
Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pages 1576–1586,
Lisbon, Portugal, 17-21 September 2015. c©2015 Association for Computational Linguistics.

Multi-Perspective Sentence Similarity Modeling
with Convolutional Neural Networks

Hua He,1 Kevin Gimpel,2 and Jimmy Lin3

1 Department of Computer Science, University of Maryland, College Park
2 Toyota Technological Institute at Chicago

3 David R. Cheriton School of Computer Science, University of Waterloo

huah@cs.umd.edu, kgimpel@ttic.edu, jimmylin@uwaterloo.ca

Abstract

Modeling sentence similarity is compli-
cated by the ambiguity and variability of
linguistic expression. To cope with these
challenges, we propose a model for com-
paring sentences that uses a multiplicity of
perspectives. We first model each sentence
using a convolutional neural network that
extracts features at multiple levels of gran-
ularity and uses multiple types of pooling.
We then compare our sentence representa-
tions at several granularities using multi-
ple similarity metrics. We apply our model
to three tasks, including the Microsoft Re-
search paraphrase identification task and
two SemEval semantic textual similarity
tasks. We obtain strong performance on all
tasks, rivaling or exceeding the state of the
art without using external resources such
as WordNet or parsers.

1 Introduction

Measuring the semantic relatedness of two pieces
of text is a fundamental problem in language
processing tasks like plagiarism detection, query
ranking, and question answering. In this paper, we
address the sentence similarity measurement prob-
lem: given a query sentence S1 and a comparison
sentence S2, the task is to compute their similar-
ity in terms of a score sim(S1, S2). This simi-
larity score can be used within a system that de-
termines whether two sentences are paraphrases,
e.g., by comparing it to a threshold.

Measuring sentence similarity is challenging
because of the variability of linguistic expression
and the limited amount of annotated training data.
This makes it difficult to use sparse, hand-crafted
features as in conventional approaches in NLP. Re-
cent successes in sentence similarity have been ob-
tained by using neural networks (Tai et al., 2015;

Yin and Schütze, 2015). Our approach is also
based on neural networks: we propose a modular
functional architecture with two components, sen-
tence modeling and similarity measurement.

For sentence modeling, we use a convolutional
neural network featuring convolution filters with
multiple granularities and window sizes, followed
by multiple types of pooling. We experiment with
two types of word embeddings as well as part-
of-speech tag embeddings (Sec. 4). For similar-
ity measurement, we compare pairs of local re-
gions of the sentence representations, using multi-
ple distance functions: cosine distance, Euclidean
distance, and element-wise difference (Sec. 5).

We demonstrate state-of-the-art performance on
two SemEval semantic relatedness tasks (Agirre et
al., 2012; Marelli et al., 2014), and highly com-
petitive performance on the Microsoft Research
paraphrase (MSRP) identification task (Dolan et
al., 2004). On the SemEval-2014 task, we match
the state-of-the-art dependency tree Long Short-
Term Memory (LSTM) neural networks of Tai
et al. (2015) without using parsers or part-of-
speech taggers. On the MSRP task, we outper-
form the recently-proposed convolutional neural
network model of Yin and Schütze (2015) with-
out any pretraining. In addition, we perform ab-
lation experiments to show the contribution of our
modeling decisions for all three datasets, demon-
strating clear benefits from our use of multiple per-
spectives both in sentence modeling and structured
similarity measurement.

2 Related Work

Most previous work on modeling sentence simi-
larity has focused on feature engineering. Sev-
eral types of sparse features have been found use-
ful, including: (1) string-based, including n-gram
overlap features on both the word and character
levels (Wan et al., 2006) and features based on
machine translation evaluation metrics (Madnani

1576

et al., 2012); (2) knowledge-based, using exter-
nal lexical resources such as WordNet (Fellbaum,
1998; Fern and Stevenson, 2008); (3) syntax-
based, e.g., modeling divergence of dependency
syntax between the two sentences (Das and Smith,
2009); (4) corpus-based, using distributional mod-
els such as latent semantic analysis to obtain fea-
tures (Hassan, 2011; Guo and Diab, 2012).

Several strongly-performing approaches used
system combination (Das and Smith, 2009; Mad-
nani et al., 2012) or multi-task learning. Xu et
al. (2014) developed a feature-rich multi-instance
learning model that jointly learns paraphrase rela-
tions between word and sentence pairs.

Recent work has moved away from hand-
crafted features and towards modeling with dis-
tributed representations and neural network archi-
tectures. Collobert and Weston (2008) used con-
volutional neural networks in a multitask setting,
where their model is trained jointly for multiple
NLP tasks with shared weights. Kalchbrenner et
al. (2014) introduced a convolutional neural net-
work for sentence modeling that uses dynamic
k-max pooling to better model inputs of varying
sizes. Kim (2014) proposed several modifications
to the convolutional neural network architecture of
Collobert and Weston (2008), including the use of
both fixed and learned word vectors and varying
window sizes of the convolution filters.

For the MSRP task, Socher et al. (2011) used
a recursive neural network to model each sen-
tence, recursively computing the representation
for the sentence from the representations of its
constituents in a binarized constituent parse. Ji
and Eisenstein (2013) used matrix factorization
techniques to obtain sentence representations, and
combined them with fine-tuned sparse features us-
ing an SVM classifier for similarity prediction.
Both Socher et al. and Ji and Eisenstein incor-
porated sparse features to improve performance,
which we do not use in this work.

Hu et al. (2014) used convolutional neural net-
works that combine hierarchical sentence mod-
eling with layer-by-layer composition and pool-
ing. While they performed comparisons directly
over entire sentence representations, we instead
develop a structured similarity measurement layer
to compare local regions. A variety of other neural
network models have been proposed for similarity
tasks (Weston et al., 2011; Huang et al., 2013; An-
drew et al., 2013; Bromley et al., 1993).

