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Abstract
Events and their coreference offer use-
ful semantic and discourse resources.
We show that the semantic and dis-
course aspects of events interact with each
other. However, traditional approaches ad-
dressed event extraction and event coref-
erence resolution either separately or se-
quentially, which limits their interactions.
This paper proposes a document-level
structured learning model that simultane-
ously identifies event triggers and resolves
event coreference. We demonstrate that
the joint model outperforms a pipelined
model by 6.9 BLANC F1 and 1.8 CoNLL
F1 points in event coreference resolution
using a corpus in the biology domain.

1 Introduction

Events convey semantic information such as who
did what to whom where and when. They also
corefer to each other, playing a role of discourse
connection points to form a coherent story. These
aspects of events have been already utilized in
a wide variety of natural language processing
(NLP) applications, such as automated population
of knowledge bases (Ji and Grishman, 2011), topic
detection and tracking (Allan, 2002), question an-
swering (Bikel and Castelli, 2008), text summa-
rization (Li et al., 2006), and contradiction detec-
tion (de Marneffe et al., 2008). This fact illustrates
the importance of event extraction and event coref-
erence resolution.

Those semantic and discourse aspects of events
are not independent from each other, and in fact
often work in interactive manners. We give two
examples of the interactions:
(1) British bank Barclays had agreed to buy(E1) Spanish

rival Banco Zaragozano for 1.14 billion euros. The
combination(E2) of the banking operations of
Barclays Spain and Zaragozano will bring together
two complementary businesses.

(2) The Palestinian Authority condemned the attack(E3),
saying it(E4) would divert international sympathy
away from the far higher Palestinian civilian death toll.

E1 corefers to E2, and E3 does to E4. E2 is more
abstract than E1, and has less evidence of being
an event. E4 is a pronoun, and thus may seem
to refer to an entity rather than an event. Thus,
E2 and E4 are relatively difficult to be recognized
as events by themselves. However, event coref-
erence E1-E2, which is supported primarily by
E2’s participants Barclays and Zaragozano shared
with E1, helps determine that E2 is an event. The
same logic applies to E3 and E4. On the other
hand, previous works typically rely on a pipelined
model that extracts events (e.g., E1 and E3) at
the first stage, and then resolves event corefer-
ence at the second stage. Although this modularity
is preferable from development perspectives, the
pipelined model limits the interactions. That is,
the first stage alone is unlikely to detect E2 and E4
as events due to the difficulties described above.
These missing events make it impossible for the
second stage to resolve event coreference E1-E2
and E3-E4.

In this work, we address the problem using the
ProcessBank corpus (Berant et al., 2014). Follow-
ing the terminology defined in the corpus, we in-
troduce several terms:

• Event: an abstract representation of a change of state,
independent from particular texts.

• Event trigger: main word(s) in text, typically a verb or
a noun that most clearly expresses an event.

• Event arguments: participants or attributes in text,
typically nouns, that are involved in an event.

• Event mention: a clause in text that describes an event,
and includes both a trigger and arguments.

• Event coreference: a linguistic phenomenon that two
event mentions refer to the same event.

We aim to explore the interactions between event
mentions and event coreference. As a first step to-
ward the goal, we focus on the task of identifying
event triggers and resolving event coreference, and
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propose a document-level joint learning model us-
ing structured perceptron (Collins, 2002) that si-
multaneously predicts them. Our assumption is
that the joint model is able to capture the interac-
tions between event triggers and event coreference
adequately, and such comprehensive decision im-
proves the system performance. For instance, the
joint model is likely to extract E2 as well as E1
successfully via their event coreference by simul-
taneously looking at coreference features.

Our contributions are as follows:
1. This is the first work that simultaneously pre-

dicts event triggers and event coreference us-
ing a single joint model. At the core of the
model is a document-level structured percep-
tron algorithm that learns event triggers and
event coreference jointly.

2. The incremental token-based prediction in
joint decoding poses a challenge of synchro-
nizing the assignments of event triggers and
coreference. To avoid this problem, we pro-
pose an incremental decoding algorithm that
combines the segment-based decoding and
best-first clustering algorithm.

3. Our experiments indicate that the joint model
achieves a substantial performance gain in
event coreference resolution with a corpus
in the biology domain, as compared to a
pipelined model.

2 Related Work

No previous work deals with event extraction and
event coreference resolution simultaneously. We
thus describe how these two tasks have been ad-
dressed separately, and how joint structured learn-
ing has been studied in other NLP tasks.

