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Abstract

In hierarchical phrase-based translation,
coarse-grained nonterminal X's may gen-
erate inappropriate translations due to the
lack of sufficient information for phrasal
substitution. In this paper we propose a
framework to refine nonterminals in hier-
archical translation rules with real-valued
semantic representations. The semantic
representations are learned via a weighted
mean value and a minimum distance
method using phrase vector representa-
tions obtained from large scale monolin-
gual corpus. Based on the learned se-
mantic vectors, we build a semantic non-
terminal refinement model to measure se-
mantic similarities between phrasal sub-
stitutions and nonterminal X's in transla-
tion rules. Experiment results on Chinese-
English translation show that the proposed
model significantly improves translation
quality on NIST test sets.

1 Introduction

Hierarchical phrase-based translation (Chiang,
2007) explores formal synchronous context free
grammar (SCFQG) rules for translation. Two types
of nonterminal symbols are used in translation
rules: nonterminal X in ordinary SCFG rules and
nonterminal S in glue rules that are specially intro-
duced to concatenate nonterminal X's in a mono-
tonic manner. The same generic symbol X for all
ordinary nonterminals makes it difficult to distin-
guish and select proper translation rules.

In order to address this issue, researchers ei-
ther use syntactic labels to annotate nontermi-
nal Xs (Zollmann and Venugopal, 2006; Zoll-
mann and Vogel, 2011; Li et al., 2012; Hanneman
and Lavie, 2013), or employ syntactic information

*Corresponding author

from parse trees to refine nonterminals with real-
valued vectors (Venugopal et al., 2009; Huang et
al., 2013). In addition to syntactic knowledge, se-
mantic structures are also leveraged to refine non-
terminals (Gao and Vogel, 2011). All these efforts
focus on incorporating linguistic knowledge into
hierarchical translation rules.

Unfortunately, syntactic or semantic parsers for
many languages are not accessible due to the
lack of labeled training data. In contrast, a large
amount of unlabeled data are easily available.
Therefore, can we mine syntactic or semantic
properties for nonterminals from unlabeled data?
Or can we exploit these data to refine nontermi-
nals for SMT?

Learning semantic representations for terminals
(words, multi-word phrases or sentences) from un-
labeled data has achieved substantial progress in
recent years (Mitchell and Lapata, 2008; Turian
et al., 2010; Socher et al., 2010; Mikolov et
al.,, 2013c; Blunsom et al., 2014). These rep-
resentations have been used successfully in var-
ious NLP tasks. However, there is no attempt
to learn semantic representations for nontermi-
nals from unlabeled data. In this paper we pro-
pose a framework to learn semantic representa-
tions for nonterminal X's in translation rules. Our
framework is established on the basis of real-
valued vector representations learned for multi-
word phrases, which are substituted with nonter-
minal X's during hierarchical rule extraction. We
propose a weighted mean value and a minimum
distance method to obtain nonterminal representa-
tions from representations of their phrasal substi-
tutions. We further build a semantic nonterminal
refinement model with semantic representations
of nonterminals to compute similarities between
phrasal substitutions and nonterminals. In doing
so, we want to enhance phrasal substitution and
translation rule selection during decoding.

The big challenge here is that thousands of tar-
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get phrasal substitutions will be generated for one
single nonterminal during decoding. Computing
vector representations for all these phrases will be
very time-consuming. We therefore introduce two
different methods to handle it. In the first method,
we project representations of source phrases onto
their target counterparts linearly/nonlinearly via
a neural network. These projected vectors are
used as approximations to real target representa-
tions to compute semantic similarities. In the sec-
ond method, we decode sentences in two passes.
The first pass collects target phrase candidates
from n-best translations of sentences generated by
the baseline. The second pass calculates vector
representations of these collected target phrases
and then computes similarities between them and
target-side nonterminals.

Our contributions are two-fold. First, we learn
semantic representations for nonterminals from
their phrasal substitutions with two different meth-
ods. This is the first time, to the best of our knowl-
edge, to induce semantic representations for non-
terminals from unlabeled data in the context of
SMT. Second, we successfully address the issue
of time-consuming target-side phrase-nonterminal
similarity computation mentioned above. We in-
corporate both source-/target-side semantic non-
terminal refinement model and their combination
based on learned nonterminal representations into
translation system. Experiment results show that
our method can achieve an improvement of 1.16
BLEU points over the baseline system on NIST
MT evaluation test sets.

The rest of this paper is organized as follows.
Section 2 briefly reviews related work. Section 3
presents our approach of learning semantic vectors
for nonterminals, followed by Section 4 describing
the details of our semantic nonterminal refinement
model. Section 5 introduces the integration of the
proposed model into SMT. Experiment results are
reported in Section 6. Finally, we conclude our
work in Section 7.

2 Related Work

A variety of approaches have been explored for
nonterminal refinement in hierarchical phrase-
based translation. These approaches can be cat-
egorized into two groups: 1) augmenting the non-
terminal symbol X with informative labels, and
2) attaching distributional linguistic knowledge to
each nonterminal in hierarchical rules. The former

only allows substitution operations with matched
labels. The latter normally builds an additional
model as a new feature of the log-linear model to
incorporate attached knowledge.

