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Abstract

We present experiments with generative
models for linearization of unordered la-
beled syntactic dependency trees (Belz et
al., 2011; Rajkumar and White, 2014).
Our linearization models are derived from
generative models for dependency struc-
ture (Eisner, 1996). We present a series of
generative dependency models designed
to capture successively more information
about ordering constraints among sister
dependents. We give a dynamic program-
ming algorithm for computing the condi-
tional probability of word orders given tree
structures under these models. The models
are tested on corpora of 11 languages us-
ing test-set likelihood, and human ratings
for generated forms are collected for En-
glish. Our models benefit from represent-
ing local order constraints among sisters
and from backing off to less sparse distri-
butions, including distributions not condi-
tioned on the head.

1 Introduction

We explore generative models for producing lin-
earizations of unordered labeled syntactic depen-
dency trees. This specific task has attracted at-
tention in recent years (Filippova and Strube,
2009; He et al., 2009; Belz et al., 2011; Bohnet
et al., 2012; Zhang, 2013) because it forms
a useful part of a natural language generation
pipeline, especially in machine translation (Chang
and Toutanova, 2007) and summarization (Barzi-
lay and McKeown, 2005). Closely related tasks
are generation of sentences given CCG parses
(White and Rajkumar, 2012), bags of words (Liu
et al., 2015), and semantic graphs (Braune et al.,
2014).

Here we focus narrowly on testing probabilistic
generative models for dependency tree lineariza-

tion. In contrast, the approach in most previ-
ous work is to apply a variety of scoring func-
tions to trees and linearizations and search for an
optimally-scoring tree among some set. The prob-
abilistic linearization models we investigate are
derived from generative models for dependency
trees (Eisner, 1996), as most commonly used in
unsupervised grammar induction (Klein and Man-
ning, 2004; Gelling et al., 2012). Generative de-
pendency models have typically been evaluated
in a parsing task (Eisner, 1997). Here, we are
interested in the inverse task: inferring a distri-
bution over linear orders given unordered depen-
dency trees.

This is the first work to consider generative de-
pendency models from the perspective of word
ordering. The results can potentially shed light
on how ordering constraints are best represented
in such models. In addition, the use of proba-
bilistic models means that we can easily define
well-motivated normalized probability distribu-
tions over orders of dependency trees. These dis-
tributions are useful for answering scientific ques-
tions about crosslinguistic word order in quan-
titative linguistics, where obtaining robust esti-
mates has proven challenging due to data sparsity
(Futrell et al., 2015).

The remainder of the work is organized as fol-
lows. In Section 2 we present a set of generative
linearization models. In Section 3 we compare
the performance of the different models as mea-
sured by test-set probability and human accept-
ability ratings. We also compare our performance
with other systems from the literature. Section 4
concludes.

2 Generative Models for Projective
Dependency Tree Linearization

We investigate head-outward projective generative
dependency models. In these models, an ordered
dependency tree is generated by the following kind
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Figure 1: Example unordered dependency tree.
Possible linearizations include (1) This story
comes from the AP and (2) From the AP comes this
story. Order 2 is the original order in the corpus,
but order 1 is much more likely under our models.

of procedure. Given a head node, we use some
generative process G to generate a depth-1 sub-
tree rooted in that head node. Then we apply
the procedure recursively to each of the depen-
dent nodes. By applying the procedure starting at
a ROOT node, we generate a dependency tree. For
example, to generate the dependency tree in Fig-
ure 1 from the node comes down, we take the head

comes and generate the subtree

comes

story AP

nsubj
nmod

,

then we take the head story and generate

story

this

det

,
and so on. In this work, we experiment with differ-
ent specific generative processes G which generate
a local subtree conditioned on a head.

2.1 Model Types

Here we describe some possible generative pro-
cesses G which generate subtrees conditioned on
a head. These models contain progressively more
information about ordering relations among sister
dependents.

A common starting point for G is
Eisner Model C (Eisner, 1996). In this model,
dependents on one side of the head are generated
by repeatedly sampling from a categorical distri-
bution until a special stop-symbol is generated.
The model only captures the propensity of depen-
dents to appear on the left or right of the head, and
does not capture any order constraints between
sister dependents on one side of the head.

We consider a generalization of Eisner Model C
which we call Dependent N-gram models. In
a Dependent N-gram model, we generate depen-
dents on each side the head by sampling a se-
quence of dependents from an N-gram model.
Each dependent is generated conditional on the

N − 1 previously generated dependents from
the head outwards. We have two separate N-
gram sequence distributions for left and right
dependents. Eisner Model C can be seen as a
Dependent N-gram model with N = 1.