Event extraction has been studied mainly in
the newswire domain and the biomedical domain
as the task of detecting event triggers and deter-
mining their event types and arguments. In the for-
mer domain, most work took a pipelined approach
where local classifiers identify triggers first, and
then detect arguments (Ji and Grishman, 2008;
Liao and Grishman, 2010; Hong et al., 2011). Li et
al. (2013) presented a structured perceptron model
to detect triggers and arguments jointly. Simi-
larly, joint dependencies in events were also ad-
dressed in the latter domain (Poon and Vander-
wende, 2010; McClosky et al., 2011; Riedel and
McCallum, 2011; Venugopal et al., 2014). How-
ever, none of them incorporated event coreference

into their model.
Event coreference resolution is more chal-

lenging and less explored. To set up event triggers
as a starting point of the task, some works use hu-
man annotation in a corpus (Bejan and Harabagiu,
2014; Liu et al., 2014), and others use the output
of a separate event extraction system (Lee et al.,
2012). Berant et al. (2014) presented a model that
jointly predicts event arguments and event coref-
erence (as well as other relations between event
triggers). However, none of them tries to predict
event triggers and event coreference jointly.

Joint structured learning has been applied
to several NLP tasks, such as word segmenta-
tion and part-of-speech (POS) tagging (Zhang and
Clark, 2008a), POS tagging and dependency pars-
ing (Bohnet and Nivre, 2012), dependency pars-
ing and semantic role labeling (Johansson and
Nugues, 2008), the extraction of event triggers and
arguments (Li et al., 2013), and the extraction of
entity mentions and relations (Li and Ji, 2014).
Their underlying ideas are similar to ours. That
is, one can train a structured learning model to
globally capture the interactions between two rel-
evant tasks via a certain kind of structure, while
making predictions specifically for these respec-
tive tasks. However, no prior work has studied
the interactions between event trigger identifica-
tion and event coreference resolution.

3 Approach

We formalize the extraction of event triggers and
event coreference as a problem of structured pre-
diction. The output structure is a document-level
event graph where each node represents an event
trigger, and each edge represents an event corefer-
ence link between two event triggers.

3.1 Corpus
The ProcessBank corpus consists of 200 para-
graphs from the textbook Biology (Campbell and
Reece, 2005). Table 1 shows statistics of our data
splits. The original corpus provides 150 para-
graphs as training data, and we split them into 120
and 30 for our training and development, respec-
tively. We chose ProcessBank instead of a larger
corpus such as the Automatic Content Extraction
(ACE) 2005 corpus for the following two reasons.
First, the human annotation of event coreference
links in ProcessBank enables us to apply the best-
first clustering directly; on the other hand, this is
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not readily feasible in ACE 2005 since it anno-
tates event coreference as clusters, and gold stan-
dard event coreference links required for the best-
first clustering are not available. Second, event
coreference resolution using ProcessBank is novel
since almost no previous work on the task used
that corpus. The only exception could be (Berant
et al., 2014), where they extracted several types of
relations between event triggers, including event
coreference. However, they did not report any
performance scores of their system specifically on
event coreference, and thus their work is not com-
parable to ours.

Train Dev Test Total
# of paragraphs 120 30 50 200
# of event triggers 823 224 356 1403
# of event coreferences 73 28 30 131

Table 1: Statistics of our dataset.

Unlike previous work (Berant et al., 2014; Li
et al., 2013), we explicitly allow an event trigger
to have multiple tokens, such as verb phrase ‘look
into’ and compound proper noun ‘World War II’.
This is a more realistic setting for event trigger
identification since in general there are a consid-
erable number of multi-token event triggers1.

3.2 Event Graph Learning
Let x denote an input document with n to-
kens where xi is the i-th token in the docu-
ment. For event graph learning, we use structured
perceptron (Collins, 2002), and average weights
to reduce overfitting as suggested in (Collins,
2002). The algorithm involves decoding to gener-
ate the best event graph for each input document.
We elaborate on our decoding algorithm in Sec-
tion 3.3. Since an event graph has an exponen-
tially large search space, we use beam search to
approximate exact inference. We extract a range
of features by using Stanford CoreNLP (Manning
et al., 2014), MATE (Björkelund et al., 2009),
OpenNLP2, Nomlex (Macleod et al., 1998), and
Levin verb classes (Levin, 1993). For brevity, we
provide details of the structured perceptron algo-
rithm and features in the supplementary material.

We use the standard-update strategy in our
structured perceptron model. As variants of struc-
tured perceptron, one could employ the early up-

1For example, around 13.4% of the 1403 event triggers in
ProcessBank have multiple tokens.

