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Abstract

Expectation-maximization algorithms,
such as those implemented in GIZA++
pervade the field of unsupervised word
alignment. However, these algorithms
have a problem of over-fitting, leading to
“garbage collector effects,” where rare
words tend to be erroneously aligned
to untranslated words. This paper
proposes a leave-one-out expectation-
maximization algorithm for unsupervised
word alignment to address this prob-
lem. The proposed method excludes
information derived from the alignment
of a sentence pair from the alignment
models used to align it. This prevents
erroneous alignments within a sentence
pair from supporting themselves. Ex-
perimental results on Chinese-English
and Japanese-English corpora show that
the F1, precision and recall of alignment
were consistently increased by 5.0% –
17.2%, and BLEU scores of end-to-end
translation were raised by 0.03 – 1.30.
The proposed method also outperformed
l0-normalized GIZA++ and Kneser-Ney
smoothed GIZA++.

1 Introduction

Unsupervised word alignment (WA) on bilingual
sentence pairs serves as an essential foundation
for building most statistical machine translation
(SMT) systems. A lot of methods have been pro-
posed to raise the accuracy of WA in an effort to
improve end-to-end translation quality. This pa-
per contributes to this effort through refining the
widely used expectation-maximization (EM) algo-
rithm for WA (Dempster et al., 1977; Brown et al.,
1993b; Och and Ney, 2000).

∗ The author now is affiliated with Google, Japan.

The EM algorithm for WA has a great influ-
ence in SMT. Many well-known toolkits includ-
ing GIZA++ (Och and Ney, 2003), the Berkeley
Aligner (Liang et al., 2006; DeNero and Klein,
2007), Fast Align (Dyer et al., 2013) and SyM-
GIZA++ (Junczys-Dowmunt and Sza, 2012), all
employ this algorithm. GIZA++ in particular is
frequently used in systems participating in many
shared tasks (Goto et al., 2011; Cettolo et al.,
2013; Bojar et al., 2013).

However, the EM algorithm for WA is well-
known for introducing “garbage collector ef-
fects.” Rare words have a tendency to collect
garbage, that is they have a tendency to be erro-
neously aligned to untranslated words (Brown et
al., 1993a; Moore, 2004; Ganchev et al., 2008;
V Graça et al., 2010). Figure 1(a) shows a real
sentence pair, denoteds, from the GALE Chinese-
English Word Alignment and Tagging Training
corpus (GALE WA corpus)1 with it’s human-
annotated word alignment. The Chinese word
“HE ZHANG,” denotedwr, which means river
custodian, only occurs once in the whole corpus.
We performed EM training using GIZA++ on this
corpus concatenated with 442,967 training sen-
tence pairs from the NIST Open Machine Trans-
lation (OpenMT) 2006 evaluation2. The resulting
alignment is shown in Figure 1(b). It can be seen
thatwr is erroneously aligned to multiple English
words.

To find the cause of this, we checked the align-
ments in each iterationi of s, denotedai

s. We
found that in a1

s , wr together with the other
source-side words were aligned with uniform
probability to all the target-side words since the
alignment models provided no prior information.
However, ina2

s , wr became erroneously aligned,
1Released by Linguistic Data Consortium, catalog

number LDC2012T16, LDC2012T20, LDC2012T24 and
LDC2013T05.

2http://www.itl.nist.gov/iad/mig/
tests/mt/2006/
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because the alignment distribution3 of wr was
only learned froma1

s , thus consisted of non-zero
values only for generating the target-side words in
s. Therefore, the alignment probabilities from the
rare wordwr to the unaligned words ins were ex-
traordinarily high, since almost all of the proba-
bility mass was distributed among them. In other
words, the story behind these garbage collector ef-
fects is that erroneous alignments are able to pro-
vide support for themselves; the probability distri-
bution learned only froms is re-applied tos. In
this way, these “garbage collector effects” are a
form of over-fitting.

