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Abstract

This paper aims to compare different reg-
ularization strategies to address a com-
mon phenomenon, severe overfitting, in
embedding-based neural networks for
NLP. We chose two widely studied neu-
ral models and tasks as our testbed.
We tried several frequently applied or
newly proposed regularization strategies,
including penalizing weights (embeddings
excluded), penalizing embeddings, re-
embedding words, and dropout. We also
emphasized on incremental hyperparame-
ter tuning, and combining different regu-
larizations. The results provide a picture
on tuning hyperparameters for neural NLP
models.

1 Introduction

Neural networks have exhibited considerable po-
tential in various fields (Krizhevsky et al., 2012;
Graves et al., 2013). In early years on neural
NLP research, neural networks were used in lan-
guage modeling (Bengio et al., 2003; Morin and
Bengio, 2005; Mnih and Hinton, 2009); recently,
they have been applied to various supervised tasks,
such as named entity recognition (Collobert and
Weston, 2008), sentiment analysis (Socher et al.,
2011; Mou et al., 2015), relation classification
(Zeng et al., 2014; Xu et al., 2015), etc. In the field
of NLP, neural networks are typically combined
with word embeddings, which are usually first pre-
trained by unsupervised algorithms like Mikolov
et al. (2013); then they are fed forward to standard
neural models, fine-tuned during supervised learn-
ing. However, embedding-based neural networks
usually suffer from severe overfitting because of
the high dimensionality of parameters.

∗Equal contribution. †Corresponding author.

A curious question is whether we can regular-
ize embedding-based NLP neural models to im-
prove generalization. Although existing and newly
proposed regularization methods might alleviate
the problem, their inherent performance in neural
NLP models is not clear: the use of embeddings
is sparse; the behaviors may be different from
those in other scenarios like image recognition.
Further, selecting hyperparameters to pursue the
best performance by validation is extremely time-
consuming, as suggested in Collobert et al. (2011).
Therefore, new studies are needed to provide a
more complete picture regarding regularization for
neural natural language processing. Specifically,
we focus on the following research questions in
this paper.
RQ 1: How do different regularization strategies

typically behave in embedding-based neural
networks?

RQ 2: Can regularization coefficients be tuned in-
crementally during training so as to ease the
burden of hyperparameter tuning?

RQ 3: What is the effect of combining different
regularization strategies?

In this paper, we systematically and quan-
titatively compared four different regularization
strategies, namely penalizing weights, penalizing
embeddings, newly proposed word re-embedding
(Labutov and Lipson, 2013), and dropout (Srivas-
tava et al., 2014). We analyzed these regulariza-
tion methods by two widely studied models and
tasks. We also emphasized on incremental hyper-
parameter tuning and the combination of different
regularization methods.

Our experiments provide some interesting re-
sults: (1) Regularizations do help generalization,
but their effect depends largely on the datasets’
size. (2) Penalizing `2-norm of embeddings helps
optimization as well, improving training accu-
racy unexpectedly. (3) Incremental hyperparam-
eter tuning achieves similar performance, indicat-
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ing that regularizations mainly serve as a “local”
effect. (4) Dropout performs slightly worse than
`2 penalty in our experiments; however, provided
very small `2 penalty, dropping out hidden units
and penalizing `2-norm are generally complemen-
tary. (5) The newly proposed re-embedding words
method is not effective in our experiments.

2 Tasks, Models, and Setup
Experiment I: Relation extraction. The dataset
in this experiment comes from SemEval-2010
Task 8.1 The goal is to classify the relationship
between two marked entities in each sentence. We
refer interested readers to recent advances, e.g.,
Hashimoto et al. (2013), Zeng et al. (2014), and
Xu et al. (2015). To make our task and model
general, however, we do not consider entity tag-
ging information; we do not distinguish the order
of two entities either. In total, there are 10 labels,
i.e., 9 different relations plus a default other.

Regarding the neural model, we applied Col-
lobert’s convolutional neural network (CNN)
(Collobert and Weston, 2008) with minor modi-
fications. The model comprises a fixed-window
convolutional layer with size equal to 5, 0 padded
at the end of each sentence; a max pooling layer;
a tanh hidden layer; and a softmax output layer.

Experiment II: Sentiment analysis. This is
another testbed for neural NLP, aiming to pre-
dict the sentiment of a sentence. The dataset is
the Stanford sentiment treebank (Socher et al.,
2011)2; target labels are strongly/weakly
positive/negative, or neutral.

We used the recursive neural network (RNN),
which is proposed in Socher et al. (2011), and fur-
ther developed in Socher et al. (2012); Irsoy and
Cardie (2014). RNNs make use of binarized con-
stituency trees, and recursively encode children’s
information to their parent’s; the root vector is fi-
nally used for sentiment classification.