Most recently, Tai et al. (2015) and Zhu et al.
(2015) concurrently proposed a tree-based LSTM
neural network architecture for sentence model-
ing. Unlike them, we do not use syntactic parsers,
yet our performance matches Tai et al. (2015)
on the similarity task. This result is appealing
because high-quality parsers are difficult to ob-
tain for low-resource languages or specialized do-
mains. Yin and Schütze (2015) concurrently de-
veloped a convolutional neural network architec-
ture for paraphrase identification, which we com-
pare to in our experiments. Their best results rely
on an unsupervised pretraining step, which we do
not need to match their performance.

Our model architecture differs from previous
work in several ways. We exploit multiple per-
spectives of input sentences in order to maxi-
mize information utilization and perform struc-
tured comparisons over particular regions of the
sentence representations. We now proceed to de-
scribe our model in detail, and we compare to the
above related work in our experimental evaluation.

3 Model Overview

Modeling textual similarity is complicated by the
ambiguity and variability of linguistic expression.
We designed a model with these phenomena in
mind, exploiting multiple types of input which are
processed by multiple types of convolution and
pooling. Our similarity architecture likewise uses
multiple similarity functions.

To summarize, our model (shown in Figure 1)
consists of two main components:

1. A sentence model for converting a sentence
into a representation for similarity measure-
ment; we use a convolutional neural network
architecture with multiple types of convolution
and pooling in order to capture different granu-
larities of information in the inputs.

2. A similarity measurement layer using multi-
ple similarity measurements, which compare lo-
cal regions of the sentence representations from
the sentence model.

Our model has a “Siamese” structure (Bromley
et al., 1993) with two subnetworks each process-
ing a sentence in parallel. The subnetworks share
all of their weights, and are joined by the simi-
larity measurement layer, then followed by a fully
connected layer for similarity score output.

1577

Cats Sit On The Mat

b b

On The Mat There Sit Cats

b b

Structured Similarity Measurement Layer

Fully Connected Layer

Output: Similarity Score

bc bc bc

bc

b b
b b

bc bc bc bc bc bc bc

b
b

b
b

Figure 1: Model overview. Two input sentences
(on the bottom) are processed in parallel by iden-
tical neural networks, outputting sentence repre-
sentations. The sentence representations are com-
pared by the structured similarity measurement
layer. The similarity features are then passed to a
fully-connected layer for computing the similarity
score (top).

Importantly, we do not require resources like
WordNet or syntactic parsers for the language of
interest; we only use optional part-of-speech tags
and pretrained word embeddings. The main dif-
ference from prior work lies in our use of multiple
types of convolution, pooling, and structured sim-
ilarity measurement over local regions. We show
later in our experiments that the bulk of our perfor-
mance comes from this use of multiple “perspec-
tives” of the input sentences.

We describe our sentence model in Section 4
and our similarity measurement layer in Section 5.

4 Sentence Modeling

In this section we describe our convolutional neu-
ral network for modeling each sentence. We use
two types of convolution filters defined on differ-
ent perspectives of the input (Sec. 4.1), and also
use multiple types of pooling (Sec. 4.2).

Our inputs are streams of tokens, which can be
interpreted as a temporal sequence where nearby
words are likely to be correlated. Let sent ∈
Rlen×Dim be a sequence of len input words rep-
resented by Dim-dimensional word embeddings,
where sent i ∈ RDim is the embedding of the i-th
word in the sequence and sent i:j represents the
concatenation of embeddings from word i up to
and including word j. We denote the k-th dimen-
sion of the i-th word vector by sent [k]

i and we de-
note the vector containing the k-th dimension of
words i to j by sent [k]

i:j .

w1 w2 w3 w4 w5 w1 w2 w3 w4 w5

Figure 2: Left: a holistic filter matches entire word
vectors (here, ws = 2). Right: per-dimension fil-
ters match against each dimension of the word em-
beddings independently.

4.1 Convolution on Multiple Perspectives
We define a convolution filter F as a tuple
〈ws, wF , bF , hF 〉, where ws is the sliding window
width, wF ∈ Rws×Dim is the weight vector for
the filter, bF ∈ R is the bias, and hF is the activa-
tion function (a nonlinear function such as tanh).
When filter F is applied to sequence sent , the
inner product is computed between wF and each
possible window of word embeddings of length
ws in sent , then the bias is added and the activa-
tion function is applied. This results in an output
vector outF ∈ R1+len−ws where entry i equals

outF [i] = hF (wF · sent i:i+ws−1 + bF) (1)

where i ∈ [1, 1 + len − ws]. This filter can be
viewed as performing “temporal” convolution, as
it matches against regions of the word sequence.
Since these filters consider the entirety of each
word embedding at each position, we call them
holistic filters; see the left half of Figure 2.

In addition, we target information at a finer
granularity by constructing per-dimension filters
F [k] for each dimension k of the word embed-
dings, where wF [k] ∈ Rws . See the right half
of Figure 2. The per-dimension filters are simi-
lar to “spatial convolution” filters except that we
limit each to a single, predefined dimension. We
include separate per-dimension filters for each di-
mension of the input word embeddings.
Applying a per-dimension filter F [k] =
〈ws, wF [k] , bF [k] , hF [k]〉 for dimension k re-
sults in an output vector outF [k] ∈ R1+len−ws

where entry i (for i ∈ [1, 1 + len − ws]) equals

outF [k] [i] = hF [k](wF [k] · sent [k]
i:i+ws−1 + bF [k])

Our use of word embeddings in both ways allows
more information to be extracted for richer sen-
tence modeling. While we typically do not expect
individual dimensions of neural word embeddings

1578

Filters
ws1

Max Pooling

ws1

Min Pooling

ws1

Mean Pooling

ws1

Max Pooling

ws1

Min Pooling

Building Block A Building Block B

Holistic Dimension
Per-

Filters
Holistic

Filters
Holistic

Filters
Dimension

Per-

Filters

Figure 3: Each building block consists of multiple
independent pooling layers and convolution layers
with width ws1. Left: blockA operates on entire
vectors of word embeddings. Right: blockB oper-
ates on individual dimensions of word vectors to
capture information of a finer granularity.

to be interpretable to humans, there may still be
distinct information captured by the different di-
mensions that our model could exploit. Further-
more, if we update the word embeddings during
learning, different dimensions could be encour-
aged further to capture distinct information.