Motivated by this observation, we propose a
leave-one-out EM algorithm for WA in this pa-
per. Recently this technique has been applied
to avoid over-fitting in kernel density estima-
tion (Roux and Bach, 2011); instead of performing
maximum likelihood estimation, maximum leave-
one-out likelihood estimation is performed. Fig-
ure 1(c) shows the effect of using our technique
on the example. The garbage collection has not
occurred, and the alignment of the word “HE
ZHANG” is identical to the human annotation.

2 Related Work

The most related work to this paper is train-
ing phrase translation models with leave-one-out
forced alignment (Wuebker et al., 2010; Wuebker
et al., 2012). The differences are that their work
operates at the phrase level, and their aim is to im-
prove translation models; while our work operates
at the word level, and our aim is to provide better
word alignment. As word alignment is a founda-
tion of most MT systems, our method have a wider
application.

Recently, better estimation methods during the
maximization step of EM have been proposed
to avoid the over-fitting in WA, such as using
Kneser-Ney Smoothing to back-off the expected
counts (Zhang and Chiang, 2014) or integrating
the smoothedl0 prior to the estimation of prob-
ability (Vaswani et al., 2012). Our work differs
from theirs by addressing the over-fitting directly
in the EM algorithm by adopting a leave-one-out
approach.

Bayesian methods (Gilks et al., 1996; Andrieu
et al., 2003; DeNero et al., 2008; Neubig et al.,

3The probability distribution of generating target lan-
guage words fromwr. The description here is only based on
IBM model1 for simplicity, and the other alignment models
are similar.
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Figure 1: Examples of supervised word alignment.
(a) gold alignment; (b) standard EM (GIZA++);
(c) Leave-one-out alignment (proposed).

2011), also attempt to address the issue of over-
fitting, however EM algorithms related to the pro-
posed method have been shown to be more effi-
cient (Wang et al., 2014).

3 Methodology

This section first formulates the standard EM for
WA, then presents the leave-one-out EM for WA,
and finally briefly discusses handling singletons
and effecient implementation. The main notation
used in this section is shown in Table 1.

3.1 Standard EM for IBM Models 1, 2 and
HMM Model

To perform WA through EM, the parallel corpus
is taken as observed data, the alignments are taken
as latent data. In order to maximize the likelihood
of the alignment modelθ given the dataS, the fol-
lowing two steps are conducted iteratively (Brown
et al., 1993b; Och and Ney, 2000; Och and Ney,
2003),

Expectation Step (E step): calculating the con-
ditional probability of alignments for each sen-
tence pair,

P (a|s, θ) =
∏J

j=1 θali(aj |aj−1, I)θlex(fj |eaj ),(1)

whereθali(i|i′, I) is the alignment probability and
θlex(f |e) is the translation probability. Note that
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f a foreign sentence(f1, . . . , fJ)
e an English sentence(e1, . . . , eI)
s a sentence pair(f , e)
a an alignment(a1, . . . , aJ) wherefj is

aligned toeaj

Bi a list of the indexes of the foreign words
which are aligned toei

Bi,k the index of thek-th foreign word
which is aligned toei

Bi is the average of all elements inBi

ρi the largest index of an English word
s.t . ρi < i and|Bρi | > 0

φi the fertility of ei

Ei the word class ofei

θ· an probabilistic model
θs̄· a leave-one-out probabilistic model for

s
nx(s,a) the number of times that an eventx

happens in(s,a)
Nx(s) the marginal number of times that an

eventx happens ins

Table 1: Main Notation. Note thatNx(s) =∑
a nx(s,a)P (a|s). In practical calculation, for

IBM models 1, 2 and HMM model, this summa-
tion is performed by dynamic programming; for
IBM model 4, it is performed approximately us-
ing the best alignment and its neighbors.

(1) is a general form for IBM model 1, model 2
and the HMM model.

