Efficient Hyper-parameter Optimization for NLP Applications

Lidan Wang', Minwei Feng', Bowen Zhou', Bing Xiang', Sridhar Mahadevan?'
IBM Watson, T. J. Watson Research Center, NY
2College of Information and Computer Sciences, U. of Massachusetts Amherst, MA
{wangli,mfeng,zhou,bingxia} @us.ibm.com
mahadeva@cs.umass.edu

Abstract

Hyper-parameter optimization is an im-
portant problem in natural language pro-
cessing (NLP) and machine learning. Re-
cently, a group of studies has focused on
using sequential Bayesian Optimization to
solve this problem, which aims to reduce
the number of iterations and trials required
during the optimization process. In this
paper, we explore this problem from a dif-
ferent angle, and propose a multi-stage
hyper-parameter optimization that breaks
the problem into multiple stages with in-
creasingly amounts of data. Early stage
provides fast estimates of good candidates
which are used to initialize later stages for
better performance and speed. We demon-
strate the utility of this new algorithm by
evaluating its speed and accuracy against
state-of-the-art Bayesian Optimization al-
gorithms on classification and prediction
tasks.

1 Introduction

Hyper-parameter optimization has been receiv-
ing an increasingly amount of attention in the
NLP and machine learning communities (Thorn-
ton et al., 2013; Komer et al., 2014; Bergstra et
al., 2011; Bardenet et al., 2013; Zheng et al,,
2013). The performance of learning algorithms
depend on the correct instantiations of their hyper-
parameters, ranging from algorithms such as lo-
gistic regression and support vector machines, to
more complex model families such as boosted
regression trees and neural networks. While
hyper-parameter settings often make the differ-
ence between mediocre and state-of-the-art per-
formance (Hutter et al., 2014), it is typically very
time-consuming to find an optimal setting due to
the complexity of model classes, and the amount

of training data available for tuning. The issue
is particularly important in large-scale problems
where the size of the data can be so large that even
a quadratic running time is prohibitively large.

Recently several sequential Bayesian Op-
timization methods have been proposed for
hyper-parameter search (Snoek et al., 2012;
Eggensperger et al., 2015; Brochu et al., 2010;
Hutter et al., 2011; Eggensperger et al., 2014).
The common theme is to perform a set of it-
erative hyper-parameter optimizations, where in
each round, these methods fit a hyper-parameter
response surface using a probabilistic regression
function such as Gaussian Process (Snoek et al.,
2012) or tree-based models (Hutter et al., 2011),
where the response surface maps each hyper-
parameter setting to an approximated accuracy.
The learned regression model is then used as a
cheap surrogate of the response surface to quickly
explore the search space and identify promising
hyper-parameter candidates to evaluate next in or-
der to enhance validation accuracy.

While these methods have enjoyed great
success compared to conventional random
search (Bergstra et al., 2012; Bengio et al., 2013)
and grid search algorithms by significantly reduc-
ing the number of iterations and trials required
during the process, the focus and starting point
of these work have largely been on dealing with
many dimensions of hyper-parameters, rather
than scaling to large amount of data as typical in
many NLP tasks, where the efficiency bottleneck
stems from the size of the training data in addition
to hyper-parameter dimensions. For example,
as dataset size grows, even simple models (with
few hyper-parameters) such as logistic regression
can require more training time per iteration in
these algorithms, leading to increased overall time
complexity.

In this work, we introduce a multi-stage
Bayesian Optimization framework for efficient

2112

Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pages 2112-2117,
Lisbon, Portugal, 17-21 September 2015. (©2015 Association for Computational Linguistics.

hyper-parameter optimization, and empirically
study the impact of the multi-stage algorithm
on hyper-parameter tuning. Unlike the previous
approaches, the multi-stage approach considers
hyper-parameter optimization in successive stages
with increasingly amounts of training data. The
first stage uses a small subset of training data,
applies sequential optimization to quickly iden-
tify an initial set of promising hyper-parameter
settings, and these promising candidates are then
used to initialize Bayesian Optimization on later
stages with full training dataset to enable the ex-
pensive stages operate with better prior knowledge
and converge to optimal solution faster.

