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Abstract

A prerequisite relation describes a basic
relation among concepts in cognition, ed-
ucation and other areas. However, as a se-
mantic relation, it has not been well stud-
ied in computational linguistics. We inves-
tigate the problem of measuring prereq-
uisite relations among concepts and pro-
pose a simple link-based metric, namely
reference distance (RefD), that effectively
models the relation by measuring how dif-
ferently two concepts refer to each other.
Evaluations on two datasets that include
seven domains show that our single metric
based method outperforms existing super-
vised learning based methods.

1 Introduction

What should one know/learn before starting to
learn a new area such as “deep learning”? A key
for answering this question is to understand what
a prerequisite is. A prerequisite is usually a con-
cept or requirement before one can proceed to a
following one. And the prerequisite relation exists
as a natural dependency among concepts in cog-
nitive processes when people learn, organize, ap-
ply, and generate knowledge (Laurence and Mar-
golis, 1999). While there has been serious effort
in understanding prerequisite relations in learning
and education (Bergan and Jeska, 1980; Ohland
et al., 2004; Vuong et al., 2011), it has not been
well studied as a semantic relation in computa-
tional linguistics, where researchers focus more
on lexical relations among lexical items (Miller,
1995) and fine-grained entity relations in knowl-
edge bases (Mintz et al., 2009).

Instead of treating it as a relation extraction or
link prediction problem using traditional machine
learning approaches (Talukdar and Cohen, 2012;
Yang et al., 2015), we seek to better understand
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prerequisite relations from a perspective of cog-
nitive semantics (Croft and Cruse, 2004). Par-
tially motivated by the theory of frame seman-
tics (Fillmore, 2006), or, to understand a concept,
one needs to understand all the related concepts
in its “frame”, we propose a metric that measures
prerequisite relations based on a simple observa-
tion of human learning. When learning concept A,
if one needs to refer to concept B for a lot of A’s
related concepts but not vice versa, B would more
likely be a prerequisite of A than A of B. Specif-
ically, we model a concept in a vector space using
its related concepts and measure the prerequisite
relation between two concepts by computing how
differently the two’s related concepts refer to each
other, or reference distance (RefD).

Our simple metric RefD successfully reflects
some properties of the prerequisite relation such
as asymmetry and irreflexivity; and can be prop-
erly implemented for various applications using
different concept models. We present an imple-
mentation of the metric using Wikipedia by lever-
aging the links as reference relations among con-
cepts; and present a scalable prerequisite dataset
construction method by crawling public available
university course prerequisite websites and map-
ping them to Wikipedia concepts. Experimental
results on two datasets that include seven domains
demonstrate its effectiveness and robustness on
measuring prerequisites. Surprisingly, our single
metric based approach significantly outperforms
baselines which use more sophisticated supervised
learning. All the datasets are publicly available
upon request.

Our main contributions include:
e A novel metric to measure the prerequisite re-

lation among concepts that outperforms ex-
isting supervised learning baselines.

e A new dataset containing 1336 concept pairs
in Computer Science and Math.
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Figure 1: An example of the reference structure
for two concepts (“Data mining” and “Algorithm”)
with a prerequisite relation.

2 Measuring Prerequisite Relations

Our goal is to design a function f : C2> — R that
maps a concept pair (A, B) to a real value that
measures the extent to which A requires B as a
prerequisite, where C is the concept space. How
should a concept be represented in C? According
to the theory of frame semantics, one cannot un-
derstand a concept without access to all essential
knowledge related to it. Such knowledge can be
actually viewed as a set of related concepts. Thus,
a concept could be represented by its related con-
cepts in C. For example, the concept “deep learn-
ing” may be represented by concepts such as “ma-
chine learning”, “artificial neural network”, etc.

Compared to prerequisites, a more common and
observable relation among concepts is a reference,
which widely exists in various forms such as hy-
perlinks, citations, notes, etc. Although a single
evidence of reference does not indicate a prereq-
uisite relation, a large number of such evidences
might make a difference. For example, if most re-
lated concepts of A refer to B but few related con-
cepts of B refer to A, then B is more likely to be
a prerequisite of A, as shown in Figure 1. In or-
der to measure prerequisite relations, we propose
a reference distance (RefD), which is defined as

¥ r(ei,B)w(ei,A
RefD(A,B) = Zl:i’?fl ﬁ)fn -

Zi—;l r(ci,A)w(c;,B)
Zf:l w(ci’B)

(D

where C = {ci,...,c,} is the concept space;
w(c;, A) weights the importance of ¢; to A; and
r(ci, A) is an indicator showing whether ¢; refers
to A, which could be links in Wikipedia, mentions
in books, citations in papers, etc.