Maximization step (M step): re-estimating the
probability models,

θali(i|i′, I) ←
∑

s Ni|i′,I(s)∑
s Ni′,I(s)

(2)

θlex(f |e) ←
∑

s Nf |e(s)∑
s ne(s)

(3)

whereNi′,I(s) is the marginal number of timesei′

is aligned to some foreign word if the length ofe is
I, or0 otherwise;Ni|i′,I(s) is the marginal number
of times the next alignment position afteri′ is i in
a if the length ofe is I, or0 otherwise;ne(s) is the
count ofe in e; Nf |e(s,a) is the marginal number
of timese is aligned tof .

3.2 Leave-one-out EM for IBM Models 1, 2
and HMM Model

Leave-one-out EM for WA differs from standard
EM in the way the alignment and translation prob-
abilities are calculated. Each sentence pair will

have its own alignment and translation probability
models calculated by excluding the sentence pair
itself. More formally, leave-one-out EM for WA
are formulated as follows,

Leave-one-out E step: employing leave-one-
out models for eachs to calculate the conditional
probability of alignments

P (a|s, θs̄) =
∏J

j=1 θs̄
ali(aj |aj−1, I)θs̄

lex(fj |eaj ),(4)

whereθs̄
ali(i|i′, I) and θs̄

lex(fj |eaj ) are the leave-
one-out alignment probability and translation
probability, respectively.

Leave-one-out M step: re-estimating leave-
one-out probability models,

θs̄
ali(i|i′, I) ←

∑
s′ 6=s Ni|i′,I(s′)∑
s′ 6=s Ni′,I(s′)

(5)

θs̄
lex(f |e) ←

∑
s′ 6=s Nf |e(s′)∑
s′ 6=s ne(s′)

. (6)

3.3 Standard EM for IBM Model 4

The framework of the standard EM for IBM
Model 4 is similar with the one for IBM Models 1,
2 and HMM Model, but the calculation of align-
ment probability is more complicated.

E step: calculating the conditional probabil-
ity through the reverted alignment (Och and Ney,
2003),

P (a|s, θ) = P (B0|B1, . . . , BI)·
I∏

i=1

P (Bi|Bi−1, ei) ·
I∏

i=1

∏
j∈Bi

θlex(fj |ei), (7)

whereB0 means the set of foreign words aligned
with the empty word;P (B0|B1, . . . , BI) is as-
sumed to be a binomial distribution for the size
of B0 (Brown et al., 1993b) or an modified distri-
bution to relieve deficiency (Och and Ney, 2003).

The distributionP (Bi|Bi−1, ei) is decomposed
as

P (Bi|Bi−1, ei) = θfer(φi|ei)·

θhea(Bi,1 −Bρi |Eρi) ·
φi∏

k=2

θoth(Bi,k −Bi,k−1),

(8)

whereθfer is a fertility model;θhea is a probabil-
ity model for the head (first) aligned foreign word;
θoth is a probability model for the other aligned
foreign words.θhea is assumed to be conditioned
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on the word classEρi , following the paper of
(Och and Ney, 2003) and the implementation of
GIZA++ and CICADA.

M step: re-estimating the probability models,

θfer(φ|e) ←
∑

s Nφ|e(s)∑
s

∑
φ′ Nφ′|e(s)

(9)

θhea(∆i|E) ←
∑

s Nhea
∆i|E(s)∑

s

∑
∆i′ N

hea
∆i′|E(s)

(10)

θoth(∆i) ←
∑

s Noth
∆i (s)∑

s

∑
∆i′ N

oth
∆i′(s)

, (11)

where∆i is a difference of the indexes of two for-
eign words.

3.4 Leave-one-out EM for IBM Model 4

The leave-one-out treatment were applied to the
three component probability modelsθfer, θhea and
θoth of IBM model 4.

Leave-one-out E step: calculating the condi-
tional probability through leave-one-out probabil-
ity models

P (a|s, θs̄) = P (B0|B1, . . . , BI)·
I∏

i=1

P s̄(Bi|Bi−1, ei) ·
I∏

i=1

∏
j∈Bi

θs̄
lex(fj |ei), (12)

P s̄(Bi|Bi−1, ei) = θs̄
fer(φi|ei)·

θs̄
hea(Bi,1 −Bρi |Eρi) ·

φi∏
k=2

θs̄
oth(Bi,k −Bi,k−1).