Experimental Setup. To setup a fair compari-
son, we set all layers to be 50-dimensional in ad-
vance (rather than by validation). Such setting has
been used in previous work like Zhao et al. (2015).
Our embeddings are pretrained on the Wikipedia
corpus using Collobert and Weston (2008). The
learning rate is 0.1 and fixed in Experiment I;
for RNN, however, we found learning rate decay
helps to prevent parameter blowup (probably due

1http://www.aclweb.org/anthology/S10-1006
2http://nlp.stanford.edu/sentiment/

to the recursive, and thus chaotic nature). There-
fore, we applied power decay (Senior et al., 2013)
with power equal to −1. For each strategy, we
tried a large range of regularization coefficients,
10−9, · · · , 10−2, extensively from underfitting to
no effect with granularity 10x. We ran the model
5 times with different initializations. We used
mini-batch stochastic gradient descent; gradients
are computed by standard backpropagation. For
source code, please refer to our project website.3

It needs to be noticed that, the goal of this paper
is not to outperform or reproduce state-of-the-art
results. Instead, we would like to have a fair com-
parison. The testbed of our work is two widely
studied models and tasks, which were not chosen
on purpose. During the experiments, we tried to
make the comparison as fair as possible. There-
fore, we think that the results of this work can be
generalized to similar scenarios.

3 Regularization Strategies
In this section, we describe four regularization
strategies used in our experiment.
• Penalizing `2-norm of weights. Let E be the

cross-entropy error for classification, and R
be a regularization term. The overall cost
function is J = E + λR, where λ is the co-
efficient. In this case, R = ‖W‖2, and the
coefficient is denoted as λW .
• Penalizing `2-norm of embeddings. Some

studies do not distinguish embeddings or
connectional weights for regularization (Tai
et al., 2015). However, we would like to an-
alyze their effect separately, for embeddings
are sparse in use. Let Φ denote embeddings;
then we have R = ‖Φ‖2.
• Re-embedding words (Labutov and Lipson,

2013). Suppose Φ0 denotes the original em-
beddings trained on a large corpus, and Φ de-
notes the embeddings fine-tuned during su-
pervised training. We would like to penalize
the norm of the difference between Φ0 and Φ,
i.e.,R = ‖Φ0−Φ‖2. In the limit of penalty to
infinity, the model is mathematically equiv-
alent to “frozen embeddings,” where word
vectors are used as surface features.
• Dropout (Srivastava et al., 2014). In this

strategy, each neural node is set to 0 with a
predefined dropout probability p during train-
ing; when testing, all nodes are used, with ac-
tivation multiplied by 1− p.

3https://sites.google.com/site/regembeddingnn/
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(a) Penalizing weights in Experiment I.
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(b) Penalizing weights in Experiment II.
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(c) Penalizing embeddings in Experiment I.
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(d) Penalizing embeddings in Experiment II.
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(e) Re-embedding words in Experiment I.
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(f) Re-embedding words in Experiment II.
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(g) Applying dropout in Experiment I. p = 0.5, 0.6
are omitted because they are similar to small values.
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(h) Applying dropout in Experiment II.

Figure 1: Averaged learning curves. Left: Experiment I, relation extraction with CNN. Right: Experiment II, sentiment
analysis with RNN. From top to bottom, we penalize weights, penalize embeddings, re-embed words, and drop out. Dashed
lines refer to training accuracies; solid lines are validation accuracies.
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4 Individual Regularization Behaviors

This section compares the behavior of each strat-
egy. We first conducted both experiments with-
out regularization, achieving accuracies of 54.02±
0.84%, 41.47±2.85%, respectively. Then we plot
in Figure 1 learning curves when each regulariza-
tion strategy is applied individually. We report
training and validation accuracies through out this
paper. The main findings are as follows.
• Penalizing `2-norm of weights helps gener-

alization; the effect depends largely on the
size of training set. Experiment I contains
7,000 training samples and the improvement
is 6.98%; Experiment II contains more than
150k samples, and the improvement is only
2.07%. Such results are consistent with other
machine learning models.

• Penalizing `2-norm of embeddings unexpect-
edly helps optimization (improves training
accuracy). One plausible explanation is that
since embeddings are trained on a large cor-
pus by unsupervised methods, they tend to
settle down to large values and may not per-
fectly agree with the tasks of interest. `2
penalty pushes the embeddings towards small
values and thus helps optimization. Regard-
ing validation accuracy, Experiment I is im-
proved by 6.89%, whereas Experiment II has
no significant difference.

• Re-embedding words does not improve gen-
eralization. Particularly, in Experiment II,
the ultimate accuracy is improved by 0.44,
which is not large. Further, too much penalty
hurts the models in both experiments. In the
limit λreembed to infinity, re-embedding words
is mathematically equivalent to using embed-
dings as surface features, that is, freezing em-
beddings. Such strategy is sometimes applied
in the literature like Hu et al. (2014), but is
not favorable as suggested by the experiment.

• Dropout helps generalization. Under the best
settings, the eventual accuracy is improved
by 3.12% and 1.76%, respectively. In our ex-
periments, dropout alone is not as useful as
`2 penalty. However, other studies report that
dropout is very effective (Irsoy and Cardie,
2014). Our results are not consistent; differ-
ent dimensionality may contribute to this dis-
agreement, but more experiments are needed
to confirm the hypothesis.

