Higher-order logical inference with compositional semantics
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Abstract

We present a higher-order inference sys-
tem based on a formal compositional
semantics and the wide-coverage CCG
parser. We develop an improved method
to bridge between the parser and seman-
tic composition. The system is evaluated
on the FraCasS test suite. In contrast to the
widely held view that higher-order logic is
unsuitable for efficient logical inferences,
the results show that a system based on
a reasonably-sized semantic lexicon and a
manageable number of non-first-order ax-
ioms enables efficient logical inferences,
including those concerned with general-
ized quantifiers and intensional operators,
and outperforms the state-of-the-art first-
order inference system.

1 Introduction

Entailment relations are of central importance in
the enterprise of both formal and computational
semantics. Traditionally, formal semanticists have
concentrated on a relatively small set of linguis-
tic inferences. However, since the emergence of
statistical parsers based on sophisticated syntac-
tic theories (Clark and Curran, 2007), an open do-
main system has been developed that supports cer-
tain degree of robust semantic interpretation with
wide coverage (Bos et al., 2004). It is then rea-
sonable to expect that a state-of-the-art formal se-
mantics provides an accurate computational basis
of natural language inferences.

However, there are still obstacles in the way
of achieving this goal. One is that the statistical
parsers on which semantic interpretations rely do
not necessarily reflect the best syntactic analysis as
assumed in the formal semantics literature (Honni-
bal et al., 2010). Another persistent problem is the
gap between the logics employed in the two com-
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munities; while it is generally assumed among for-
mal semanticists that adequate semantic represen-
tations for natural language demand higher-order
logic or type theory (Carpenter, 1997), the domi-
nant view in computational linguistics is that infer-
ences based on higher-order logic are hopelessly
inefficient for practical applications (Bos, 2009a).
Accordingly, it is claimed that some approxima-
tion of higher-order representations in terms of
first-order logic (Hobbs, 1985), or a more efficient
“natural logic” system based on surface structures
is needed. However, it is often not a trivial task
to give an approximation of rich higher-order in-
formation within a first-order language (Pulman,
2007). Moreover, the coverage of existing natu-
ral logic systems is limited to single-premise in-
ferences (MacCartney and Manning, 2008).

In this paper, we first present an improved com-
positional semantics that fills the gap between the
parser syntax and a composition derivation. We
then develop an inference system that is capable of
higher-order inferences in natural languages. We
combine a state-of-the-art higher-order proof sys-
tem (Coq) with a wide-coverage parser based on
a modern syntactic theory (Combinatory Catego-
rial Grammar, CCG). The system is designed to
handle multi-premise inferences as well as single-
premise ones.

We test our system on the FraCaS test suite
(Cooper et al., 1994), which is suitable for eval-
uating the linguistic coverage of an inference sys-
tem. The experiments show that our higher-order
system outperforms the state-of-the-art first-order
system with respect to the speed and accuracy of
making logical inferences.

2 CCG and Compositional Semantics

As an initial step of compositional semantics, we
use the C&C parser (Clark and Curran, 2007),
a statistical CCG parser trained on CCGbank
(Hockenmaier and Steedman, 2007). Parser out-
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category : S\NP
semantics : AQ.Q(Az.True)(Az.E(x))

Figure 1: Schematic lexical entry (semantic tem-
plate) for intransitive verbs. E is a position in
which a particular lexical item appears.

category: NP/N
semantics : \FAGAH Vz(Fx N Gx — Hzx)
surf : every

Figure 2: The lexical entry for determiner every

puts are mapped onto semantic representations in
a standard way (Bos, 2008), using A-calculus as an
interface between syntax and semantics.

The strategy we use to build a semantic lexicon
is similar to that of Bos et al. (2004). A lexical en-
try for each open word class consists of a syntac-
tic category in CCG (possibly with syntactic fea-
tures) and a semantic representation encoded as a
A-term. Fig. 1 gives an example.! For a limited
number of closed words such as logical or func-
tional expressions, a A-term is directly assigned to
a surface form (see Fig.2). The output formula is
obtained by combining each A-term in accordance
with meaning composition rules and then by ap-
plying (3-conversion.