RefD enables several useful properties
for the prerequisite relation: 1) normalized:
RefD(A,B) € [-1,1]; 2) asymmetric:
RefD(A, B)+RefD(B, A)=0, which means if
A is a prerequisite of B then B is not a prereq-
uisite of A; and 3) irreflexive: RefD(A, A)=0,
which means A is not a prerequisite of itself. To
capture all three possible prerequisite relations

between a concept pair, RefD is expected to satisfy
the following constraints:

(0,1], if B is a prerequisite of A
RefD(A,B)eq [—0, 6], if no prerequisite relation
[—1,—0), if Ais a prerequisite of B

where 6 is a positive threshold.

Equation 1 provides a general framework to cal-
culate RefD. In practice, we need to specify the
concept space C, the weight w, and the reference
indicator function r.

3 Wikipedia-based RefD Implementation

We now implement RefD using Wikipedia. As a
widely used open-access encyclopedia, Wikipedia
provides relatively up-to-date and high quality
knowledge and has been successfully utilized as
explicit concepts (Gabrilovich and Markovitch,
2007). Moreover, the rich hyperlinks created by
Wiki editors provide a natural way to calculate the
reference indicator function 7.

Specifically, the concept space C consists of
all Wikipedia articles. r(c, A) represents whether
there is a link from Wiki article ¢ to A. For
w(c, A), we experiment with two methods:

e FQUAL: A is represented by the concepts
linked from it (L(A)) with equal weights.

A):{g)

e TFIDF: A is represented by the concepts
linked from it with TFIDF weights.

(e, A) = tf(c,A)+log i ifc € L(A)
P 0 if c ¢ L(A)

if c € L(A)
if c ¢ L(A)

where tf(c, A) is the number of times ¢ be-
ing linked from A; N is the total number of
Wikipedia articles; and df(c) is the number
of Wikipedia articles where c appears.

4 Experiments

In order to evaluate the proposed metric, we apply
it to predicting prerequisite relations in Wikipedia,
i.e., whether one article in Wikipedia is a prereq-
uisite of another article. Given a pair of concepts
(A,B), we predict whether B is a prerequisite of
A or not. Both pairs where A is a prerequisite of
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Dataset Domain # Pairs  # Prerequisites
Meiosis 400 67
Public-key Cryp. 200 27
CrowdComp . allel Postulate 200 25
Newton’s Laws 400 44
Global Warming 400 43
Course CS 678 108
MATH 658 75

Table 1: Statistics of CrowdComp and Course
Datasets

Domain MaxEntT MaxEnt EQUAL TFIDF
Meiosis 51 60.2 53 55.7
Public-key Cryp. 67.1 60.3 55.1 57.7
Parallel Postulate 64.7 73.6 70.5 67.9
Newton’s Laws 53.9 57.7 63.7 64.6
Global Warming 56.8 50.0 57.4 60.1
Average 58.7 60.4 60.0* 61.2*

Table 2: Comparison of out-of-domain training
accuracies of a MaxEnt classifier and RefD using
EQUAL and TFIDF weighting. MaxEnt' is the
number reported by Talukdar et al. (2012). Max-
Ent shows the performance of our implementation.
* indicates the difference between RefD and Max-
Ent is statistically significant (p < 0.01).

B and pairs where no prerequisite relation exists
will be viewed as negative examples.

RefD is tested on two datasets: CrowdComp
dataset (Talukdar and Cohen, 2012) and a Course
prerequisite dataset collected by us. We compare
RefD with a Maximum Entropy (MaxEnt) classi-
fier which exploits graph-based features such as
PageRank scores and content-based features such
as the category information, whether a title of con-
cept is mentioned in the first sentence of the other
concept, the number of times a concept is linked
from the other, etc. (Talukdar and Cohen, 2012).
All experiments use a Wikipedia dump of Dec 8,
2014.

4.1 Results on the CrowdComp Dataset

The CrowdComp dataset was collected us-
ing Amazon Mechanical Turk by Talukdar et
al. (2012). It contains binary-labeled concept
pairs from five different domains, including meio-
sis, public-key cryptography, the parallel postu-
late, Newton’s laws of motion, and global warm-
ing. The label of the prerequisite relation for each
pair is assigned using majority vote. Details of the
dataset are shown in Table 1.