(13)

Leave-one-out M step: re-estimating the leave-
one-out probability models,

θs̄
fer(φ|e) ←

∑
s′ 6=s Nφ|e(s′)∑

s′ 6=s

∑
φ′ Nφ′|e(s′)

(14)

θs̄
hea(∆i|E) ←

∑
s′ 6=s Nhea

∆i|E(s′)∑
s′ 6=s

∑
∆i′ N

hea
∆i′|E(s′)

(15)

θs̄
oth(∆i) ←

∑
s′ 6=s Noth

∆i (s
′)∑

s′ 6=s

∑
∆i′ N

oth
∆i′(s

′)
. (16)

3.5 Handling Singletons

Singletons are the words that occur only once in
corpora. Singletons cause problems when apply-
ing leave-one-out to lexicalized models such as the
translation modelθs̄

lex and the fertility modelθs̄
fer.

When calculating (6) and (14) for singletons, the

denominators become zero, thus the probabilities
are undefined.

For singletons, there is no prior information to
guide their alignment, so we back off to uniform
distributions. In that case, the alignments are pri-
marily determined by the rest of the sentence.

In addition, singletons can be in the target side
of the translation modelθs̄

lex. In that case, the prob-
abilities become zero. This is handled by setting a
minimum probability value of1.0× 10−12, which
was decided by pilot experiments.

3.6 Implementation Details

To alleviate memory requirements and increase
speed, our implementation did not build or store
the local alignment models explicitly for each sen-
tence pair. The following formula was used to effi-
ciently calculate (5), (6) and (14–16) to build tem-
porary probability models,∑

s′ 6=s

Nx(s′) = (
∑
s′

Nx(s′))−Nx(s), (17)

where x is a alignment event. Our implemen-
tation maintained global counts of all alignment
events

∑
s′ Nx(s′), and (considerably smaller) lo-

cal countsNx(s) from each sentence pairs.
Take the translation modelθs̄

lex for example. For
a sentence pairs = (f1 . . . fJ , e1 . . . eI), it is cau-
clulated as,

θs̄
lex(fj |ei) =

(
∑

s′ N(fj |ei)(s
′))−N(fj |ei)(s)

(
∑

s′ nei(s′))− nei(s)
.

(18)

The global counts to be maintained are∑
s′ N(fj |ei)(s

′) andnei(s
′), and the local counts

are
∑

s N(fj |ei)(s) and nei(s). Therefore the
memory cost is,

|E| · (|F|+ 1) +
∑
s

Is(Js + 1), (19)

where|E| is the size of English vocabulary,|F| is
the size of foreign language vocabulary,Is is the
length of the English sentence ofs, andJs is the
length of the foreign sentence ofs.

The calculation of the leave-one-out translation
model is performed for each English word and for-
eign word ins. Therefore, the time cost is,∑

s

Is(Js + 1). (20)
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In addition, because the local countsN(fj |ei)(s)
andnei(s) are read in order, storing them in a ex-
ternal memory such as a hard disk will not slow
down the running speed much. This will reduce
the memory cost to

|E| · (|F|+ 1). (21)

This cost is independent to the number of sentence
pairs4.

The speed of the proposed method can be
boosted through parallelism. These calculations
on each sentence pair can be performed indepen-
dently. We found empirically that when our im-
plementation of the proposed method is run on a
16-core computer, it finishes the task earlier than
GIZA++5.

4 Experiments

The proposed WA method was tested on two
language pairs: Chinese-English and Japanese-
English (Table 2). Performance was measured
both directly using the agreement with reference
to manual WA annotations, and indirectly using
the BLEU score in end-to-end machine translation
tasks. GIZA++ and our own implementation of
standard EM were used as baselines.