The key intuition behind the proposed approach
is that both dataset size and search space of hyper-
parameter can be large, and applying the Bayesian
Optimization algorithm on the data can be both
expensive and unnecessary, since many evaluated
candidates may not even be within range of best
final settings. We note our approach is orthogo-
nal and complementary to parallel Bayesian Opti-
mization (Snoek et al., 2012) and multi-task learn-
ing (Yogatama et al., 2014; Swersky et al., 2012),
because the improved efficiency per iteration, as
achieved by our algorithm, is a basic building
block of the other algorithms, thus can directly
help the efficiency of multiple parallel runs (Snoek
et al., 2012), as well as runs across different
datasets (Yogatama et al., 2014; Swersky et al.,
2012).

2 Methodology

The new multi-stage Bayesian Optimization is a
generalization of the standard Bayesian Optimiza-
tion for hyper-parameter learning (Snoek et al.,
2012; Feurer et al., 2015). It is designed to scale
standard Bayesian Optimization to large amounts
of training data. Before delving into the de-
tails, we first describe hyper-parameter optimiza-
tion and give a quick overview on the standard
Bayesian Optimization solution for it.

2.1 Hyper-parameter Optimization

Let A = {A1,...,\n} denote the hyper-
parameters of a machine learning algorithm, and
let {A1,..., A} denote their respective domains.
When trained with A on training data Tipgin,
the validation accuracy on T,q;;¢ is denoted as
L(X, Ttrains Tyatia)- The goal of hyper-parameter
optimization is to find a hyper-parameter setting

A" such that the validation accuracy L is maxi-
mized. Current state-of-the-art methods have fo-
cused on using model-based Bayesian Optimiza-
tion (Snoek et al., 2012; Hutter et al., 2011) to
solve this problem due to its ability to identify
good solutions within a small number of iterations
as compared to conventional methods such as grid
search.

2.2 Bayesian Optimization for
Hyper-parameter Learning

Model-based Bayesian Optimization (Brochu et
al., 2010) starts with an initial set of hyper-
parameter settings Ai,...A\,, where each set-
ting denotes a set of assignments to all hyper-
parameters. These initial settings are then eval-
uated on the validation data and their accuracies
are recorded. The algorithm then proceeds in
rounds to iteratively fit a probabilistic regression
model V to the recorded accuracies. A new hyper-
parameter configuration is then suggested by the
regression model V' with the help of acquisition
function (Brochu et al., 2010). Then the accu-
racy of the new setting is evaluated on validation
data, which leads to the next iteration. A common
acquisition function is the expected improvement,
EI (Brochu et al., 2010), over best validation accu-
racy seen so far L*:

a(A V) = /_OO maz(L — L*, 0)py (LI\)d,

where py (L|A) denotes the probability of accu-
racy L given configuration A\, which is encoded by
the probabilistic regression model V. The acquisi-
tion function is used to identify the next candidate
(the one with the highest expected improvement
over current best L*). More details of acquisition
functions can be found in (Brochu et al., 2010).

The most common probabilistic regression
model V' is the Gaussian Process prior (Snoek et
al., 2012), which is a convenient and powerful
prior distribution on functions. For the purpose
of our experiments, we also use Gaussian Process
prior as the regression model. However, we would
like to note the fact that the proposed multi-stage
Bayesian Optimization is agnostic of the regres-
sion model used, and can easily handle other in-
stantiations of the regression model.

2113

Algorithm 1: Multi-stage Bayesian Optimiza-
tion for Hyper-parameter Tuning
Input: Loss function L, number of stages .S,
iterations per stage
Y = (Y1,...,Ys), training data per

_ 1 S
stage Er‘ain - <Tt7"ain7 te ’]jtrain>’
validation data T,,;;4, initialization

AI:k
Output: hyper-parameter A*
for stage s=1to S do
for i=1to k do
| L; =Evaluate L(A;, T3, i, » Tvatid)
end
for j=k+1to Y do
V': regression model on <)\Z-, LZ->
Aj = argmaxycp a(A, V)
L; = Evaluate L(X\;, T} .. Tyatid)
end
reset A.p=best k configs € (A1,... Ay,)
based on validation accuracy L

7j—1
i=1

end
* —_— .
return A" = arg MaXy coavi . AYs} L;

