acquired multimodal data is then processed,
which results in a bag-of-words model (BoW) and
bag-of-features model (BoF) (Csurka et al., 2004).
Using mMLDA (see section 2.2), various concepts
can be formed from the multimodal data. Given
teaching sentences, the connection between words
and concepts can be learned based on mMLDA
and BHMM which is learned with mutual infor-
mation (MI) as the initial value. On the other hand,
the bigram model of words is calculated and used
as the score when reordering words inferred from
multimodal information using grammar. A mor-
phological analyzer for parsing words in a sen-
tence is also necessary in the proposed system. We
use publicly available parser MeCab (Kudo et al.,
2004). In the future, we plan to use the unsuper-
vised morphological analysis technique proposed
in (Mochihashi et al., 2009).

2.2 mMLDA

Figure 3 shows the graphical model of
mMLDA used in this paper. Here, z repre-
sents the integrated category (concept), whereas
zO, zM , and zP represent the object, mo-
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tion, and place concepts, respectively. In
the bottom layer (lower panel of Figure 3),
wm ∈ {wo, wwO, wa, wwM , wl, wwP } represents
the multimodal information obtained from each
object, motion, and place. Here, wo, wa, and wl

denote multimodal information obtained respec-
tively from the object used in an action, motion of
a person while using the object, and location of
the action. Further, wwC ∈ {wwO, wwM , wwP }
denotes word information obtained from teaching
sentences. Observation information is acquired
by using the system shown in Figure 2. A brief
explanation of each observation is as follows.

For object information, an No-dimensional vec-
tor wo = (o1, o2, · · · , oNo) is used, where No de-
notes the number of objects. In this vector, o∗
takes a value of 0 or 1, where oi is set to 1 if an
object with index i is observed. Moreover, all of
the teaching sentences are segmented into words
and represented by a BoW as word information.
Here, motion is segmented according to the ob-
ject used. A sequence of 15-dimensional feature
vectors for each motion is acquired. Using BoF,
the acquired feature vectors are vector quantized,
resulting in a 70-dimensional vector. The acquired
two dimensional of human positions are processed
using BoF to construct a 10-dimensional vector as
place information.

In mMLDA, latent variables that represent up-
per and lower concepts z and zC ∈ {zO, zM , zP }
are learned simultaneously. Gibbs sampling is ap-
plied to the marginalized posterior probability of
latent variables to learn the model from observed
data wm (Attamimi et al., 2014).

2.3 Language learning and generation

2.3.1 Word inference
In this study, word information is obtained from
teaching sentences and employed for all concepts,
as shown in Figure 3. Considering that appropriate

words to express each concept exist, a criterion to
measure the correlation between words and con-
cepts is needed. At the start of grammar learn-
ing, MI, which can measure the mutual depen-
dence of two stochastic variables, is used. There-
fore, a word is considered to express a category
when the MI between the word and category is
large. On the other hand, a word with small MI
is identified as a functional word. This determi-
nation is used as an initial value in the syntac-
tic learning and needs not be strictly determined.
Once the grammar is learned, we can utilize
BHMM’s parameters P (ww|c) to infer a word ww

from observed data wm
obs as P̂ (wwC |wm

obs, c) ∝
maxk P (wwC |c)P (wwC |k)P (k|wm

obs, c), where
P (wwC |k) and P (k|wm

obs, c) can be estimated
from mMLDA (Attamimi et al., 2014) and k is
category of concept c′ ∈ {object,motion, place}
and c ∈ {c′, functional}. It should be note
that P (wwC |k) and P (k|wm

obs, c) are considered
as uniform distribution for “functional” since
they cannot be inferred from observed data using
mMLDA. In this case, we can rely on syntactic in-
formation which is learned by BHMM.

2.3.2 Grammar learning using BHMM

Thanks to mMLDA and BHMM, appropriate
words to represent the observed information can
be inferred. Given an input consisting of a teach-
ing sentence of a sequence of words, a BHMM
can infer a sequence of concepts. In the learning
phase, the MI results of concept selection for each
word are used as the initial values of the BHMM.
Here, grammar is defined as the concept transi-
tion probability P (Ct|Ct−1), which is estimated
using Gibbs sampling, where Ct ∈ c represents
the corresponding concepts of the t-th word in the
sentence. In addition, a language model that rep-
resent the bigram model of words in the teaching
sentences is also used for generating sentences.