We define a convolution layer as a set of con-
volution filters that share the same type (holistic
or per-dimension), activation function, and width
ws . The type, width, activation function, and num-
ber of filters numFilter in the layer are chosen by
the modeler and the weights of each filter (wF and
bF) are learned.

4.2 Multiple Pooling Types
The output vector outF of a convolution filter F is
typically converted to a scalar for subsequent use
by the model using some method of pooling. For
example, “max-pooling” applies a max operation
across the entries of outF and returns the max-
imum value. In this paper, we experiment with
two additional types of pooling: “min-pooling”
and “mean-pooling”.

A group, denoted group(ws, pooling , sent), is
an object that contains a convolution layer with
width ws , uses pooling function pooling , and op-
erates on sentence sent . We define a building
block to be a set of groups. We use two types of
building blocks, blockA and blockB , as shown in
Figure 3. We define blockA as

{groupA(wsa, p, sent) : p ∈ {max,min,mean}}.
That is, an instance of blockA has three convolu-
tion layers, one corresponding to each of the three
pooling functions; all have the same window size
wsa. An alternative choice would be to use the
multiple types of pooling on the same filters (Ren-
nie et al., 2014); we instead use independent sets

of filters for the different pooling types.1 We use
blocks of type A for all holistic convolution layers.

We define blockB as

{groupB (wsb, p, sent) : p ∈ {max,min}}.

That is, blockB contains two groups of convolu-
tion layers of width wsb, one with max-pooling
and one with min-pooling. Each groupB (∗) con-
tains a convolution layer with Dim per-dimension
convolution filters. That is, we use blocks of type
B for convolution layers that operate on individual
dimensions of word vectors.

We use these multiple types of pooling to ex-
tract different types of information from each type
of filter. The design of each group(∗) allows a
pooling function to interact with its own underly-
ing convolution layers independently, so each con-
volution layer can learn to recognize distinct phe-
nomena of the input for richer sentence modeling.

For a groupA(wsa, poolinga, sent) with a con-
volution layer with numFilterA filters, we define
the output oGA as a vector of length numFilterA
where entry j is

oGA[j] = poolinga(outFj) (2)

where filters are indexed as Fj . That is, the output
of groupA(∗) is a numFilterA-length vector con-
taining the output of applying the pooling function
on each filter’s vector of filter match outputs.2

A component groupB (∗) of blockB contains
Dim filters, each operating on a particular di-
mension of the word embeddings. We define the
output oGB of groupB (wsb, poolingb, sent) as a
Dim × numFilterB matrix where entry [k][j] is

oGB[k][j] = poolingb(out
F

[k]
j

)

where filter F [k]
j is filter j for dimension k.

4.3 Multiple Window Sizes

Similar to traditional n-gram-based models, we
use multiple window sizes ws in our building
blocks in order to learn features of different
lengths. For example, in Figure 4 we use four
building blocks, each with one window size ws =

1We note that max and min are not both strictly necessary
when using certain activation functions, but they still may
help us find a more felicitous local optimum.

2We note that there is no pooling across multiple filters
in a layer/group, or across groups. Each pooling operation is
performed independently on the matches of a single filter.

1579

Cats Sit On The Mat

b
b
b
b
b
b
b
b
b
b
b
b
b
b
b

Window Size

Building Block A

ws = 1
Window Size

ws = 1
Window Size

ws = 2
Window Size

ws = 2

Building Block B

Window Size
ws =∞

Figure 4: Example neural network architecture for
a single sentence, containing 3 instances of blockA

(with 3 types of pooling) and 2 instances of blockB

(with 2 types) on varying window sizes ws = 1, 2
and ws =∞; blockA operates on entire word vec-
tors while blockB contains filters that operate on
individual dimensions independently.

1 or 2 for its own convolution layers. In order to
retain the original information in the sentences, we
also include the entire matrix of word embeddings
in the sentence, which essentially corresponds to
ws =∞.

The width ws represents how many words are
matched by a filter, so using larger values of ws
corresponds to matching longer n-grams in the
input sentences. The ranges of ws values and
the numbers of filters numFilter of blockA and
blockB are empirical choices tuned based on vali-
dation data.

5 Similarity Measurement Layer

In this section we describe the second part of our
model, the similarity measurement layer.

Given two input sentences, the first part of our
model computes sentence representations for each
of them in parallel. One straightforward way to
compare them is to flatten the sentence represen-
tations into two vectors, then use standard met-
rics like cosine similarity. However, this may
not be optimal because different regions of the
flattened sentence representations are from differ-
ent underlying sources (e.g., groups of different
widths, types of pooling, dimensions of word vec-
tors, etc.). Flattening might discard useful com-
positional information for computing similarity.
We therefore perform structured comparisons over
particular regions of the sentence representations.

One important consideration is how to iden-
tify suitable local regions for comparison so that
we can best utilize the compositional information
in the sentence representations. There are many
possible ways to group local comparison regions.
In doing so, we consider the following four as-

pects: 1) whether from the same building block; 2)
whether from convolutional layers with the same
window size; 3) whether from the same pooling
layer; 4) whether from the same filter of the under-
lying convolution layers.3 We focus on comparing
regions that share at least two of these conditions.