4.1 Experimental Settings

The Chinese-English experimental data consisted
of the GALE WA corpus and the OpenMT cor-
pus. They are from the same domain, both con-
tain newswire texts and web blogs. The OpenMT
evaluation 2005 was used as a development set for
MERT tuning (Och, 2003), and the OpenMT eval-
uation 2006 was used as a test set. The Japanese-
English experimental data was the Kyoto Free
Translation Task (Neubig, 2011)6. The corpus
contains a set of 1,235 sentence pairs that are man-
ually word aligned.

The corpora were processed using a standard
procedure for machine translation. The English
texts were tokenized with the tokenization script
released with Europarl corpus (Koehn, 2005) and
converted to lowercase; the Chinese texts were
segmented into words using the Stanford Word
Segmenter (Xue et al., 2002)7; the Japanese texts

4We found the memory of our server is large enough, so
we did not implement it

5We plan to make our code public available.
6http://www.phontron.com/kftt/
7http://nlp.stanford.edu/software/

segmenter.shtml

were segmented into words using the Kyoto Text
Analysis Toolkit (KyTea8). Sentences longer than
100 words or those with foreign/English word
length ratios between larger than 9 were filtered
out.

GIZA++ was run with the default Moses set-
tings (Koehn et al., 2007). The IBM model 1,
HMM model, IBM model 3 and IBM model 4
were run with 5, 5, 3 and 3 iterations. We imple-
mented the proposed leave-one-out EM and stan-
dard EM in IBM model 1, HMM model and IBM
model 4. In the original work (Och and Ney, 2003)
this combination of models achieved comparable
performance to the default Moses settings. They
were run with 5, 5 and 6 iterations.

The standard EM was re-implemented as a
baseline to provide a solid basis for comparison,
because GIZA++ contains many undocumented
details. Our implementation is based on the toolkit
of CICADA (Watanabe and Sumita, 2011; Watan-
abe, 2012; Tamura et al., 2013)9. We named the
implemented aligner AGRIPPA, to support our in-
house decoders OCTAVIAN and AUGUSTUS.

In all experiments, WA was performed indepen-
dently in two directions: from foreign languages
to English, and from English to foreign languages.
Then the grow-diag-final-and heuristic was used to
combine the two alignments from both directions
to yield the final alignments for evaluation (Och
and Ney, 2000; Och and Ney, 2003).

4.2 Word Alignment Accuracy

Word alignment accuracy of the baseline and the
proposed method is shown in Table 3 in terms of
precision, recall and F1 (Och and Ney, 2003). The
proposed method gave rise to higher quality align-
ments in all our experiments. The improvement
in F1, precision and recall based on IBM Model
4 is in the range 8.3% to 9.1% compared with the
GIZA++ baseline, and in the range 5.0% to 17.2%
compared with our own baseline.

The most meaningful result comes from the
comparison of the models trained using standard
EM log-likelihood training, and the proposed EM
leave-one-out log-likelihood training. These mod-
els are identical except for way in which the model
likelihood is calculated. In all our experiments the
proposed method gave rise to higher quality align-
ments. The standard EM implementation achieved

8http://www.phontron.com/kytea/
9http://www2.nict.go.jp/univ-com/multitrans/cicada/
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Corpus # Sent. pairs # Foreign Words # English Words
Chinese-English (GALE WA, OpenMT)

WA 18,057 392,447 518,137
Train 442,967 12,265,072 13,444,927
Eval. 05 1,082† 29,688 138,952
Eval. 06 1,664† 37,827 189,059

Japanese-English (Kyoto Free Translation)
WA 1,235 34,403 30,822
Train 329,882 6,085,131 5,911,486
Develop 1,166 26,856 24,309
Test 1,160 28,501 26,734

Table 2: Experimental Data.† Each consists of one foreign sentence and four English reference sen-
tences.