2http://opennlp.apache.org/

date (Collins and Roark, 2004) and max-violation
update (Huang et al., 2012) to our model. Our
initial experiments indicated that early updates
happen too early to gain sufficient feedback on
weights from entire documents in training exam-
ples, ending up with a poorer performance than
the standard update. This contrasts with the fact
that the early-update strategy was successfully ap-
plied to other NLP tasks such as constituent pars-
ing (Collins and Roark, 2004) and dependency
parsing (Zhang and Clark, 2008b). The main rea-
son why the early update fell short of the stan-
dard update in our setting is that joint event trigger
identification and event coreference resolution is a
much more difficult task since they require more
complex knowledge and argument structures. Due
to the difficultly of the task, it is also very difficult
to develop such an effective feature set that beam
search can explore the search space of an entire
document thoroughly with early updates. This ob-
servation follows (Björkelund and Kuhn, 2014) on
entity coreference resolution. In contrast, the max-
violation update showed almost the same perfor-
mance as the standard update on the development
data. From these results, we chose the standard-
update strategy for simplicity.

3.3 Joint Decoding
Given that an event trigger has one or more to-
kens, event trigger identification could be solved
as a token-level sequential labeling problem with
BIO or BILOU scheme in the same way as named
entity recognition (Ratinov and Roth, 2009). If
one uses this approach, a beam state may repre-
sent a partial assignment of an event trigger. How-
ever, event coreference can be explored only from
complete assignments of an event trigger. Thus,
one would need to synchronize the search process
of event coreference by comparing event corefer-
ences from the complete assignment at a certain
position with those from complete assignments at
following positions. This makes it complicated
to implement the formalization of token-level se-
quential labeling for joint decoding in our task.
One possible way to avoid this problem is to ex-
tract event trigger candidates with a preference on
high recall first, and then search event coreference
from those candidates, regarding them as com-
plete assignments of an event trigger. This recall-
oriented pre-filtering is often used in entity coref-
erence resolution (Lee et al., 2013; Björkelund
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Algorithm 1 Joint decoding for event triggers and
coreference with beam search.
Input: input document x = (x1, x2, . . . , xn)
Input: beam width k, max length of event trigger lmax

Output: best event graph ŷ for x
1: initialize empty beam history B[1..n]
2: for i← 1..n do
3: for l← 1..lmax do
4: for y ∈ B[i− l] do
5: e← CREATEEVENTTRIGGER(l, i).
6: APPENDEVENTTRIGGER(y, e)
7: B[i]← k-BEST(B[i] ∪ y)
8: for j ← 1..i− 1 do
9: c← CREATEEVENTCOREF(j, e).

10: ADDEVENTCOREF(y, c)
11: B[i]← k-BEST(B[i] ∪ y)

12: return B[n][0]

and Farkas, 2012). In our initial experiments, we
observed that our rule-based filter gained around
97% recall, but extracted around 12,400 false posi-
tives against 823 true positives in the training data.
This made it difficult for our structured perceptron
to learn event triggers, which underperformed on
event coreference resolution.

We, therefore, employ segment-based decod-
ing with multiple-beam search (Zhang and Clark,
2008a; Li and Ji, 2014) for event trigger identi-
fication, and combine it with the best-first clus-
tering (Ng and Cardie, 2002) for event coref-
erence resolution in document-level joint decod-
ing. The key idea of segment-based decoding with
multiple-beam search is to keep previous beam
states available, and use them to form segments
from previous positions to the current position.
Let lmax denote the upper bound on the number
of tokens in one event trigger. The k-best partial
structures (event subgraphs) in beam B at the j-th
token is computed as follows:

B[j] = k-BEST
y∈{y[1:j−l]∈B[j−l], y[j−l+1,j]=s}

Φ(x, y) ·w

where 1 ≤ l ≤ lmax, y[1:j] is an event subgraph
ending at the j-th token, and y[j−l+1,j] = s means
that partial structure y[j−l+1,j] is a segment, i.e.,
an event trigger candidate with a subsequence of
tokens x[j−l+1,j]. This approximates Viterbi de-
coding with beam search.

The best-first clustering incrementally makes
coreference decisions by selecting the most likely
antecedent for each trigger. Our joint decoding
algorithm makes use of the incremental process
to combine the segment-based decoding and best-
first clustering. Algorithm 1 shows the summary
of the joint decoding algorithm. Line 3 - 7 imple-
ments the segment-based decoding, and line 8 - 11

implements the best-first clustering. Once a new
event trigger is appended to an event subgraph at
line 6, the decoder uses it as a referring mention
regardless of whether the event subgraph is in the
beam, and seeks the best antecedent for it. This
enables the joint model to make a more global
decision on event trigger identification and event
coreference decision, as described in Section 1.

4 Experimental Settings

When training our model, we observed that 20-
iteration training almost reached convergence, and
thus we set the number of iterations to 20. We
set lmax to 6 because we observed that the longest
event trigger in the entire ProcessBank corpus has
six tokens. When tuning beam width k on the de-
velopment set, large beam width did not give us a
significant performance difference. We attribute
this result to the small size of the development
data. In particular, the development data has only
28 event coreferences, which makes it difficult to
reveal the effect of beam width. We thus set k to 1
in our experiments.