To concretize this, we provide two algorithms
below to identify meaningful local regions. While
there exist other sets of comparable regions that
share the above conditions, we do not explore
them all due to concerns about learning efficiency;
we find that the subset we consider performs
strongly in practice.

5.1 Similarity Comparison Units
We define two comparison units for comparing
two local regions in the sentence representations:

comU 1(
−→x ,−→y) = {cos(−→x ,−→y), L2Euclid(−→x ,−→y),

|−→x −−→y |} (3)

comU 2(
−→x ,−→y) = {cos(−→x ,−→y), L2Euclid(−→x ,−→y)} (4)

Cosine distance (cos) measures the distance of
two vectors according to the angle between them,
while L2 Euclidean distance (L2Euclid) and
element-wise absolute difference measure magni-
tude differences.

5.2 Comparison over Local Regions
Algorithms 1 and 2 show how the two sentence
representations are compared in our model. Algo-
rithm 1 works on the output of blockA only, while
Algorithm 2 deals with both blockA and blockB ,
focusing on regions from the output of the same
pooling type and same block type, but with differ-
ent filters and window sizes of convolution layers.

Given two sentences S1 and S2, we set the max-
imum window size ws of blockA and blockB to be
n, let regM∗ represent a numFilterA by n+1 ma-
trix, and assume that each group∗ outputs its cor-
responding oG∗. The output features are accumu-
lated in a final vector fea .

5.3 One Simplified Example
We provide a simplified working example to show
how the two algorithms compare outputs of blockA

only. If we arrange the sentence representations
into the shape of sentence matrices as in Figure 5,

3We note that since we apply the same network to both
sentences, the same filters are used to match both sentences,
so we can directly compare filter matches of individual filters
across the two sentences.

1580

Algorithm 1 Horizontal Comparison
1: for each pooling p = max,min,mean do
2: for each width ws1 = 1...n,∞ do
3: regM 1[∗][ws1] = groupA(ws1, p, S1)
4: regM 2[∗][ws1] = groupA(ws1, p, S2)
5: end for
6: for each i = 1...numFilterA do
7: feah = comU 2(regM 1[i], regM 2[i])
8: accumulate feah for final layer
9: end for

10: end for

Algorithm 2 Vertical Comparison
1: for each pooling p = max,min,mean do
2: for each width ws1 = 1...n,∞ do
3: oG1A = groupA(ws1, p, S1)
4: for each width ws2 = 1...n,∞ do
5: oG2A = groupA(ws2, p, S2)
6: feaa = comU 1(oG1A, oG2A)
7: accumulate feaa for final layer
8: end for
9: end for

10: for each width ws1 = 1...n do
11: oG1B = groupB (ws1, p, S1)
12: oG2B = groupB (ws1, p, S2)
13: for each i = 1...numFilterB do
14: feab =comU 1(oG1B [∗][i], oG2B [∗][i])
15: accumulate feab for final layer
16: end for
17: end for
18: end for

then in Algorithms 1 and 2 we are essentially com-
paring local regions of the two matrices in two di-
rections: along rows and columns.

In Figure 5, each column of the max/min/mean
groups is compared with all columns of the same
pooling group for the other sentence. This is
shown in red dotted lines in the Figure and listed in
lines 2 to 9 in Algorithm 2. Note that both ws1 and
ws2 columns within each pooling group should be
compared using red dotted lines, but we omit this
from the figure for clarity.

In the horizontal direction, each equal-sized
max/min/mean group is extracted as a vector and
is compared to the corresponding one for the other
sentence. This process is repeated for all rows and
comparisons are shown in green solid lines, as per-
formed by Algorithm 1.

5.4 Other Model Details

Output Fully-Connected Layer. On top of the
similarity measurement layer (which outputs a
vector containing all fea∗), we stack two linear
layers with an activation layer in between, fol-
lowed by a log-softmax layer as the final output
layer, which outputs the similarity score.

Activation Layers. We used element-wise tanh

bc

b
⊗

Max

ws1

bc

b
⊗

Min

bc

b
⊗

Mean

ws2 ws1 ws2 ws1 ws2

bc

b
⊗

Max

ws1

bc

b
⊗

Min

bc

b
⊗

Mean

ws2 ws1 ws2 ws1 ws2

Figure 5: Simplified example of local region com-
parisons over two sentence representations that
use blockA only. The “horizontal comparison”
(Algorithm 1) is shown with green solid lines and
“vertical comparison” (Algorithm 2) with red dot-
ted lines. Each sentence representation uses win-
dow sizes ws1 and ws2 with max/min/mean pool-
ing and numFilterA = 3 filters.

as the activation function for all convolution filters
and for the activation layer placed between the fi-
nal two layers.

6 Experiments and Results

Everything necessary to replicate our experimen-
tal results can be found in our open-source code
repository.4

6.1 Tasks and Datasets

We consider three sentence pair similarity tasks:

1. Microsoft Research Paraphrase Corpus
(MSRP). This data was collected from news
sources (Dolan et al., 2004) and contains
5,801 pairs of sentences, with 4,076 for
training and the remaining 1,725 for testing.
Each sentence pair is annotated with a binary
label indicating whether the two sentences
are paraphrases, so the task here is binary
classification.

2. Sentences Involving Compositional Knowl-
edge (SICK) dataset. This data was collected
for the 2014 SemEval competition (Marelli
et al., 2014) and consists of 9,927 sentence
pairs, with 4,500 for training, 500 as a devel-
opment set, and the remaining 4,927 in the
test set. The sentences are drawn from image
and video descriptions. Each sentence pair is
annotated with a relatedness score ∈ [1, 5],
with higher scores indicating the two sen-
tences are more closely-related.