Models standard EM (GIZA++) standard EM (ours) Leave-one-out(prop.)
F1 P R F1 P R F1 P R

Chinese-English (GALE WA, OpenMT)
Model 1 0.498 0.656 0.401 0.518 0.670 0.423 0.553 0.689 0.461
HMM 0.584 0.720 0.491 0.593 0.722 0.503 0.665 0.774 0.583
Model 4 0.624 0.698 0.565 0.593 0.688 0.522 0.677 0.756 0.612

Japanese-English (Kyoto Free Translation)
Model 1 0.508 0.601 0.439 0.513 0.606 0.444 0.535 0.618 0.471
HMM 0.573 0.667 0.502 0.579 0.665 0.512 0.626 0.687 0.575
Model 4 0.577 0.594 0.561 0.570 0.617 0.530 0.628 0.648 0.609

Table 3: Word alignment accuracy measured by F1, precision and recall.

alignment performance approximately compara-
ble to GIZA++, whereas the proposed method ex-
ceeded the performance of both implementations.

4.3 End-to-end Translation Quality

BLEU scores achieved by the phrase-based and
hierachical SMT systems10 which were trained
from different alignment results, are shown in
Table 4. Each experiment was conducted three
times to mitigate the variance in the results due to
MERT. The results show that the proposed align-
ment method achieved the highest BLEU score in
all experiments. The improvement over the base-
line is in range 0.03 to 1.03 for phrase-based sys-
tems, and ranged from 0.43 to 1.30 for hierarchical
systems.

Hierarchical systems benifit more from the pro-
posed method than phrase-based systems. We
think this is because that hierarchical systems are
more sensitive to word alignment quality than
phrase-based systems. Phrase-based systems only

10from the Moses toolkit
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Figure 2: Curve of word alignment accuracy (F1)
under training corpora of different sizes.

1822



SMT Systems standard EM (GIZA++) standard EM (ours) Leave-one-out (prop.)
Chinese-English (GALE WA, OpenMT)

Phrase-based 31.85± 0.26 31.01± 0.18 32.04 ± 0.08
Hierarchical 32.27± 0.23 31.40± 0.26 32.70 ± 0.14

Japanese-English (Kyoto Free Translation)
Phrase-based 18.35± 0.27 18.20± 0.20 18.38 ± 0.11
Hierarchical 19.48± 0.08 19.39± 0.02 20.10 ± 0.07

Table 4: End-to-end translation quality measured by BLEU

Corpus size standard EM (GIZA++) standard EM (ours) Leave-one-out(prop.)
F1 P R F1 P R F1 P R

1K 0.429 0.466 0.397 0.419 0.463 0.382 0.470 0.568 0.402
4K 0.499 0.547 0.459 0.492 0.549 0.445 0.568 0.668 0.494
18K† 0.571 0.630 0.521 0.553 0.621 0.499 0.633 0.721 0.565
64K 0.588 0.659 0.531 0.555 0.638 0.492 0.645 0.712 0.590
256K 0.614 0.687 0.554 0.578 0.667 0.511 0.661 0.718 0.612
461K 0.624 0.698 0.565 0.593 0.688 0.522 0.677 0.756 0.612

Table 5: Effect of training corpus size on word alignment accuracy measured by F1, precision and recall
(Chinese-English).† the whole manually word aligned corpus

Corpus size stan.(GIZA++) stan.(ours) LOO(prop.) Gold
Phrase-based

1k 7.86 7.66 9.38 10.01
4k 15.27 15.49 17.06 17.57
18K† 22.15 21.72 24.41 24.11
64K 28.10 27.91 29.23 NA
256K 31.05 30.82 31.51 NA
461K 31.85 31.01 32.04 NA

Hierarchical
1k 7.53 7.54 9.19 10.62
4k 14.89 15.51 17.91 18.31
18K† 22.85 22.56 24.66 24.52
64K 28.82 28.22 29.78 NA
256K 31.47 30.21 31.72 NA
461K 32.27 31.04 32.70 NA

Table 6: Effect of training corpus size on end-to-end translation quality measured by BLEU (Chinese-
English).† the whole manually word aligned corpus

take contiguous parallel phrase pairs as translation
rules, while hierarchical systems also use patterns
made by subtracting (inner) short parallel phrases
from (outer) longer parallel phrases. Both the
outer and inner phrases typically need to be noise-
free in order to produce high quality rules. This
puts a high demand on the alignment quality.