4.1 Baseline Systems
Our baseline is a pipelined model that divides the
event trigger decoding and event coreference de-
coding in Algorithm 1 into two separate stages.
It uses the same structured perceptron with the
same hyperparameters and feature templates. We
choose this baseline because it clearly reveals the
effectiveness of the joint model by focusing only
on the architectural difference. One could develop
other baseline systems. One of them is a determin-
istic sieve-based approach by Lee et al. (2013). A
natural extension to the approach for performing
event trigger identification as well as event coref-
erence resolution would be to develop additional
sieves to classify singletons into real event triggers
or spurious ones. We leave it for future work.

4.2 Evaluation
We evaluate our system using a reference
implementation of coreference scoring algo-
rithms (Pradhan et al., 2014; Luo et al., 2014).
As for event trigger identification, this scorer
computes precision (P), recall (R), and the F1
score. With respect to event coreference reso-
lution, the scorer computes MUC (Vilain et al.,
1995), B3 (Bagga and Baldwin, 1998), two CEAF
metrics CEAFm and CEAFe (Luo, 2005), and
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MUC B3 CEAFm CEAFe BLANC CoNLL
System R P F1 R P F1 R P F1 R P F1 R P F1 F1
Baseline 26.66 19.51 22.53 55.47 58.64 57.01 53.08 60.38 56.50 52.68 63.14 57.44 30.13 25.10 25.05 45.66
Joint 20.00 37.50 26.08 53.37 63.36 57.93 53.93 62.95 58.09 55.06 62.11 58.38 27.51 38.43 31.91 47.45

Table 2: Results of event coreference resolution. ‘Baseline’ refers to the second stage of our baseline.

BLANC (Recasens and Hovy, 2011) extended by
Luo et al. (2014). We also report the CoNLL av-
erage (Denis and Baldridge, 2009), which is the
average of MUC F1, B3 F1, and CEAFe F1.

5 Results and Discussions

We first show the result of event coreference reso-
lution on the test data in Table 2. The joint model
outperforms the baseline by 6.9 BLANC F1 and
1.8 CoNLL F1 points. We observed that this over-
all performance gain comes largely from a preci-
sion gain, more specifically, substantially reduced
false positives. We explain the superiority of the
joint model as follows. In the baseline, the second
stage uses the output of the first stage. Since event
triggers are fixed at this point, the baseline ex-
plores coreference links only between these event
triggers. In contrast, the joint model seeks event
triggers and event coreference simultaneously, and
thus it explores a larger number of false positives
in the search process, thereby learning to penalize
false positives more adequately than the baseline.

System Recall Precision F1
Baseline 57.02 64.85 60.68
Joint 55.89 65.24 60.21

Table 3: Results of event trigger identification.
‘Baseline’ refers to the first stage of our baseline.

Table 3 shows the results of event trigger iden-
tification on the test data. We observed that the
joint model also reduced false positives, similarly
in event coreference resolution. However, its im-
provement on precision is small, ending up with
almost the same F1 point as the baseline. We spec-
ulate that this is due to the small size of the corpus,
and the joint model was unable to show its advan-
tages in event trigger identification.

Below are two error cases in event coreference
resolution, where our model fails to resolve E5-
E6 and E7-E8. The model was unable to ade-
quately extract features for both event triggers and
event coreference, particularly because their sur-
face strings are not present in training data, they
are lexically and syntactically different, and they

do not share key semantic roles (e.g., agents and
patients) in a clear argument structure.

(3) When the cell is stimulated, gated channels open that
facilitate Na+ diffusion(E5). Sodium ions then
”fall”(E6) down their electrochemical gradient, . . .

(4) The next seven steps decompose(E7) the citrate back
to oxaloacetate. It is this regeneration(E8) of
oxaloacetate that makes this process a cycle.

6 Conclusion and Future Work

We present a joint structured prediction model for
event trigger identification and event coreference
resolution. To our knowledge, this is the first work
that solves these two tasks simultaneously. Our
experiment shows that the proposed method ef-
fectively penalizes false positives in joint search,
thereby outperforming a pipelined model substan-
tially in event coreference resolution.

There are a number of avenues for future work.
One can further ensure the advantage of the joint
model using a larger corpus. Our preliminary ex-
periment on the ACE 2005 corpus shows that due
to its larger document size and event types, one
will need to reduce training time by a distributed
learning algorithm such as mini-batches (Zhao and
Huang, 2013). Another future work is to incorpo-
rate other components of events into the model.
These include event types, event arguments, and
other relations such as subevents. One could lever-
age them as other learning targets or constraints,
and investigate further benefits of joint modeling.
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