2.3 Multi-stage Bayesian Optimization for
Hyper-parameter Tuning

The multi-stage algorithm as shown in Algo-
rithm 1 is an extension of the standard Bayesian
Optimization (Section 2.2) to enable speed on
large-scale datasets. It proceeds in multiple
stages of Bayesian Optimization with increas-
ingly amounts of training data [T} . | < ..., <
|T}3 ;|- During each stage s, the k best configu-
rations (based on validation accuracy) passed from
the previous stage' are first evaluated on the cur-
rent stage’s training data 77 ., and then the stan-
dard Bayesian Optimization algorithm are initial-
ized with these k settings and applied for Y — &
iterations on 73, . (discounting the £ evaluations
done earlier in the stage), where Y, is the total
number of iterations for stage s. Then the top
k configurations based on validation accuracy are
used to initialize the next stage’s run.

We note after the initial stage, rather than only
considering candidates passed from the previous
stage, the algorithm expands from these points on
larger data. Continued exploration using larger

'A special case is the initial stage. We adopt the con-
vention that a Sobol sequence is used to initialize the first
stage (Snoek et al., 2012). The value k for the first stage is
the number of points in the Sobol sequence.

Hyper-parameters
SVM bias, cost parameter, and
regularization parameter
Boosted feature sampling rate,
regression data sampling rate, learn-
trees ing rate, # trees, # leaves,
and minimum # instance
per leaf
Table 1: Hyper-parameters used in SVM and

boosted regression trees.

data allows the algorithm to eliminate any po-
tential sensitivity the hyper-parameters may have
with respect to dataset size. After running all S
stages the algorithm terminates, and outputs the
configuration with the highest validation accuracy
from all hyper-parameters explored by all stages
(including the initialization points explored by the
first stage).

This multi-stage algorithm subsumes the stan-
dard Bayesian optimization algorithm as a special
case when the total number of stages S = 1. In
our case, for datasets used at stages 1,...,5 — 1,
we use random sampling of full training data to
get subsets of data required at these initial stages,
while stage S has full data. For the number of top
configurations k used to initialize each following
stage, we know the larger £ is, the better results in
the next stage since Bayesian Optimization relies
on good initial knowledge to fit good regression
models (Feurer et al., 2015). However, larger k
value also leads to high computation cost at the
next stage, since these initial settings will have to
be evaluated first. In practice, the number of stages
S and the value of k£ depend on the quantity of the
data and the quality of stage-wise model. In our
experiments, we empirically choose their values
to be S = 2 and £ = 3 which result in a good
balance between accuracy and speed on the given
datasets.

3 Experiment

We empirically evaluate the algorithm on two
tasks: classification and question answering. For
classification we use the Yelp dataset (Yelp, 2014)
which is a customer review dataset. Each review
contains a star/rating (1-5) for a business, and the
task is to predict the rating based on the textual in-
formation in the review. The training data contains
half-million feature vectors, and unique unigrams
are used as features (after standard stop-word re-

2114

moval and stemming (Manning et al., 2008)). For
question answering (QA), the task is to identify
correct answers for a given question. We use
a commercial QA dataset containing about 3800
unique training questions and a total of 900, 000
feature vectors. Each feature vector corresponds to
an answer candidate for a given question, the vec-
tor consists of a binary label (1=correct, O=incor-
rect) and values from standard unigram/bigram,
syntactic, and linguistic features used in typical
QA applications (Voorhees et al., 2011). Both QA
and Yelp datasets contain independent training,
validation, and test data, from which the machine
learning models are built, accuracies are evalu-
ated, and test results are reported, respectively.

We evaluate our multi-stage method against
two methods: 1) state-of-the-art Bayesian Opti-
mization for hyper-parameter learning (Snoek et
al., 2012)), and 2) the same Bayesian Optimiza-
tion but only applied on a small subset of data
for speed. For experiments, we consider learn-
ing hyper-parameters for two machine learning
algorithms: SVM implementation for classifica-
tion (Fan et al., 2008) and boosted regression trees
for question answering (Ganjisaffar et al., 2011) as
shown in Table 1.