We also consider a model which can capture
many more ordering relations among sister depen-
dents: given a head h, sample a subtree whose
head is h from a Categorical distribution over sub-
trees. We call this the Observed Orders model
because in practice we are simply sampling one of
the observed orders from the training data. This
generative process has the capacity to capture the
most ordering relations between sister dependents.

2.1.1 Distributions over Permutations of
Dependents

We have discussed generative models for ordered
dependency trees. Here we discuss how to use
them to make generative models for word orders
conditional on unordered dependency trees.

Suppose we have a generative process G for de-
pendency trees which takes a head h and gener-
ates a sequence of dependents wl to the left of h
and a sequence of dependents wr to the right of h.
Let w denote the pair (wl,wr), which we call the
configuration of dependents. To get the probabil-
ity of some w given an unordered subtree u, we
want to calculate the probability of w given that G
has generated the particular multiset W of depen-
dents corresponding to u. To do this, we calculate:

p(w|W) =
p(w,W)
p(W)

=
p(w)

Z
,

(1)

where
Z =

∑
w′∈W

p(w′) (2)

and W is the set of all possible configurations
(wl,wr) compatible with multiset W. That is,W
is the set of pairs of permutations of multisets Wl

and Wr for all possible partitions of W into Wl

and Wr. The generative dependency model gives
us the probability p(w).

It remains to calculate the normalizing constant
Z, the sum of probabilities of possible configura-
tions. For the Observed Orders model, Z is the
sum of probabilities of subtrees with the same de-
pendents as subtree u. For the Dependent N-gram
models of order N , we calculate Z using a dy-
namic programming algorithm, presented in Al-
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gorithm 1 as memoized recursive functions. When
N = 1 (Eisner Model C), Z is more simply:

Zemc = pL(stop)× pR(stop)

×
∑

(Wl,Wr)∈PARTS(W)

|Wl|!× |Wr|!

×
∏

w∈Wl

pL(w)
∏

w∈Wr

pR(w),

(3)

where PARTS(W) is the set of all partitions of
multiset W into two multisets Wl and Wr, pL

is the probability mass function for a dependent to
the left of the head, pR is the function for a depen-
dent to the right, and stop is a special symbol in
the support of pL and pR which indicates that gen-
eration of dependents should halt. The probability
mass functions may be conditional on the head h.
These methods for calculating Z make it possible
to transform a generative dependency model into a
model of dependency tree ordering conditional on
local subtree structure.

Algorithm 1 Compute the sum of probabilities
of all configurations of dependents W under a
Dependent N-gram model with two component N-
gram models of order N : pR for sequences to the
right of the head and pL for sequences to the left.
memoized function RIGHT NORM(r, c)

if |r| = 0 then
return pR(stop | c)

end if
Z ← 0
for i = 1 : |r| do

r′ ← elements of r except the ith
c′ ← append ri to c then truncate to length N − 1
Z ← Z + pR(ri|c)× RIGHT NORM(r′, c′)

end for
return Z

end memoized function
memoized function LEFT NORM(r, c)

Z ← pL(stop | c)× RIGHT NORM([start], r)
for i = 1 : |r| do

r′ ← elements of r except the ith
c′ ← append ri to c then truncate to length N − 1
Z ← Z + pL(ri|c)× LEFT NORM(r′, c′)

end for
return Z

end memoized function
Result is LEFT NORM(W, [start])

2.2 Labelling

The previous section discussed the question of
the structure of the generative process for depen-
dency trees. Here we discuss an orthogonal mod-
eling question, which we call labelling: what in-
formation about the labels on dependency tree
nodes and edges should be included in our mod-

els. Dependency tree nodes are labeled with word-
forms, lemmas, and parts-of-speech (POS) tags;
and dependency tree edges are labeled with rela-
tion types. A model might generate orders of de-
pendents conditioned on all of these labels, or a
subset of them. For example, a generative depend-
necy model might generate (relation type, depen-
dent POS tag) tuples conditioned on the POS tag
of the head of the phrase. When we use such a
model for dependency linearization, we would say
the model’s labelling is relation type, dependent
POS, and head POS. In this study, we avoid in-
cluding wordforms or lemmas in the labelling, to
avoid data sparsity issues.

2.3 Model Estimation and Smoothing

In order to alleviate data sparsity in fitting our
models, we adopt two smoothing methods from
the language modelling literature.