There is a non-trivial gap between the parser
output and the standard CCG-syntax as presented
in Steedman (2000). Due to this gap, it is not
straightforward to obtain desirable semantic repre-
sentations for a wide range of constructions. One
major difference from the standard CCG-syntax is
the treatment of post-NP modifiers; for instance,
the relative clause who works is assigned not the
category N\ N, but the category NP\ NP, which
applies to the whole NP. To derive correct truth-
conditions for quantificational sentences, we as-
sign to determiners a semantic term having an ex-
tra predicate variable as shown in Fig. 2, namely,
AFAGAH Nz (Fx N Gx— Hr), in a similar way
to the continuation semantics for event predicates
(Bos, 2009b; Champollion, 2015). The extra pred-
icate variable G can be filled by the semantically
empty predicate Ax.True in a verb phrase (see
Fig. 1). Fig. 3 gives an example derivation.

Note that the changes in the lexical entries as il-
lustrated in Fig. 1 and Fig. 2 are made for the cor-
rect semantic parsing, namely, the compositional

"Here we use a non-standard semantics for intransitive
verbs. We will explain it in the next paragraph.

Examples Semantic Types

most (E— Prop) — (E— Prop) — Prop
might Prop— Prop

true Prop— Prop

manage Prop— E— Prop

believe Prop— E— Prop

Table 1: A classification of key linguistic elements
having higher-order denotations.

derivation of semantic representations. Usually,
inferences are conducted on those output seman-
tic representations in which additional complexi-
ties, such as lambda operators and extra predicate
variables, disappear. Accordingly, the changes in
the lexical entries do not affect the efficiency of
inferences.

The present analysis of post NP-modifiers can
also handle non-restrictive relative clauses such as
“the president, who...”. In this case, the modi-
fier “who...” can be taken to apply to the whole
NP the president, thus its syntactic category can
be regarded as NP\ NP, not as N\N. Thus, al-
though the NP\ NP analysis of relative clauses is
a non-standard one, it has an advantage in that it
provides a unified treatment of restrictive and non-
restrictive relative clauses.

3 Representation and Inference in HOL

We present a higher-order representation language
and describe apparently higher-order phenomena
that have received attention in formal semantics.

3.1 Semantic representations in HOL

We use the language of higher-order logic (HOL)
with two basic types, E for entities and Prop for
propositions. Here we distinguish between propo-
sitions and truth-values, as is standard in modern
type theory (Ranta, 1994; Luo, 2012). Key higher-
order constructs are summarized in Table 1.2 A
first-order language can be taken as a fragment of
this language. Thus, adopting a higher-order lan-
guage does not lead to the loss of the expressive
power of the first-order language.

Apart from sub-sentential utterances such as
short answers to wh-questions (Ginzburg, 2005),
there are important constructions that are naturally

2We write a function from objects of type A to objects of
type B as A— B. Here — is right-associative: A— B —C
means A— (B — C). We use the symbol — both for logical
implication and function-type constructor, following the so-
called Curry-Howard isomorphism (Carpenter, 1997).
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Every student
NP/N N
AMFGHNz(Fx N Gz — Hzx) Az.student(z)

(NP\NP)/(S\NP)
AVQF.Q(A\x.(VINGH.Hz) A Fx))

who works
S\NP
AQ.Q(Az.True) (Ax.work(x))

NP
AGH .Vz(student(z) A Gz — Hzx)

NP\NP
AQF.Q(Az.(work(z) A Fz))

comes

NP
AF H .Vz(student(x) A work(z) A Foz — Hux)

S\NP
AQ.Q(Az.True)(Az.come(x))

S

Va (student(x) A work(z) A True — come(x))

Figure 3: A CCG derivation of the semantic representation for the sentence Every student who works
comes. A\FGH.X is an abbreviation for A\FAGAH.X. “True” denotes the tautology, hence the final
formula is equivalent to Vz(student(z) A work(z) — come(z)).

represented in higher-order languages.’

Generalized quantifiers A classical example of
non-first-orderizable expressions is a proportional
generalized quantifier like most and half of (Bar-
wise and Cooper, 1981). Model-theoretically, they
denote relations between sets. We represent them
as a two-place higher-order predicate taking first-
order predicates as arguments. For instance, Most
students work is represented as follows.

(1) most(Az.student(z), Ax.work(x))

Here, most is a higher-order predicate in the sense
that it takes first-order predicates \z.student(x)
and \z.work(x) as arguments. We take the entail-
ment patterns governing most as axioms, along the
same lines of natural logic and monotonicity cal-
culus (Icard and Moss, 2014), where determiners
are taken as primitive two-place operators.

Standard quantifiers like every and some could
also be treated as binary operators in the same way
as the binary most in (1). But we choose to adopt
the first-order decomposition in such cases (see
Fig. 2 for the lexical entry of every).

Modals Modal auxiliary expressions like might,
must and can are represented as unary sentential
operators. For instance, the sentence Some student
might come is represented as:

(2) Jz(student(x) A might(come(z))).