4http://hohocode.github.io/textSimilarityConvNet/

1581

3. Microsoft Video Paraphrase Corpus
(MSRVID). This dataset was collected
for the 2012 SemEval competition and
consists of 1,500 pairs of short video de-
scriptions which were then annotated (Agirre
et al., 2012). Half of it is for training and the
other half is for testing. Each sentence pair
has a relatedness score ∈ [0, 5], with higher
scores indicating the two sentences are more
closely-related.

6.2 Training
We use a hinge loss for the MSRP paraphrase
identification task. This is simpler than log loss
since it only penalizes misclassified cases. The
training objective is to minimize the following loss
(summed over examples 〈x, ygold 〉):

loss(θ, x, ygold) =∑
y′ 6=ygold

max(0, 1 + fθ(x, y′)− fθ(x, ygold)) (5)

where ygold is the ground truth label, input x is
the pair of sentences x = {S1, S2}, θ is the
model weight vector to be trained, and the func-
tion fθ(x, y) is the output of our model.

We use regularized KL-divergence loss for the
semantic relatedness tasks (SICK and MSRVID),
since the goal is to predict the similarity of the two
sentences. The training objective is to minimize
the KL-divergence loss plus an L2 regularizer:

loss(θ) =
1
m

m∑
k=1

KL
(
fk || f̂kθ

)
+
λ

2
||θ||22 (6)

where f̂θ is the predicted distribution with model
weight vector θ, f is the ground truth, m is the
number of training examples, and λ is the regu-
larization parameter. Note that we use the same
KL-loss function and same sparse target distribu-
tion technique as Tai et al. (2015).

6.3 Experiment Settings
We conduct experiments with ws values in the
range [1, 3] as well as ws =∞ (no convolution).

We use multiple kinds of embeddings to rep-
resent each sentence, both on words and part-of-
speech (POS) tags. We use the Dimg = 300-
dimensional GloVe word embeddings (Pennington
et al., 2014) trained on 840 billion tokens. We
use Dimk = 25-dimensional PARAGRAM vec-
tors (Wieting et al., 2015) only on the MSRP task

since they were developed for paraphrase tasks,
having been trained on word pairs from the Para-
phrase Database (Ganitkevitch et al., 2013). For
POS embeddings, we run the Stanford POS tag-
ger (Manning et al., 2014) on the English side
of the Xinhua machine translation parallel cor-
pus, which consists of Xinhua news articles with
approximately 25 million words. We then train
Dimp = 200-dimensional POS embeddings us-
ing the word2vec toolkit (Mikolov et al., 2013).
Adding POS embeddings is expected to retain syn-
tactic information which is reported to be effec-
tive for paraphrase identification (Das and Smith,
2009). We use POS embeddings only for the
MSRP task.

Therefore for MSRP, we concatenate all word
and POS embeddings and obtain Dim = Dimg +
Dimp + Dimk = 525-dimension vectors for each
input word; for SICK and MSRVID we only use
Dim = 300-dimension GloVe embeddings.

We use 5-fold cross validation on the MSRP
training data for tuning, then largely re-use the
same hyperparameters for the other two datasets.
However, there are two changes: 1) for the MSRP
task we update word embeddings during train-
ing but not so on SICK and MSRVID tasks; 2)
we set the fully connected layer to contain 250
hidden units for MSRP, and 150 for SICK and
MSRVID. These changes were done to speed up
our experimental cycle on SICK and MSRVID; on
SICK data they are the same experimental settings
as used by Tai et al. (2015), which makes for a
cleaner empirical comparison.

We set the number of holistic filters in blockA
to be the same as the input word embeddings,
therefore numFilterA = 525 for MSRP and
numFilterA = 300 for SICK and MSRVID. We
set the number of per-dimension filters in blockB
to be numFilterB = 20 per dimension for all
three datasets, which corresponds to 20 ∗Dim fil-
ters in total.

We perform optimization using stochastic gra-
dient descent (Bottou, 1998). The backpropaga-
tion algorithm is used to compute gradients for
all parameters during training (Goller and Kuch-
ler, 1996). We fix the learning rate to 0.01 and
regularization parameter λ = 10−4.

6.4 Results on Three Datasets

Results on MSRP Data. We report F1 scores
and accuracies from prior work in Table 1. Ap-

1582

Model Acc. F1
Hu et al. (2014) ARC-I 69.6% 80.3%
Hu et al. (2014) ARC-II 69.9% 80.9%
Blacoe and Lapata (2012) 73.0% 82.3%
Fern and Stevenson (2008) 74.1% 82.4%
Finch (2005) 75.0% 82.7%
Das and Smith (2009) 76.1% 82.7%
Wan et al. (2006) 75.6% 83.0%
Socher et al. (2011) 76.8% 83.6%
Madnani et al. (2012) 77.4% 84.1%
Ji and Eisenstein (2013) 80.41% 85.96%
Yin and Schütze (2015)
(without pretraining) 72.5% 81.4%
Yin and Schütze (2015)
(with pretraining) 78.1% 84.4%
Yin and Schütze (2015)
(pretraining+sparse features) 78.4% 84.6%

This work 78.60% 84.73%

Table 1: Test set results on MSRP for paraphrase
identification. Rows in grey are neural network-
based approaches.

proaches shown in gray rows of the table are
based on neural networks. The recent approach
by Yin and Schütze (2015) includes a pretraining
technique which significantly improves results, as
shown in the table. We do not use any pretrain-
ing but still slightly outperform their best results
which use both pretraining and additional sparse
features from Madnani et al. (2012).