Following Talukdar et al. (2012), we evaluate

CS MATH

A P R F A P R F

MaxEnt | 72.8 87.6 532 66.1 | 69.0 781 53 63.1
EQUAL | 76.4* 804 699 74.7* |73.9* 784 673 71.9*
TFIDF | 77.1* 823 69.1 75.1* | 70.3* 763 60.1 66.7*

Table 3: Comparison of in-domain training accu-
racies, precision, recall, and F1 measure of Max-
Ent and RefD using EQUAL and TFIDF weight-
ing. * indicates the improvement over MaxEnt is
statistically significant (p < 0.01).

different methods in a “leave one domain out”
manner, where data from one domain is used
for testing and data from other four for training.
Classes in the training and testing set are balanced
by oversampling the minority class. Table 2 lists
the accuracies of different methods. In terms of
average performance, RefD achieves comparable
average accuracy as MaxEnt. When TFIDF is
used to calculate w, RefD performs better than
MaxEnt. Also we notice that our implementation
of MaxEnt classifier achieves higher accuracy than
reported in the original paper, which may be due
to the difference between Wiki dumps used. In ad-
dition, we can see that there are large differences
in performance across different domains, which is
mainly due to two reasons. First, the coverage of
Wikipedia for different domains may vary a lot.
Some domains are more popular and thus edited
more frequently, leading to a better quality of ar-
ticles and a more complete link structure. Sec-
ond, since the ground-truth labels are collected by
crowdsourcing and there is no guarantee for work-
ers’ knowledge about a certain domain, the quality
of labels for different domains varies.

4.2 Results on the Course Dataset

We also built a Course dataset with the help
of information available on a university’s course
website containing prerequisite relations between
courses. For example, “CS 331 Data Structures
and Algorithms” is a prerequisite for “CS 422
Data mining”. We get the prerequisite pairs by
crawling the website and linking the course to
Wikipedia using simple rules such as title match-
ing and content similarity. In order to get nega-
tive samples, we randomly sample 600 pairs using
concepts appearing in the prerequisite pairs. All
pairs are then checked by two domain experts by
removing pairs with incorrect labels. Table 1 lists
the information of the dataset.

Evaluation uses in-domain 5-fold cross-
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Figure 2: Comparison of Precision-Recall curves
of MaxEnt and RefD (using EQUAL and TFIDF
weighting) on the Course dataset.

validation and classes are balanced by over-
sampling the minority class. Table 3 lists the
performance comparison of different methods on
accuracy, precision, recall and F1 score. We can
see that RefD outperforms MaxEnt in terms of
accuracy, recall, and F1 score on both CS and
MATH domain. Because MaxEnt relies on many
features but there are only limited distinct positive
samples in the dataset, it is more likely to overfit
the training data, which leads to high precision but
low recall on test set. In order to better compare
precision and recall, we plot the Precision-Recall
curves of different methods, as shown in Figure 2.
RefD shows a clear improvement in the area under
the Precision-Recall curve.

Comparing two weighting methods, we find that
TFIDF performs slightly better than EQUAL on
CS while EQUAL has higher scores than TFIDF
on MATH. Since how to compute w in RefD is
a crucial problem, our ongoing work is to ex-
plore more sophisticated semantic representations
to measure prerequisite relations. A natural exten-
sion to the two simple methods here is to represent

-acy (avg.)
e

Accur
e
o

(a) CrowdComp (b) Course

Figure 3: Average accuracy on two datasets with a
given threshold of RefD using TFIDF weighting.

a concept using WordNet (Miller, 1995), Explicit
Semantic Analysis (Gabrilovich and Markovitch,
2007), or Word2vec embeddings (Mikolov et al.,
2013). Incorporating these representations may
improve the performance of RefD.

4.3 Parameter Analysis and Case Study

Since using RefD to predict prerequisites requires
setting a threshold #, we also investigate the rela-
tion between the threshold and the performance of
prediction, as shown in Figure 3. We can see that a
threshold of 0.05 for RefD using TFIDF achieves
the highest average accuracy on the CrowdComp
dataset while a threshold of 0.02 works the best for
Course dataset. Empirically we find that a thresh-
old between 0.02 and 0.1 yields a good perfor-
mance for prerequisite prediction task.