All categorical distributions are estimated us-
ing add-k smoothing where k = 0.01. For the
Dependent N-gram models, this means adding k
pseudocounts for each possible dependent in each
context. For the Observed Orders model, this
means adding k pseudocounts for each possible
permutation of the head and its dependents.

We also experiment with combining our mod-
els into mixture distributions. This can be viewed
as a kind of back-off smoothing (Katz, 1987),
where the Observed Orders model is the model
with the most context, and Dependent N-grams
and Eisner Model C are backoff distributions with
successively less context. Similarly, models with
less information in the labelling can serve as back-
off distributions for models with more information
in the labelling. For example, a model which is
conditioned on the POS of the head can be backed
off to a model which does not condition on the
head at all. We find optimal mixture weights us-
ing the Baum-Welch algorithm tuned on a held-out
development set.

3 Evaluation

Here we empirically evaluate some options for
model type and model labelling as described
above. We are interested in how many of the pos-
sible orders of a sentence our model can generate
(recall), and in how many of our generated orders
really are acceptable (precision). As a recall-like
measure, we quantify the probability of the word
orders of held-out test sentences. Low probabil-
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Labelling Model Basque Czech English Finnish French German Hebrew Indonesian Persian Spanish Swedish

H
D

R

oo -6.83 -7.58 -5.23 -7.35 -10.86 -8.36 -9.74 -8.99 -10.39 -11.31 -8.83
n1 -6.12 -8.97 -5.08 -7.15 -11.54 -9.81 -9.63 -8.68 -10.63 -13.19 -8.37
n2 -4.86 -6.35 -2.87 -5.30 -6.86 -6.60 -5.91 -5.98 -5.54 -7.47 -4.92
n3 -5.92 -6.59 -3.13 -5.68 -7.34 -7.02 -6.81 -6.69 -6.49 -8.06 -5.68

n123 -4.58 -6.18 -2.60 -5.11 -6.67 -6.19 -5.77 -5.73 -5.51 -7.36 -4.72
oo+n123 -4.52 -5.95 -2.57 -5.04 -6.58 -5.92 -5.68 -5.68 -5.47 -7.27 -4.68

H
D

R
+R

oo -5.56 -6.78 -3.94 -6.25 -9.63 -7.42 -7.95 -7.51 -9.19 -9.54 -7.28
n1 -6.08 -8.97 -5.07 -7.16 -11.54 -9.79 -9.58 -8.67 -10.62 -13.17 -8.35
n2 -4.49 -6.31 -2.62 -5.17 -6.79 -6.34 -5.62 -5.67 -5.42 -7.40 -4.67
n3 -4.86 -6.41 -2.61 -5.20 -7.08 -6.43 -6.07 -6.02 -6.04 -7.70 -5.02

n123 -4.41 -6.15 -2.48 -5.01 -6.59 -5.99 -5.54 -5.53 -5.42 -7.29 -4.53
oo+n123 -4.29 -5.84 -2.44 -4.88 -6.50 -5.74 -5.40 -5.47 -5.38 -7.09 -4.46

Table 1: Average log likelihood of word order per sentence in test set under various models. Under
“Labelling”, HDR means conditioning on Head POS, Dependent POS, and Relation Type, and R means
conditioning on Relation Type alone (see Section 2.2). Under “Model”, oo is the Observed Orders model,
n1 is the Dependent 1-gram model (Eisner Model C), n2 is the Dependent 2-gram model, and n3 is the
Dependent 3-gram model (see Section 2.1). In both columns, x+y means a mixture of model x and
model y; n123 means n1+n2+n3.

ities assigned to held-out sentences indicate that
there are possible orders which our model is miss-
ing. As a precision-like measure, we get human
acceptability ratings for sentence reorderings gen-
erated by our model.

We carry out our evaluations using the de-
pendency corpora of the Universal Dependen-
cies project (v1.1) (Agić et al., 2015), with the
train/dev/test splits provided in that dataset. We
remove nodes and edges dealing with punctuation.
Due to space constraints, we only present results
from 11 languages here.

3.1 Test-Set Probability

Here we calculate average probabilities of word
orders per sentence in the test set. This number can
be interpreted as the (negative) average amount of
information contained in the word order of a sen-
tence beyond information about dependency rela-
tions.

The results for selected languages are shown
in Table 1. The biggest gains come from us-
ing Dependent N-gram models with N > 1,
and from backing off the model labelling. The
Observed Orders model does poorly on its own,
likely due to data sparsity; its performance is
much improved when backing off from condition-
ing on the head. Eisner Model C (n1) also per-
forms poorly, likely because it cannot represent
any ordering constraints among sister dependents.
The fact it helps to back off to distributions not
conditioned on the head suggests that there are
commonalities among distributions of dependents

of different heads, which could be exploited in fur-
ther generative dependency models.