An important inference role of such a modal op-
erator is to distinguish modal contexts from actual
contexts and thus block an inference from one con-
text to another (might A does not entail A).
Alternatives to the higher-order approach in-
clude the first-order decomposition of modal op-
erators using world variables (Blackburn et al.,
2001) and the first-order modal semantic represen-
tations implemented in Boxer (Bos, 2005). We

3See also Blackburn and Bos (2005) for some discussion
on inferences that go beyond first-order logic.

prefer the higher-order approach, because the first-
order approaches introduce additional quantifiers
and variables at the level of the semantic represen-
tations on which one makes inferences.

Veridical and anti-veridical predicates A sen-
tential operator O is veridical if O(A) entails A,
and anti-veridical if O(A) entails =A. While
modal auxiliary verbs like might are neither veridi-
cal nor anti-veridical, there is a class of ex-
pressions licensing these patterns of inference.
Typical examples are adjectives taking an em-
bedded proposition, such as true/correct and
falselincorrect. Note that sentences like Every-
thing/what he said is false involve a quantifica-
tion over propositions, which is problematic for
the first-order approach.

The so-called implicative verbs like manage and
fail (Nairn et al., 2006) are also an instance of
this class. For example, Some student manages to
come is formalized as

(3) Jz(student(x) A manage(z, come(z)))

where manage is a veridical predicate taking a
proposition as the second argument; it licenses an
inference to 3z (student(x) A come(x)).

Attitude verbs A wide range of propositional at-
titude verbs such as believe and hope are similar
to modals in that they do not license an inference
from attitude contexts to actual contexts. But fac-
tives like know and remember are an exception;
they are veridical.*

A first-order translation can be given along the
lines of Hintikka (1962). (4) is translated as (5).

(4) know(john, Jz(student(x) A come(x)))

(5)  Vwi(Rjohnwo w1 —
Jz(student(wy, x) A come(ws, z)))
*Factive predicates show the important inference patterns

known as presupposition projection (van der Sandt, 1992),
which are beyond the scope of this paper.

2057



Axiom
VEVG (most(F, G)

— Jdz(Fz A Gz))
VFVG (most(F, G)

— most(F, \z.(Fx A Gz)))
VEVGVH (most(F, G)
— (Vz(Gzx — Hz)

— most(F, H)))
VP(true(P) — P)
VaVP(manage(z, P) — P)
VYV P(know(z, P) — P)
VP(false(P) — —P)
VaVP(fail(x, P) — —P)

Inference pattern
Existential import

Conservativity

Monotonicity
(right-upward)

Veridicality

Anti-veridicality

Table 2: Axioms for non-first-order constructions.

However, one drawback is that the compositional
semantics becomes complicated, so we prefer the
non-decomposition approach for attitude verbs.

3.2 Inferences in HOL

Following Chatzikyriakidis and Luo (2014), we
use a proof-assistant Coq (Castéran and Bertot,
2004) to implement a specialized prover for
higher-order features in natural languages, and
combine it with efficient first-order inferences. We
use Coq’s built-in tactics for first-order inferences.
Coq also has a language called Ltac for user-
defined automated tactics (Delahaye, 2000). The
additional axioms and tactics specialized for natu-
ral language constructions are written in Ltac. We
ran Coq fully automated, by feeding to its inter-
active mode a set of predefined tactics combined
with user-defined proof-search tactics.

Table 2 shows the axioms we implemented.
Modals and non-veridical predicates (by which we
mean predicates that are neither veridical nor anti-
veridical) do not have particular axioms, with the
consequence that actual and hypothetical contexts
are correctly distinguished.

4 Experiments

We evaluated our system on the FraCaS test suite
(Cooper et al., 1994), a set of entailment prob-
lems that is designed to evaluate theories of for-
mal semantics.”> We used the version provided by
MacCartney and Manning (2007). The whole data
set is divided into nine sections, each devoted to
linguistically challenging problems. Of these, we
used six sections, excluding three sections (nomi-
nal anaphora, ellipsis and temporal reference) that

SOur system will be publicly available at
https://github.com/mynlp/ccg2lambda.