When comparing to their model without pre-
training, we outperform them by 6% absolute in
accuracy and 3% in F1. Our model is also supe-
rior to other recent neural network models (Hu et
al., 2014; Socher et al., 2011) without requiring
sparse features or unlabeled data as in (Yin and
Schütze, 2015; Socher et al., 2011). The best re-
sult on MSRP is from Ji and Eisenstein (2013)
which uses unsupervised learning on the MSRP
test set and rich sparse features.

Results on SICK Data. Our results on the SICK
task are summarized in Table 2, showing Pearson’s
r, Spearman’s ρ, and mean squared error (MSE).
We include results from the literature as reported
by Tai et al. (2015), including prior work using re-
current neural networks (RNNs), the best submis-
sions in the SemEval-2014 competition, and vari-
ants of LSTMs. When measured by Pearson’s r,
the previous state-of-the-art approach uses a tree-
structured LSTM (Tai et al., 2015); note that their
best results require a dependency parser.

On the contrary, our approach does not rely on
parse trees, nor do we use POS/PARAGRAM em-
beddings for this task. The word embeddings,

Model r ρ MSE
Socher et al. (2014) DT-RNN 0.7863 0.7305 0.3983
Socher et al. (2014) SDT-RNN 0.7886 0.7280 0.3859
Lai and Hockenmaier (2014) 0.7993 0.7538 0.3692
Jimenez et al. (2014) 0.8070 0.7489 0.3550
Bjerva et al. (2014) 0.8268 0.7721 0.3224
Zhao et al. (2014) 0.8414 - -
LSTM 0.8477 0.7921 0.2949
Bi-LSTM 0.8522 0.7952 0.2850
2-layer LSTM 0.8411 0.7849 0.2980
2-layer Bidirectional LSTM 0.8488 0.7926 0.2893
Tai et al. (2015) Const. LSTM 0.8491 0.7873 0.2852
Tai et al. (2015) Dep. LSTM 0.8676 0.8083 0.2532
This work 0.8686 0.8047 0.2606

Table 2: Test set results on SICK, as reported
by Tai et al. (2015), grouped as: (1) RNN vari-
ants; (2) SemEval 2014 systems; (3) sequential
LSTM variants; (4) dependency and constituency
tree LSTMs (Tai et al., 2015). Evaluation metrics
are Pearson’s r, Spearman’s ρ, and mean squared
error (MSE).

Model Pearson’s r
Rios et al. (2012) 0.7060
Wang and Cer (2012) 0.8037
Beltagy et al. (2014) 0.8300
Bär et al. (2012) 0.8730
Šarić et al. (2012) 0.8803
This work 0.9090

Table 3: Test set results on MSRVID data. The Bär
et al. (2012) and Šarić et al. (2012) results were
the top two submissions in the Semantic Textual
Similarity task at the SemEval-2012 competition.

sparse distribution targets, and KL loss function
are exactly the same as used by Tai et al. (2015),
therefore representing comparable conditions.

Results on MSRVID Data. Our results on the
MSRVID data are summarized in Table 3, which
includes the top 2 submissions in the Seman-
tic Textual Similarity (STS) task from SemEval-
2012. We find that we outperform the top system
from the task by nearly 3 points in Pearson’s r.

6.5 Model Ablation Study

We report the results of an ablation study in Ta-
ble 4. We identify nine major components of our
approach, remove one at a time (if applicable),
and perform re-training and re-testing for all three
tasks. We use the same experimental settings in
Sec. 6.3 and report differences (in accuracy for
MSRP, Pearson’s r for SICK/MSRVID) compared
to our results in Tables 1–3.

1583

Gp ID Ablation Component MSRP
Accuracy
Diff.

MSRVID
Pearson
Diff.

SICK
Pearson
Diff.

1 1 Remove POS embeddings (Sec. 6.3) -0.81 NA NA
2 Remove PARAGRAM embeddings (Sec. 6.3) -1.33 NA NA

2
3 Remove per-dimension embeddings, building block A only (Sec. 4.1) -0.75 -0.0067 -0.0014
4 Remove min and mean pooling, use max pooling only (Sec. 4.2) -0.58 -0.0112 +0.0001
5 Remove multiple widths, ws = 1 and ws =∞ only (Sec. 4.3) -2.14 -0.0048 -0.0012

3 6 Remove cosine and L2Euclid distance in comU ∗ (Sec. 5.1) -2.31 -0.0188 -0.0309

4
7 Remove Horizontal Algorithm (Sec. 5.2) -0.92 -0.0097 -0.0117
8 Remove Vertical Algorithm (Sec. 5.2) -2.15 -0.0063 -0.0027
9 Remove similarity layer (completely flatten) (Sec. 5) -1.90 -0.0121 -0.0288

Table 4: Ablation study over test sets of all three datasets. Nine components are divided into four groups.
We remove components one at a time and show differences.

The nine components can be divided into four
groups: (1) input embeddings (components 1–2);
(2) sentence modeling (components 3–5); (3) sim-
ilarity measurement metrics (component 6); (4)
similarity measurement layer (components 7–9).
For MSRP, we use all nine components. For SICK
and MSRVID, we use components 3–9 (as de-
scribed in Sec. 6.3).

From Table 4 we find drops in performance for
all components, with the largest differences ap-
pearing when removing components of the simi-
larity measurement layer. For example, conduct-
ing comparisons over flattened sentence represen-
tations (removing component 9) leads to large
drops across tasks, because this ignores struc-
tured information within sentence representations.
Groups (1) and (2) are also useful, particularly for
the MSRP task, demonstrating the extra benefit
obtained from our multi-perspective approach in
sentence modeling.