We further explore the performance of RefD
through a case study for the concept “deep learn-
ing” (denoted as ¢’). Specifically, for any con-
cept ¢ linked from ¢’ we calculate RefD(c/, c).
Table 4 lists the RefD scores for different con-
cepts using EQUAL weighting. The concepts on
the left have negative RefD scores with high abso-
lute values, which means that “deep learning” is a
prerequisite of them. Meanwhile concepts on the
right have high positive RefD scores, which means
that “deep learning” requires knowing them first.
For example, people may first need to have some
knowledge of “machine learning”, “artificial intel-
ligence” and “algorithm” in order to learn “deep
learning”. Also we notice that concepts in the mid-
dle have RefD scores which are very close to 0,
showing that there is no prerequisite relations be-
tween these concepts and “deep learning”. How-
ever, since our RefD implementation is based on
Wikipedia, it might not give an accurate measure
for concepts if they have no Wikipedia articles or
their articles are too short to provide an encyclope-
dic coverage, such as “discriminative model” and
“feature engineering”.
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Concept RefD Concept RefD Concept RefD

Deep belief network -0.38 | List of Nobel laureates 0.009 Machine learning 0.32
Neocognitron -0.28 | Neural development ~ 0.009 | Artificial neural network  0.31

Word embedding -0.24 Watson (computer) 0.003 Artificial intelligence 0.15
Vanishing gradient problem -0.22 Self-organization 8e-5 Algorithm 0.14
Feature learning -0.17 Language model -0.004 | Statistical classification  0.13

Table 4: RefD scores between “deep learning” and the concepts linked from it. All scores are calculated

by RefD(‘deep learning’, concept).

Please note that our Wikipedia-based imple-
mentation is computationally efficient especially
after precomputing weights and references and
can be easily incorporated as a feature into exist-
ing supervised learning based methods.

5 Related Work

In the area of education, researchers have tried
to find prerequisites based on the assessment data
of students’ performance (Scheines et al., 2014;
Vuong et al., 2011). However, prerequisite rela-
tions have not been well studied in computer sci-
ence, with only a few exceptions. Liuetal. (2011)
studied learning-dependency between knowledge
units using classification where a knowledge unit
is a special text fragment containing concepts.
We focus on more general prerequisite relations
among concepts. Talukdar and Cohen (2012) ap-
plied a Maximum Entropy classifier to predict
prerequisite structures in Wikipedia using various
features such as a random walk with restart score
and PageRank score. Instead of doing feature en-
gineering, we propose to measure prerequisite re-
lations using a single metric. Yang et al. (2015)
proposed Concept Graph Learning to induce rela-
tions among concepts from prerequisite relations
among courses, where the learned concept prereq-
uisite relations are implicit and thus can not be
evaluated. Our method is more interpretable for
measuring prerequisite relations.

Our work is closely related to the study of se-
mantic relations. One direction is automatic lex-
ical relation extraction. Different methods have
been proposed to discover hypernym-hyponym re-
lations based on lexical patterns (Hearst, 1992;
McNamee et al., 2008; Ritter et al., 2009), dis-
tributional similarity (Kotlerman et al., 2010), se-
mantic word embeddings (Fu et al., 2014), etc.
Another line is entity relation extraction, which
can be performed by distant supervision (Mintz
et al., 2009; Riedel et al., 2010), Open IE (Fader
et al., 2011), and neural networks (Bordes et al.,

2011; Lin et al., 2015).

In addition, semantic relatedness measures have
been widely studied, where the key is to model
the semantic representation based on a latent
space, such as LSA (Deerwester et al., 1990),
PLSA (Hofmann, 1999), LDA (Blei et al., 2003)
and distributed word embeddings (Huang et al.,
2012; Mikolov et al., 2013), or an explicit concept
space, such as ESA (Gabrilovich and Markovitch,
2007), SSA (Hassan and Mihalcea, 2011), and
SaSA (Wu and Giles, 2015). Our work can also
be served as a basis for building concept hierar-
chy (Wang et al., 2015) and teaching/learning as-
sistant tools (Liang et al., 2015).

6 Conclusions and Future Work

We studied the problem of measuring prerequi-
site relations among concepts and proposed RefD,
a general, light-weight, and effective metric, to
capture the relation. We presented Wikipedia-
based implementations of RefD with two different
weighting strategies. Experiments on two datasets
including seven domains showed that our pro-
posed metric outperformed existing baselines us-
ing supervised learning.

Promising future directions would be applying
the framework of RefD to other contexts such as
measuring the prerequisite relations or reading or-
ders between papers and textbooks. In addition,
RefD can be incorporated into existing supervised
models for a more accurate measure. Also it
would be meaningful to explore ranking different
prerequisites of a concept. Besides the rich link
structure we could take advantage of more content
information from Wikipedia and other resources
such as textbooks and scientific papers.
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