5 Incremental Hyperparameter Tuning
The above experiments show that regularization
generally helps prevent overfitting. To pursue the
best performance, we need to try out different hy-
perparameters through validation. Unfortunately,
training deep neural networks is time-consuming,
preventing full grid search from being a practical
technique. Things will get easier if we can incre-
mentally tune hyperparameters, that is, to train the
model without regularization first, and then add
penalty.

In this section, we study whether `2 penalty of
weights and embeddings can be tuned incremen-
tally. We exclude the dropout strategy because its
does not make much sense to incrementally drop
out hidden units. Besides, from this section, we
only focus on Experiment I due to time and space
limit.

Before continuing, we may envision several
possibilities on how regularization works.
• (On initial effects) As `2-norm prevents pa-

rameters from growing large, adding it at
early stages may cause parameters settling
down to local optima. If this is the case, de-
layed penalty would help parameters get over
local optima, leading to better performance.
• (On eventual effects) `2 penalty lifts er-

ror surface of large weights. Adding such
penalty may cause parameters settling down
to (a) almost the same catchment basin, or (b)
different basins. In case (a), when the penalty
is added does not matter much. In case (b),
however, it makes difference, because param-
eters would have already gravitated to catch-
ment basins of larger values before regular-
ization is added, which means incremental
hyperparameter tuning would be ineffective.

To verify the above conjectures, we design four
settings: adding penalty (1) at the beginning, (2)
before overfitting at epoch 2, (3) at peak perfor-
mance (epoch 5), and (4) after overfitting (valida-
tion accuracy drops) at epoch 10.

Figure 2 plots the learning curves regarding pe-
nalizing weights and embeddings, respectively;
baseline (without regularization) is also included.

For both weights and embeddings, all settings
yield similar ultimate validation accuracies. This
shows `2 regularization mainly serves as a “local”
effect—it changes the error surface, but parame-
ters tend to settle down to a same catchment basin.
We notice a recent report also shows local optima
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(a) Incrementally penalizing `2-norm of weights.
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(b) Incrementally penalizing `2-norm of biases.

Figure 2: Tuning hyperparameters incrementally in Experiment I. Penalty is added at epochs 0, 2, 5, 10,
respectively. We chose the coefficients yielding the best performance in Figure 1. The controlled trial
(no regularization) is early stopped because the accuracy has already decreased.

λW
λembed 0 10−4 3·10−4 10−3

0 54.02 57.88 59.96 61.00
10−5 54.94 57.82 60.68 62.05

3·10−5 55.68 61.02 64.00 63.15
10−4 60.91 64.00 63.07 60.56

3·10−4 58.92 61.33 59.85 42.93
10−3 54.77 56.43 54.05 16.50

Table 1: Accuracy in percentage when we com-
bine `2-norm of weights and embeddings (Exper-
iment I). Bold numbers are among highest accu-
racies (greater than peak performance minus 1.5
times standard deviation, i.e., 1.26 in percentage).

λW λembed
p 10–4 3·10–4 10–3 10–5 3·10–5 10–4

0 57.88 59.96 61.00 54.94 55.68 60.91
1/6 58.36 59.36 43.42 58.49 59.59 60.00
2/6 58.22 60.00 16.60 59.34 60.08 59.61
3/6 58.63 59.73 16.60 59.59 59.98 58.82
4/6 56.43 54.63 16.60 56.76 59.19 56.64
5/6 38.07 16.60 16.60 49.79 53.63 49.75

Table 2: Combining `2 regularization and dropout.
Left: connectional weights. Right: embeddings.
(p refers to the dropout rate.)

may not play an important role in training neural
networks, if the effect of parameter symmetry is
ruled out (Breuel, 2015).

We also observe that regularization helps gener-
alization as soon as it is added (Figure 2a), and that
regularizing embeddings helps optimization also
right after the penalty is applied (Figure 2b).

6 Combination of Regularizations
We are further curious about the behaviors when
different regularization methods are combined.

Table 1 shows that combining `2-norm of
weights and embeddings results in a further accu-
racy improvement of 3–4 percents from applying

either single one of them. In a certain range of
coefficients, weights and embeddings are comple-
mentary: given one hyperparameter, we can tune
the other to achieve a result among highest ones.

Such compensation is also observed in penal-
izing `2-norm versus dropout (Table 2)—although
the peak performance is obtained by pure `2 regu-
larization, applying dropout with small `2 penalty
also achieves a similar accuracy. The dropout rate
is not very sensitive, provided it is small.

7 Discussion
In this paper, we systematically compared four
regularization strategies for embedding-based
neural networks in NLP. Based on the experimen-
tal results, we answer our research questions as
follows. (1) Regularization methods (except re-
embedding words) basically help generalization.
Penalizing `2-norm of embeddings unexpectedly
helps optimization as well. Regularization perfor-
mance depends largely on the dataset’s size. (2)
`2 penalty mainly acts as a local effect; hyperpa-
rameters can be tuned incrementally. (3) Combin-
ing `2-norm of weights and biases (dropout and `2
penalty) further improves generalization; their co-
efficients are mostly complementary within a cer-
tain range. These empirical results of regulariza-
tion strategies shed some light on tuning neural
models for NLP.
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