We see consistent drops when ablating the Ver-
tical/Horizontal algorithms that target particular
regions for comparison. Also, removing group
(3) hinders both the Horizontal and Vertical al-
gorithms (as described in Section 5.1), so its
removal similarly causes large drops in perfor-
mance. Though convolutional neural networks al-
ready perform strongly when followed by flattened
vector comparison, we are able to leverage the
full richness of the sentence models by performing
structured similarity modeling on their outputs.

7 Discussion and Conclusion

On the SICK dataset, the dependency tree
LSTM (Tai et al., 2015) and our model achieve
comparable performance despite taking very dif-
ferent approaches. Tai et al. use syntactic parse
trees and gating mechanisms to convert each sen-

tence into a vector, while we use large sets of flex-
ible feature extractors in the form of convolution
filters, then compare particular subsets of features
in our similarity measurement layer.

Our model architecture, with its many paths of
information flow, is admittedly complex. Though
we have removed hand engineering of features,
we have added a substantial amount of functional
architecture engineering. This may be necessary
when using the small training sets provided for the
tasks we consider here. We conjecture that a sim-
pler, deeper neural network architecture may out-
perform our model when given large amounts of
training data, but we leave an investigation of this
direction to future work.

In summary, we developed a novel model for
sentence similarity based on convolutional neural
networks. We improved both sentence modeling
and similarity measurement. Our model achieves
highly competitive performance on three datasets.
Ablation experiments show that the performance
improvement comes from our use of multiple per-
spectives in both sentence modeling and structured
similarity measurement over local regions of sen-
tence representations. Future work could extend
this model to related tasks including question an-
swering and information retrieval.

Acknowledgments

This work was supported by the U.S. National Sci-
ence Foundation under awards IIS-1218043 and
CNS-1405688. Any opinions, findings, conclu-
sions, or recommendations expressed are those of
the authors and do not necessarily reflect the views
of the sponsor. We would like to thank the anony-
mous reviewers for their feedback and CLIP lab-
mates for their support.

1584

References

Eneko Agirre, Mona Diab, Daniel Cer, and Aitor
Gonzalez-Agirre. 2012. SemEval-2012 task 6: a
pilot on semantic textual similarity. In Proceedings
of the First Joint Conference on Lexical and Compu-
tational Semantics, pages 385–393.

Galen Andrew, Raman Arora, Jeff Bilmes, and Karen
Livescu. 2013. Deep canonical correlation analysis.
In Proceedings of the 30th International Conference
on Machine Learning, pages 1247–1255.

Daniel Bär, Chris Biemann, Iryna Gurevych, and
Torsten Zesch. 2012. UKP: computing seman-
tic textual similarity by combining multiple content
similarity measures. In Proceedings of the First
Joint Conference on Lexical and Computational Se-
mantics, pages 435–440.

Islam Beltagy, Katrin Erk, and Raymond Mooney.
2014. Probabilistic soft logic for semantic textual
similarity. Proceedings of 52nd Annual Meeting
of the Association for Computational Linguistics,
pages 1210–1219.

Johannes Bjerva, Johan Bos, Rob van der Goot, and
Malvina Nissim. 2014. The meaning factory: for-
mal semantics for recognizing textual entailment
and determining semantic similarity. International
Workshop on Semantic Evaluation.

William Blacoe and Mirella Lapata. 2012. A com-
parison of vector-based representations for seman-
tic composition. In Proceedings of the 2012 Joint
Conference on Empirical Methods in Natural Lan-
guage Processing and Computational Natural Lan-
guage Learning, pages 546–556.

Léon Bottou. 1998. Online learning and stochastic ap-
proximations. On-line learning in neural networks,
17(9):142.

Jane Bromley, James W Bentz, Léon Bottou, Is-
abelle Guyon, Yann LeCun, Cliff Moore, Eduard
Säckinger, and Roopak Shah. 1993. Signature ver-
ification using a “siamese” time delay neural net-
work. International Journal of Pattern Recognition
and Artificial Intelligence, 7(4):669–688.

Ronan Collobert and Jason Weston. 2008. A unified
architecture for natural language processing: deep
neural networks with multitask learning. In Pro-
ceedings of the 25th International Conference on
Machine learning, pages 160–167.

Dipanjan Das and Noah A. Smith. 2009. Paraphrase
identification as probabilistic quasi-synchronous
recognition. In Proceedings of the Joint Conference
of the 47th Annual Meeting of the Association for
Computational Linguistics and the 4th International
Joint Conference on Natural Language Processing
of the AFNLP, pages 468–476.

Bill Dolan, Chris Quirk, and Chris Brockett. 2004.
Unsupervised construction of large paraphrase cor-
pora: exploiting massively parallel news sources. In
Proceedings of the 20th International Conference on
Computational Linguistics.

Christiane Fellbaum. 1998. WordNet: An Electronic
Lexical Database. MIT Press.

Samuel Fern and Mark Stevenson. 2008. A se-
mantic similarity approach to paraphrase detection.
In Computational Linguistics UK 11th Annual Re-
search Colloquium.

Andrew Finch. 2005. Using machine translation eval-
uation techniques to determine sentence-level se-
mantic equivalence. In Proceedings of the Interna-
tional Workshop on Paraphrasing.

Juri Ganitkevitch, Benjamin Van Durme, and Chris
Callison-Burch. 2013. PPDB: the Paraphrase
Database. In Proceedings of the 2013 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies.

Christoph Goller and Andreas Kuchler. 1996. Learn-
ing task-dependent distributed representations by
backpropagation through structure. In Proceedings
of the International Conference on Neural Networks,
pages 347–352.

Weiwei Guo and Mona Diab. 2012. Modeling sen-
tences in the latent space. In Proceedings of the
50th Annual Meeting of the Association for Compu-
tational Linguistics, pages 864–872.

Samer Hassan. 2011. Measuring Semantic Related-
ness Using Salient Encyclopedic Concepts. Ph.D.
thesis, University of North Texas, Denton, Texas,
USA.