4.4 Effect of Training Corpus Size

Training corpora of different sizes were employed
to perform unsupervised WA experiments and MT
experiments (see Tables 5 and 6).

The training corpora were randomly sampled
from the Chinese-English manual WA corpora and
the parallel training corpus. The manual WA cor-
pus has a priority for being sampled so that the
gold WA annotation is available for MT experi-

1823



10
15

20
25

30

Size of training corpora (Log)

B
LE

U
 (

ph
ra

se
−

ba
se

d)

1k 4k 18k 64k 256k 461k

Standard EM (GIZA++)
Standard EM (ours)
Leave−one−out EM (prop.)
Gold

(a)

10
15

20
25

30

Size of training corpora (Log)

B
LE

U
 (

H
ie

ra
rc

hi
ca

l)

1k 4k 18k 64k 256k 461k

Standard EM (GIZA++)
Standard EM (ours)
Leave−one−out EM (prop.)
Gold

(b)

Figure 3: Curves of translation quality (BLEU) under training corpora ofdifferent sizes. (a) Phrase-based
MT; (b) Hierarchical MT.

ments.
The settings of the unsupervised WA experi-

ments and the MT experiments are the same with
the previous experiments. In the WA experiments,
GIZA++, our implemented standard EM and the
proposed leave-one-out EM are applied to training
corpora with the same parameter settings as the
previous. In the MT experiments, the WA results
of different methods and the gold WA (if available)
are employed to extract translation rules; the rest
settings including language models, development
and test corpus, and parameters are the same as the
previous.

On word alignment accuracy, the proposed
method achieved improvements ofF1 from 0.041
to 0.090 under the different training corpora (Table
5. The maximum improvement compared with
GIZA++ is 0.069 when the training corpus has
4,000 sentence pairs. The maximum improvement
compared with our own implement is 0.090 when
the training corpus has 64,000 sentence pairs.

Figure 2 shows that the extent of improvements
slightly changes under different training corpora,
but they are all quite stable and obvious.

On translation quality, the proposed method
achieved improvements of BLEU under the dif-
ferent training corpora. The improvements ranged
from 0.19 to 1.72 for phrase-based MT and ranged
from 0.25 to 3.02 (see Table 5). The improve-
ments are larger under smaller training corpora
(see Figure 3).

In addition, the BLEUs achieved by the pro-
posed method is close to the ones achieved by gold
WA annotations. The proposed method slightly
outperforms the gold WA annotations when us-
ing the full manual WA corpus of 18,057 sentence
pairs.

4.5 Comparison to l0-Normalization and
Kneser-Ney Smoothing Methods

The proposed leave-one-word word align-
ment method was empirically compared to
l0-normalized GIZA++ (Vaswani et al., 2012)11

and Kneser-Ney smoothed GIZA++ (Zhang and
Chiang, 2014)12. l0-normalization and Kneser-
Ney smoothing methods are established methods
to overcome the sparse problem. This enables
the probability distributions on rare words to be
estimated more effectively. In this way, these
two GIZA++ variants are related to the proposed
method.

l0-normalized GIZA++ and Kneser-Ney
smoothed GIZA++ were run with the same
settings as GIZA++, which came from the
default settings of MOSES. For the settings of
l0-normalized GIZA++ that are not in common
with GIZA++ were the default settings. As for
Kneser-Ney smoothed GIZA++, the smooth
switches of IBM models 1 – 4 and HMM model

11http://www.isi.edu/ ˜ avaswani/
giza-pp-l0.html

12https://github.com/hznlp/giza-kn
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GIZA++ l0-Normalization Kneser-Ney Smooth. Leave-one-out(prop.)
Word Alignment Quality