3.1 Accuracy vs time

Figures 1 and 2 compare the test accuracy of our
proposed multi-stage Bayesian optimization as a
function of tuning time for QA and Yelp, respec-
tively. The state-of-the-art Bayesian optimiza-
tion (Snoek et al., 2012) is applied on full train-
ing data, and the fast variant of Bayesian Opti-
mization is applied with 30% of training data (ran-
domly sampled from full dataset). The top-1 and
classification accuracies on test data are reported
on the y-axis for QA and Yelp, respectively, and
the tuning time is reported on the x-axis. For fair-
ness of comparison, the multi-stage method uses
the same 30% training data at the initial stage, and
full training data at the subsequent stage.

From these figures, while in general both of
the comparison methods produce more effective
results when given more time, the multi-stage
method consistently achieves higher test accuracy
than the other two methods across all optimiza-
tion time values. For example, best test accu-
racy is achieved by the multi-stage algorithm at
time (45 min) for the QA task, while both the
full Bayesian Optimization and the subset variant

0.65

0.645
~ 0.64
g L
o
% 0.635
3
o == Bayes Opt on subset of data
0.63 - /7 Bayes Opt on full data
// —Multi-stage Bayes Opt
0.625 |
062 1 1 1 1 1 1
0 10 20 30 40 50 60 70
Time (min)
Figure 1: QA task: test accuracy vs tuning time.
0.58
0.56 -
i I R R ————
®0.54 -
3
3
© 0.52 -
c
o
_8 0.5}
§ 0.48 == Bayes Opt on subset of data
o Bayes Opt on full data
—Multi-stage Bayes Opt
0.46
0.44 L L L L L L L L
0 1 2 3 4 5 6 7 8 9

Time (min)

Figure 2: Yelp classification: test accuracy vs tuning time.

can only achieve a fraction of the best value at
the same time value. We also note in general the
multi-stage algorithm approaches the upper bound
more rapidly as more time is given. This shows
that the new algorithm is superior across a wide
range of time values.

3.2 Expected accuracy and cost per iteration

To investigate the average accuracy and cost per
iteration achieved by different methods across dif-
ferent time points, we compare their mean ex-
pected accuracy (according to precision@1 for
QA and classification accuracy for Yelp) in Ta-
ble 2, and their average speed in Table 3. In
terms of average accuracy, we see that the state-
of-the-art Bayesian optimization on full training
data and the multi-stage algorithm achieve similar
test accuracy, and they both outperform the sub-

QA | Yelp

Bayes opt on small subset | 0.633 | 0.530
Bayes opt on full data 0.639 | 0.543
Multi-stage algorithm 0.641 | 0.542

Table 2: Average test accuracy for QA (preci-
sion@1) and Yelp dataset (classif. accuracy).

2115

QA Yelp
Bayes opt on small subset | 3.2 min | 0.4 min
Bayes opt on full data 7.8 min | 1.2 min
Multi-stage algorithm 6 min | 0.6 min

Table 3: Average time (min) per iteration.

set variant of Bayesian Optimization. However,
in terms of time per iteration, the full Bayesian
Optimization is the most expensive, taking more
than twice amount of time over subset variant al-
gorithm, while the multi-stage is 23% and 50%
faster than standard Bayesian Optimization on QA
and Yelp (Table 3), respectively, while maintain-
ing the same accuracy as full Bayesian Optimiza-
tion. This demonstrates the multi-stage approach
achieves a good balance between the two baselines
and can simultaneously delivers good speedup and
accuracy.

4 Conclusion

We introduced a multi-stage optimization algo-
rithm for hyper-parameter optimization. The pro-
posed algorithm breaks the problem into multiple
stages with increasingly amounts of data for effi-
cient optimization. We demonstrated its improved
performance as compared to the state-of-the-art
Bayesian optimization algorithm and fast variants
of Bayesian optimization on sentiment classifica-
tion and QA tasks.

References

Remi Bardenet, Matyas Brendel, Balazs Kegls, and
Michele Sebag. 2013. Collaborative hyperparam-
eter tuning. In ICML 2013: Proceedings of the 30th
International Conference on Machine Learning.

Yoshua Bengio, Aaron Courville, and Pascal Vincent.
2013. Representation Learning: A Review and New
Perspectives. In Pattern Analysis and Machine In-
telligence, Volume:35 , Issue: 8, 2013.