Baotian Hu, Zhengdong Lu, Hang Li, and Qingcai
Chen. 2014. Convolutional neural network archi-
tectures for matching natural language sentences.
In Advances in Neural Information Processing Sys-
tems, pages 2042–2050.

Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng,
Alex Acero, and Larry Heck. 2013. Learning deep
structured semantic models for web search using
clickthrough data. In Proceedings of the 22nd ACM
International Conference on Information & Knowl-
edge Management, pages 2333–2338.

Yangfeng Ji and Jacob Eisenstein. 2013. Discrimina-
tive improvements to distributional sentence similar-
ity. In Proceedings of the 2013 Conference on Em-
pirical Methods for Natural Language Processing,
pages 891–896.

Sergio Jimenez, George Duenas, Julia Baquero,
Alexander Gelbukh, Av Juan Dios Bátiz, and
Av Mendizábal. 2014. UNAL-NLP: combining soft
cardinality features for semantic textual similarity,
relatedness and entailment. International Workshop
on Semantic Evaluation.

1585

Nal Kalchbrenner, Edward Grefenstette, and Phil Blun-
som. 2014. A convolutional neural network for
modelling sentences. In Proceedings of the 52nd
Annual Meeting of the Association for Computa-
tional Linguistics.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In Proceedings of the 2014
Conference on Empirical Methods for Natural Lan-
guage Processing.

Alice Lai and Julia Hockenmaier. 2014. Illinois-LH:
a denotational and distributional approach to seman-
tics. International Workshop on Semantic Evalua-
tion.

Nitin Madnani, Joel Tetreault, and Martin Chodorow.
2012. Re-examining machine translation metrics
for paraphrase identification. In Proceedings of the
2012 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 182–190.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David Mc-
Closky. 2014. The Stanford CoreNLP natural lan-
guage processing toolkit. In Proceedings of 52nd
Annual Meeting of the Association for Computa-
tional Linguistics: System Demonstrations, pages
55–60.

Marco Marelli, Luisa Bentivogli, Marco Baroni, Raf-
faella Bernardi, Stefano Menini, and Roberto Zam-
parelli. 2014. SemEval-2014 task 1: evaluation
of compositional distributional semantic models on
full sentences through semantic relatedness and tex-
tual entailment. International Workshop on Seman-
tic Evaluation.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. Proceedings of Workshop at
International Conference on Learning Representa-
tions.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. GloVe: global vectors for
word representation. In Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1532–1543.

Steven Rennie, Vaibhava Goel, and Samuel Thomas.
2014. Deep order statistic networks. In Proceedings
of the IEEE Workshop on Spoken Language Technol-
ogy.

Miguel Rios, Wilker Aziz, and Lucia Specia. 2012.
UOW: semantically informed text similarity. In Pro-
ceedings of the First Joint Conference on Lexical
and Computational Semantics, pages 673–678.

Frane Šarić, Goran Glavaš, Mladen Karan, Jan Šnajder,
and Bojana Dalbelo Bašić. 2012. TakeLab: systems
for measuring semantic text similarity. In Proceed-
ings of the First Joint Conference on Lexical and
Computational Semantics, pages 441–448.

Richard Socher, Eric H. Huang, Jeffrey Pennington,
Andrew Y. Ng, and Christopher D. Manning. 2011.
Dynamic pooling and unfolding recursive autoen-
coders for paraphrase detection. In Advances in
Neural Information Processing Systems.

Richard Socher, Andrej Karpathy, Quoc V. Le, Christo-
pher D. Manning, and Andrew Y. Ng. 2014.
Grounded compositional semantics for finding and
describing images with sentences. Transactions
of the Association for Computational Linguistics,
2:207–218.

Kai Sheng Tai, Richard Socher, and Christopher D.
Manning. 2015. Improved semantic representations
from tree-structured long short-term memory net-
works. In Proceedings of the 53rd Annual Meeting
of the Association for Computational Linguistics.

Stephen Wan, Mark Dras, Robert Dale, and Cecile
Paris. 2006. Using Dependency-based Features to
Take the ”Para-farce” out of Paraphrase. In Aus-
tralasian Language Technology Workshop, pages
131–138.

Mengqiu Wang and Daniel Cer. 2012. Probabilistic
edit distance metrics for STS. In Proceedings of
the First Joint Conference on Lexical and Compu-
tational Semantics, pages 648–654.

Jason Weston, Samy Bengio, and Nicolas Usunier.
2011. Wsabie: scaling up to large vocabulary im-
age annotation. In International Joint Conference
on Artificial Intelligence, pages 2764–2770.

John Wieting, Mohit Bansal, Kevin Gimpel, Karen
Livescu, and Dan Roth. 2015. From paraphrase
database to compositional paraphrase model and
back. Transactions of the Association for Compu-
tational Linguistics, 3:345–358.

Wei Xu, Alan Ritter, Chris Callison-Burch, William B.
Dolan, and Yangfeng Ji. 2014. Extracting lexi-
cally divergent paraphrases from Twitter. Transac-
tions of the Association for Computational Linguis-
tics, 2:435–448.

Wenpeng Yin and Hinrich Schütze. 2015. Convolu-
tional neural network for paraphrase identification.
In Proceedings of the 2015 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 901–911.

Jiang Zhao, Tian Tian Zhu, and Man Lan. 2014.
ECNU: one stone two birds: ensemble of heteroge-
nous measures for semantic relatedness and textual
entailment. International Workshop on Semantic
Evaluation.

Xiaodan Zhu, Parinaz Sobhani, and Hongyu Guo.
2015. Long short-term memory over recursive
structures. In Proceedings of the 32nd International
Conference on Machine Learning, pages 1604–
1612.

1586