Motion Object Place Motion Object Place Motion Object Place
Drink (1) Juice (1) Sofa (1) Wipe (7) Dustcloth (9) Kitchen (4) Write on (12) Notebook (16) Bedroom (5)

Tea (4) Dining room (2) Tissue (10) Dining room (2) Textbook (17) Sofa (1)
Eat (2) Cookies (2) Dining room (2) Turn on (8) Remote control Living room (3) Refrigerator (18) Kitchen (4)

Chocolate (3) Living room (3) (air conditioner) (11) Bedroom (5) Open (13) Microwave (19) Kitchen (4)
Shake (3) Tea (4) Sofa (1) Open (turn) (9) Tea (4) Living room (3) Closet (20) Bedroom (5)

Dressing (5) Kitchen (4) Honey (6) Dining room (2) Read (14) Textbook (17) Bedroom (5)
Pour (4) Tea (4) Kitchen (4) Wrap (10) Plastic wrap (12) Dining room (2) Magazine (21) Sofa (1)

Juice (1) Living room (3) Aluminum foil (13) Kitchen (4) Spray (15) Deodorizer (22) Living room (3)
Put on (5) Dressing (5) Dining room (2) Shirt (14) Bedroom (5) Bedroom (5)

Honey (6) Kitchen (4) Hang (11) Scourer (23) Kitchen (4)
Throw (6) Ball (7) Sofa (1) Parka (15) Living room (3) Scrub (16) Sponge (24) Kitchen (4)

Plushie (8) Bedroom (5)

Table 1: Object, motion, and place correspondences (numbers in parentheses represent the category
index).
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Eating the cookies in the dining room.

B: {dining room, with, cookies, the, eat, eat}

G: {sofa, on, ball, the, throw}

P: {sofa, on, ball, the, throw}

Throwing the ball on the sofa.

B: {sofa, with, ball, to, throw, throw}

G: {living room, in, parka, the, hang}

P: {living room, in, parka, the, hang}

Hanging the parka in the living room.

B: {living room, in, hang}

Actual scenes 

(a) (b) (c)

Figure 4: Examples of: (a) actual images, (b) captured multimodal information, and (c) generated sen-
tences. In each image, B, P, and G indicate the sentence structure in Japanese grammar generated by the
baseline method, proposed method, and correct sentence, respectively; whereas the bottom line gives the
meaning of the generated sentence. Words marked in red have been incorrectly generated.

2.3.3 Sentence generation of observed scenes
First, concepts are sampled from the begin of sen-
tence “BOS” until the end of sentence “EOS” ac-
cording to the learned grammar N times. Let
the n-th (n ∈ {1, 2, · · · , N}) sequence of con-
cepts that excludes “BOS” and “EOS” be Cn =
{Cn

1 , · · · , Cn
t , · · · , Cn

Tn
}, where, Tn denotes the

number of sampled concepts, which corresponds
to the length of a sampled sentence.

Next, the word that corresponds to concept Cn
t

is estimated. Here, for a given observed infor-
mation wm

obs, the top-K words that correspond to
concept Cn

t and have high probabilities wn
t =

{wn
t1, w

n
t2, · · · , wn

tK} are used. Hence, the set of
all words for a sequence of concepts Cn can be
written as W n = {wn

1 , wn
2 , · · · , wn

Tn
}. There-

fore, KTn number of patterns for a candidate of
the sentence can be considered for Cn and the cor-
responding words W n. Each candidate for sen-
tence Sn is selected from these patterns and has
the following probability:

P (Sn|Cn,W n, wm
obs) ∝∏

t

P (Cn
t |Cn

t−1)P (wn
t |wm

obs, C
n
t )P (wn

t |wn
t−1). (1)

For observed information, the most probable sen-
tence is selected from N sequences of concepts
with sets of words. Here, the sentence Ŝn that
maximizes Eq. (1) is determined for each se-
quence of concepts. Because many patterns of
Sn exist, the Viterbi algorithm is applied to cut
the computational cost and determine the most
probable sentence. Thus, a set of sentences that
consists of sentences with the highest probability

for each sequence of concepts can be written as
Ŝ = {Ŝ1, · · · , Ŝn, · · · , ŜN}.

We can select the final sentence from Ŝ by con-
sidering the most probable candidate. In fact,
long sentences tend to have low probability and
are less likely to be selected. To cope with
this problem, adjustment coefficient ℓ(Ŝn) =
(Lmax−LŜn )∑N

n L
Ŝn

∑N
n log P (Ŝn|Cn,W n,wm

obs) is in-

troduced, where, LŜn denotes the length of sen-
tence Ŝn and Lmax represents the maximum
value of the sentence length in Ŝ. Using ℓ(Ŝn),
the logarithmic probability of the sentence can
be calculated as log P̄ (Ŝn|Cn, W n, wm

obs) =
log P (Ŝn|Cn, W n, wm

obs) + ωℓ(Ŝn), where ω
is a weight that controls the length of sen-
tences. A large weight leads to longer sen-
tences. The final sentence S is determined as
S = argmax

Ŝn∈ ˆS
log P̄ (Ŝn|Cn, W n, wm

obs).