James Bergstra, Remi Bardenet, Yoshua Bengio, and
Balazs Kegl. 2011. Algorithms for Hyper-
Parameter Optimization. In NIPS 2011: Advances
in Neural Information Processing Systems.

James Bergstra, and Yoshua Bengio. 2012. Random
search for hyper-parameter optimization. In The
Journal of Machine Learning Research, Volume 13
Issue 1, January 2012.

Eric Brochu, Vlad M. Cora, and Nando de Freitas.
2010. A Tutorial on Bayesian Optimization of Ex-
pensive Cost Functions, with Application to Ac-
tive User Modeling and Hierarchical Reinforcement
Learning. In arXiv:1012.2599v1, Dec 12, 2010.

Katharina Eggensperger, Frank Hutter, Holger H.
Hoos, and Kevin Leyton-Brown 2014. Surrogate
Benchmarks for Hyperparameter Optimization. In
Meta-Learning and Algorithm Selection Workshop,
2014.

Katharina Eggensperger, Frank Hutter, Holger H.
Hoos, and Kevin Leyton-Brown. 2015. Efficient
Benchmarking of Hyperparameter Optimizers via
Surrogates. In AAAI 2015: Twenty-ninth AAAI Con-
ference.

Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-
Rui Wang, and Chih-Jen Lin. 2008. LIBLINEAR:
A Library for Large Linear Classification. In Jour-
nal of Machine Learning Research: 2008, 1871-
1874.

Matthias Feurer, Jost Tobias Springenberg, and Frank
Hutter. 2015. Initializing Bayesian Hyperparame-
ter Optimization via Meta-Learning. In AAAI 2015:
Twenty-ninth AAAI Conference.

Yasser Ganjisaffar, Rich Caruana, and Cristina Lopes.
2011. Bagging Gradient-Boosted Trees for High
Precision, Low Variance Ranking Models. In SIGIR
2011: Proceedings of the 34th international ACM
SIGIR conference on Research and development in
Information.

Frank Hutter, Holger H. Hoos and Kevin Leyton-
Brown. 2011. Sequential Model-Based Opti-
mization for General Algorithm Configuration. In
LION4, 2011.

Frank Hutter, Holger Hoos and Kevin Leyton-brown.
2014. An Efficient Approach for Assessing Hyper-
parameter Importance. In ICML 2014: Proceed-
ings of the 31st International Conference on Ma-
chine Learning

Brent Komer, James Bergstra, and Chris Eliasmith.
2014. Hyperopt-Sklearn: Automatic Hyperparam-
eter Configuration for Scikit-Learn. In SCIPY 2014:
Proceedings of the 13th Python In Science Confer-
ence.

Christopher D. Manning, Prabhakar Raghavan, and
Hinrich Schutze. 2008. Introduction to Information
Retrieval. In Cambridge University Press, 2008.

Jasper Snoek, Hugo Larochelle, and Ryan Adams.
2012. Practical Bayesian Optimization of Machine
Learning Algorithms. In NIPS 2012: Advances in
Neural Information Processing Systems.

Kevin Swersky, Jasper Snoek, and Ryan Adams. 2013.
Multi-Task Bayesian Optimization. In NIPS 2013:
Advances in Neural Information Processing Sys-
tems.

Chris Thornton, Frank Hutter, Holger H. Hoos, and
Kevin Leyton-Brown. 2013. Auto-WEKA: com-
bined selection and hyperparameter optimization of
classification algorithms. In KDD 2013: Proceed-
ings of the 19th ACM SIGKDD international con-
ference on Knowledge discovery and data mining.

2116

Ellen M. Voorhees. 2011. The TREC question an-
swering track. In Natural Language Engineer-
ing, Volume 7 Issue 4, December 2001

Yelp Academic Challenge Dataset. http://www.
yelp.com/dataset_challenge.

Dani Yogatama, and Gideon Mann. 2014. Efficient
Transfer Learning Method for Automatic Hyperpa-
rameter Tuning. In AISTATS 2014: International
Conference on Artificial Intelligence and Statistics .

Alice X. Zheng, and Mikhail Bilenkoh. 2013. Lazy
Paired Hyper-Parameter Tuning. In IJCAI 2013:
Twenty-third International Joint Conference on Ar-
tificial Intelligence .

2117