3.2 Human Evaluation

We collected human ratings for sentence reorder-
ings sampled from the English models from 54 na-
tive American English speakers on Amazon Me-
chanical Turk. We randomly selected a set of 90
sentences from the test set of the English Universal
Dependencies corpus. We generated a reordering
of each sentence according to each of 12 model
configurations in Table 1. Each participant saw
an original sentence and a reordering of it, and
was asked to rate how natural each version of the
sentence sounded, on a scale of 1 to 5. The or-
der of presentation of the original and reordered
forms was randomized, so that participants were
not aware of which form was the original and
which was a reordering. Each participant rated
56 sentence pairs. Participants were also asked
whether the two sentences in a pair meant the same
thing, with “can’t tell” as a possible answer.

Table 2 shows average human acceptability rat-
ings for reorderings, and the proportion of sen-
tence pairs judged to mean the same thing. The
original sentences have an average acceptability
rating of 4.48/5. The very best performing models
are those which do not back off to a distribution
not conditioned on the head. However, in the case
of the Observed Orders and other sparse models,
we see consistent improvement from this backoff.

Figure 2 shows the acceptability ratings (out of
5) plotted against test set probability. We see that
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Labelling Model Acceptability Same Meaning

H
D

R

oo 2.92 0.58
n1 2.06 0.44
n2 3.42 0.78
n3 3.48 0.85

n123 3.56 0.79
oo+n123 3.45 0.75

H
D

R
+R

oo 3.11 0.72
n1 2.11 0.49
n2 3.32 0.80
n3 3.52 0.77

n123 3.31 0.76
oo+n123 3.43 0.80

Table 2: Mean acceptability rating out of 5, and
proportion of reordered sentences with the same
meaning as the original, for English models. La-
bels as in Table 1.
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Figure 2: Comparison of test set probability (Ta-
ble 1) and acceptability ratings (Table 2) for En-
glish across models. A least-squares linear regres-
sion line is shown. Labels as in Table 1.

the models which yield poor test set probability
also have poor acceptability ratings.

3.3 Comparison with other systems

Previous work has focused on the ability to cor-
rectly reconstruct the word order of an observed
dependency tree. Our goal is to explicitly model a
distribution over possible orders, rather than to re-
cover a single correct order, because many orders
are often possible, and the particulator order that a
dependency tree originally appeared in might not
be the most natural. For example, our models typ-
ically reorder the sentence “From the AP comes
this story” (in Figure 1) as “This story comes from
the AP”; the second order is arguably more natu-
ral, though the first is idiomatic for this particular
phrase. So we do not believe that BLEU scores

and other metrics of similarity to a “correct” or-
dering are particularly relevant for our task.

Previous work uses BLEU scores (Papineni et
al., 2002) and human ratings to evaluate genera-
tion of word orders. To provide some comparabil-
ity with previous work, we report BLEU scores on
the 2011 Shared Task data here. The systems re-
ported in Belz et al. (2011) achieve BLEU scores
ranging from 23 to 89 for English; subsequent
work achieves BLEU scores of 91.6 on the same
data (Bohnet et al., 2012). Drawing the highest-
probability orderings from our models, we achieve
a top BLEU score of 57.7 using the model config-
uration hdr/oo. Curiously, hdr/oo is typically the
worst model configuration in the test set probabil-
ity evaluation (Section 3.1). The BLEU perfor-
mance is in the middle range of the Shared Task
systems. The human evaluation of our models is
more optimistic: the best score for Meaning Sim-
ilarity in the Shared Task was 84/100 (Bohnet et
al., 2011), while sentences ordered according to
our models were judged to have the same meaning
as the original in 85% of cases (Table 2), though
these figures are based on different data. These
comparisons suggest that these generative models
do not provide state-of-the-art performance, but do
capture some of the same information as previous
models.

3.4 Discussion

Overall, the most effective models are the
Dependent N-gram models. The naive approach
to modeling order relations among sister depen-
dents, as embodied in the Observed Orders model,
does not generalize well. The result suggests that
models like the Dependent N-gram model might
be effective as generative dependency models.

4 Conclusion

We have discussed generative models for depen-
dency tree linearization, exploring a path less trav-
eled by in the dependency linearization literature.
We believe this approach has value for answering
scientific questions in quantitative linguistics and
for better understanding the linguistic adequacy of
generative dependency models.
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