F1 P R F1 P R F1 P R F1 P R
All Words 0.624 0.698 0.565 0.629 0.700 0.571 0.656 0.726 0.599 0.678 0.755 0.615
S.W.F=1 0.458 0.435 0.483 0.448 0.471 0.427 0.515 0.532 0.499 0.398 0.693 0.279
S.W.F≤2 0.466 0.451 0.481 0.461 0.485 0.440 0.522 0.545 0.501 0.450 0.707 0.330
S.W.F≤5 0.476 0.480 0.473 0.478 0.509 0.451 0.534 0.572 0.501 0.502 0.722 0.385
S.W.F≤10 0.485 0.505 0.466 0.491 0.531 0.456 0.541 0.593 0.498 0.529 0.733 0.414

Translation Quality (BLEU)
Phrase-based 31.85± 0.26 31.52± 0.06 31.94± 0.19 32.04 ± 0.08
Hierarchical 32.27± 0.23 32.20± 0.04 32.47± 0.33 32.70 ± 0.14

Table 7: Empirical Comparision withl0-Normalized and Kneser-Ney Smoothed GIZA++’s

were turned on.

The experimental results are presented in Ta-
ble 7. The experiments were run on the Chinese-
English language pair. The word alignment qual-
ity was evaluated separately for all words and for
various levels of rare words. The leave-one-out
method outperformed related methods in terms
of precision, recall and F1 when evaluated on all
words.

Rare words were categorized based on the num-
ber of occurences in the source-language text of
the training data. The evaluations were carried
out on the subset of alignment links that had a
rare word on the source side. Table 7 presents
the results for thresholds 1, 2, 5 and 10. The
proposed method achieved much higher preci-
sion on rare words than the other methods, but
performed poorly on recall. The Kneser-Ney
Smoothed GIZA++ had higher recall. The ex-
planation might be that the leave-one-out method
punishes rare words more than the Kneser-Ney
smoothing method, by totally removing the de-
rived expected counts of current sentence pair
from the alignment models. This leads to rare
words being passively aligned. In other words, the
leave-one-out method would align rare words un-
less the confidence is high. Therefore, we plan to
seek a method to integrate Kneser-Ney smoothing
into the proposed leave-one-out method in the fu-
ture work.

The BLEU scores achieved by phrase-based
SMT and hierarchical SMT for different align-
ment methods are presented in Table 7. The
proposed method outperforms the other methods.
The Kneser-Ney Smoothed GIZA++ performed
the second best. We tried to further analyze the
relation between word alignment and BLEU, but
found the analysis was obscured by the many
processing stages. These stages include paral-

lel phrase extraction (or translation rule extraction
from hierarchical SMT), log-linear model, MERT
tuning and practical decoding where a lot of prun-
ing happened.

5 Conclusion

This paper proposes a leave-one-out EM algo-
rithm for WA to overcome the over-fitting prob-
lem that occurs when using standard EM for WA.
The experimental results on Chinese-English and
Japanese-English corpora show that both the WA
accuracy and the end-to-end translation are im-
proved.

In addition, we have a interesting finding about
the effect of manual WA annotations on train-
ing MT systems. In a Chinese-English parallel
training corpus of 18,057 sentence pairs, the man-
ual WA annotation outperformed the unsupervised
WA results produced by standard EM algorithms.
However, the unsupervised WA results produced
by proposed leave-one-out EM algorithm outper-
formed the manual WA annotation.

Our future work will focus on increasing the
gains in end-to-end translation quality through the
proposed leave-one-out aligner. It is a interest-
ing question why GIZA++ achieved competitive
BLEU scores though its alignment accuracy mea-
sured by F1 was substantially lower. The answer
to this question which may reveal essence of good
word alignment for MT and eventually help to im-
prove MT. In addition, we plan to improve the pro-
posed method by integrating Kneser-Ney smooth-
ing.
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