3 Experiments

The acquisition system shown in Figure 2 was
used to capture multimodal information from hu-
man actions. Table 1 shows the actions that were
performed by three subjects twice, resulting in a
total of 195 multimodal data with 1170 sentences.
We then divided the data into training data (99
multimodal data with 594 sentences) and test data
(96 multimodal data with 576 sentences). Some
examples of acquired multimodal data are shown
in Figure 4(b). Using training data, various con-
cepts were formed by mMLDA, and the catego-
rization accuracies for object, motion, and place
were respectively 100.00%, 52.53%, and 95.96%.
Motion similarity was responsible for the false cat-
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♯ of words Baseline Proposed
w/o functional words 78 65.38% 73.08%
w functional words 98 – 68.37%

Table 2: Concepts selection results.

egorization of motion concepts. Since our goal is
to generate sentences from observed scenes, these
results are used as reference instead of comparing
with the baseline.

To evaluate the concept selection of words, 98
words in teaching sentences were used. We com-
pared the results of concept selection with hand-
labeled ones. Table 2 shows the accuracy rate of
concept selection. Here, we excluded the func-
tional words (resulting in 78 words) for fair com-
parison with the baseline method (Attamimi et
al., 2014). One can see that, better results can
be achieved by the proposed method. It is clear
that concept selection is improved by using the
BHMM, indicating that a better grammar can be
learned using this model.

Next, the learned grammar was used and sen-
tences were generated. To reduce randomness of
the results, sentence generation was conducted 10
times for each data. To verify sentence gener-
ation quantitatively, we evaluated the sentences
automatically using BLEU score (Papineni et al.,
2002). Figure 5 depicts the results of 2- to 4-gram
of BLEU scores. Since functional words are not
considered in (Attamimi et al., 2014), we used our
grammar and performed sentence generation pro-
posed in (Attamimi et al., 2014) as the baseline
method. One can see from the figure that in all
cases the BLEU scores of proposed method out
performs the baseline method. It can be said that
the sentences generated by the proposed method
are of better quality than those generated by the
baseline method.

Moreover, we also manually evaluated gener-
ated sentences by asking four subjects (i.e., col-
lege students who understand Japanese) whether
the sentences were: correct both in grammar and
meaning (E1), grammatically correct but incorrect
in meaning (E2), grammatically incorrect but cor-
rect in meaning (E3), or incorrect both in grammar
and meaning (E4). The average rates of E1, E2,
E3, and E4 were shown in Table 3. We can see
that the proposed method out performs the base-
line method by providing high rates of E1 and E2;
and low rates of E4. Because we want to generate
sentences that explain actions, incorrect motion in-

Grammar Meaning Baseline Proposed
E1 correct correct (23.21 ± 5.28)% (45.39 ± 3.02)%
E2 correct incorrect (35.07 ± 9.32)% (49.79 ± 3.77)%
E3 incorrect correct (11.34 ± 5.59)% (2.79 ± 2.39)%
E4 incorrect incorrect (30.38 ± 10.54)% (2.03 ± 2.10)%

Table 3: Evaluation results of generated sentences.
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Figure 5: BLEU scores of generated sentences.

ference would lead to incorrect sentence genera-
tion. Examples of E2 are “Eating the plastic wrap
in the dining room” and “Opening the dressing in
the kitchen.” One can see that these sentences
are grammatically correct but do not express the
scenes correctly because the words that represent
the motion are incorrect. Hence, the misclassi-
fication that occurred in the motion concept for-
mation was responsible for the incorrect meaning
of the generated sentences. Figure 4(c) shows the
sentences generated from the given scenes (Fig-
ure 4(a)). We can see that meaningful yet natural
sentences that explain the observed scenes can be
generated using the proposed method.

4 Conclusion

In this paper, we proposed an unsupervised
method to generate natural sentences from ob-
served scenes in a smart environment using
mMLDA and BHMM. In the smart environment,
multimodal information can be acquired for real-
istic scenarios. Thanks to mMLDA, various con-
cepts can be formed and an initial determination of
functional words can be made by assuming a weak
connection of concepts and words calculated by
MI. The possibility that grammar can be learned
from BHMM by considering the syntactic infor-
mation has also been shown. We conducted exper-
iments to verify the proposed sentence generation,
and promising preliminary results were obtained.
In future work, we aim to implement a nonpara-
metric Bayes model that will be able to estimate
the number of concepts automatically.
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