Section # Ours Nut L&S13 Tian14
Quantifiers 74 77 .53 .62 .80
Plurals 33 .67 .52 — —
Adjectives 22 .68 .32 - -
Comparatives | 31 48 45 - -
Verbs 8 .62 .62 — —
Attitudes 13 N .46 — -
Total 181 | .69 .50 - —

Table 3: Accuracy on the FraCaS test suite. The
first column shows the number of problems. Of
the total 188 problems, we excluded seven prob-
lems that lack a well-defined answer.

involve a task of resolving context-dependency, a
task beyond the scope of this paper. Each prob-
lem consists of one or more premises, followed
by a hypothesis. There are three types of answer:
yes (the premise set entails the hypothesis), no (the
premise set entails the negation of the hypothesis),
and unknown (the premise set entails neither the
hypothesis nor its negation). Fig.4 shows some
examples.

Currently, our system has 57 templates for gen-
eral syntactic categories and 80 lexical entries for
closed words. In a similar way to Bos et al. (2004),
closed words are confined to a limited range of
logical and functional expressions such as quanti-
fiers and connectives. These templates and lexical
entries are not specific with respect to the FraCaS
test suite. We use WordNet (Miller, 1995) as the
knowledge base for antonymy; logical axioms rel-
evant to given inferences are extracted from this
knowledge base.

We compared our system with the state-of-
the-art CCG-based first-order system Boxer (Bos,
2008), which is one of the most well-known logic-
based approaches to textual entailment. We used
the Nutcracker system based on Boxer that utilizes
a first-order prover (Bliksem) and a model builder
(Mace) with the option enabling access to Word-
Net. We did not use the option enabling modal
semantics, since it did not improve the results. All
experiments were run on a 4-core@1.8Ghz, 8GB
RAM and SSD machine with Ubuntu.

Experimental results are shown in Table 3. Our
system improved on Nutcracker. We set a time-
out of 30 seconds, after which we output the label
“unknown”. Nutcracker timed-out in one third of
the problems (57 out of 181), whereas there was
no time-out in our system.

Table 4 shows parse times and inference times
for the FraCaS test suite. The inference speed
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fracas-067

Most Europeans who are resident outside Europe can travel freely within Europe.

Premise 1  All residents of the North American continent can travel freely within Europe.
Premise 2  Every Canadian resident is a resident of the North American continent.
Hypothesis All Canadian residents can travel freely within Europe.

Answer Yes

fracas-074

Premise 1 = Most Europeans can travel freely within Europe.

Hypothesis

Answer Unknown

Figure 4: Examples of entailment problems from the FraCasS test suite

Parsing and inference sec
/problem

CCG Parsing (C&C parser) 3.76

Our system with higher-order inference 3.72

Our system with higher-order rules ablated  3.46
Nutcracker with first-order inference 11.23
(first-order prover + model builder)

Table 4: Comparison of inference time on the Fra-
CaS test suite. CCG parsing is common to both
our system and Nutcracker.

of our system is significantly higher than that
of Nutcracker. Our system’s total accuracy with
higher-order rules is 69%, and drops to 59% when
ablating the higher-order rules.

We are aware of two other systems tested on
FraCasS that are capable of multiple-premise infer-
ences: the CCG-based first-order system of Lewis
and Steedman (2013) and the dependency-based
compositional semantics of Tian et al. (2014).
These systems were only evaluated on the Quan-
tifier section of FraCaS. As shown in Table 3, our
results improve on the former and are comparable
with the latter.

Other important studies on FraCaS are those
based on natural logic (MacCartney and Manning,
2008; Angeli and Manning, 2014). These sys-
tems are designed solely for single-premise in-
ferences and hence are incapable of handling the
general case of multiple-premise problems (which
cover about 45% of the problems in FraCaS). Our
system improves on these natural-logic-based sys-
tems by making multiple-premise inferences as
well.

Main errors we found are due to various parse
errors caused by the CCG parser, including the
failure to handle multiwords like a /ot of. The per-
formance of our system will be further improved

with correct syntactic analyses. Our experiments
on FraCaS problems do not constitute an evalua-
tion on real texts nor on unseen test data. Note,
however, that a benefit of using a linguistically
controlled set of entailment problems is that one
can check not only whether, but also how each se-
mantic phenomenon is handled by the system. In
contrast to the widely held view that higher-order
logic is less useful in computational linguistics,
our results demonstrate the logical capacity of a
higher-order inference system integrated with the
CCG-based compositional semantics.

5 Conclusion

We have presented a framework for a composi-
tional semantics based on the wide-coverage CCG
parser, combined with a higher-order inference
system. The experimental results on the FraCaS
test suite have shown that a reasonable number of
lexical entries and non-first-order axioms enable
various logical inferences in an efficient way and
outperform the state-of-the-art first-order system.
Future work will focus on incorporating a robust
model of lexical knowledge (Lewis and Steedman,
2013; Tian et al., 2014) to our framework.
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