Among approaches which directly refine the
single label to more fine-grained labels, syntac-
tic and semantic knowledge are explored in vari-
ous ways. The syntactically augmented translation
model (SAMT) proposed by Zollmann and Venu-
gopal (2006) uses syntactic categories extracted
from target-side parse trees to augment nontermi-
nals in hierarchical rules. Unfortunately, there is
a data sparseness problem in this model due to
thousands of extracted syntactic categories. One
solution to address this issue is to reduce the num-
ber of syntactic categories. Zollmann and Vogel
(2011) use word tags, generated by either POS
tagger or unsupervised word class induction, in-
stead of syntactic categories. Hanneman and Lavie
(2013) coarsen the label set by introducing a label
collapsing algorithm to SAMT grammars (Zoll-
mann and Venugopal, 2006). Yet another solution
is easing restrictions on label matching. Shen et al.
(2009) penalize substitution with unmatched la-
bels while Chiang (2010) uses soft match features
to model substitutions with various labels. Simi-
lar to Zollmann and Venugopal (2006), Hoang and
Koehn (2010) decorate some hierarchical rules
with source-side syntax information and use un-
decorated, decorated, and partially decorated rules
in their translation model. Mylonakis and Sima’an
(2011) employ source-side syntax-based labels to
define a joint probability synchronous grammar.
Combinatory Categorial Grammar (CCG) labels
or CCG contextual labels are also used to enrich
nonterminals (Almaghout et al., 2011; Weese et
al., 2012). Li et al. (2012) incorporate head in-
formation extracted from source-side dependency
structures into translation rules. Besides, seman-
tic knowledge is also used to refine nonterminals.
Gao and Vogel (2011) utilize target-side semantic
roles to form SRL-aware SCFG rules. Most of ap-
proaches introduced here explicitly require syntac-
tic or semantic parsers trained on manually labeled
data.

On the other hand, efforts have also been di-
rected towards attaching distributional linguistic
knowledge to nonterminals. Venugopal et al.
(2009) propose a preference grammar to annotate
nonterminals based on preference distributions of
syntactic categories. Huang et al. (2010) learn la-
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tent syntactic distributions for each nonterminal.
They use these distributions to decorate nontermi-
nal X's in SCFG rules with a real-valued feature
vectors and utilize these vectors to measure the
similarities between source phrases and applied
rules. Similar to this work, Huang et al. (2013)
utilize treebank tags based on dependency parsing
to learn latent distributions. Cao et al. (2014) at-
tach translation rules with dependency knowledge,
which contains both dependency relations inside
rules and dependency relations between rules and
their contexts.

The difference of our work from these studies
is that our semantic representations are learned
from unlabeled bilingual (or monolingual) data
and do not depend on any linguistic resources,
e.g., parsers. We also believe that our model is
able to exploit both syntactic and semantic infor-
mation for nonterminals since vector representa-
tions learned in our way are able to capture both
syntactic and semantic properties (Turian et al.,
2010; Socher et al., 2010).

3 Learning Semantic Representations for
Nonterminals

In our framework, semantic representations for
nonterminal X's are automatically induced from
word-aligned parallel corpus. In this section, we
detail the essential component of our approach,
i.e., how to learn semantic vectors for nonter-
minals and how to project source semantic vec-
tors onto target language semantic space. Be-
fore discussing nonterminal representations, we
briefly introduce vector representations for words
and phrases.

3.1 Prerequisite: Learning Words and
Phrases Representations

We employ a neural method, specifically the
continuous bag-of-words model (Mikolov et al.,
2013a) to learn high-quality vector representations
for words. Once we complete the training of
the continuous bag-of-words model, word embed-
dings form an embedding matrix M € RV,
where d is a pre-determined embedding dimen-
sionality and each word w in the vocabulary V'
corresponds to a vector 7 € R?. Given the em-
bedding matrix M, mapping words to vectors can
be done by simply looking up their respective
columns in M.

We further feed these learned word embeddings

to recursive autoencoders (RAE) (Socher et al.,
2011) for learning phrase representations. In tra-
ditional RAE (shown in Figure 1), given two in-
put children representation vectors ¢; € R? and
¢ € R, their parent representation j’ can be cal-
culated as follows:

5= f(l)(W(l)[gl; &)+ b(l)) (1)

where [¢1;¢3] € R?? is the concatenation of vec-
tors of two children, W(1) e R%*?? i a weight
matrix, ) € R is a bias term, and f() is
an element-wise activation function such as tanh.
The above output representation p’ can be used as
a child vector to construct the representation for a
larger subphrase. This process is repeated until a
binary tree covering the whole input phrase is gen-
erated.

In order to evaluate how well the parent vector
represents its children, we can reconstruct the chil-
dren in a reconstruction layer:

’ ’

(656 = fAWDp+p?) )

where c‘il and c‘él are the reconstructed children,
W® is a weight matrix for reconstruction, b(?
is a bias term for reconstruction, and f® is an
element-wise activation function.

For each node in the generated binary tree, we
compute Euclidean distance between the original
input vectors and the reconstructed vectors to mea-
sure the reconstruction error:

o 1 o AN
Erec([éi563]) = 5”[01;02] —l@a;a ] @)

By minimizing the total reconstruction error over
all nonterminal nodes, we can learn parameters of
RAE.

Socher et al. (2011) propose a greedy unsuper-
vised RAE as an extension to the above traditional
RAE. The main difference is that in the unsuper-
vised RAE there is no tree structure which is given
for traditional RAE. It can learn both representa-
tions and tree structures of phrases or sentences.
In this work, we adopt the unsupervised RAE to
learn vector representations for phrases.

3.2 Inducing Nonterminal Representations
from Phrase Representations

As we extract hierarchical rules from phrases by
replacing subphrases with nonterminal symbols, a
nonterminal X is generalized from a number of
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p3 = fOWD ;6] + b))

i = fOWwWVe; e +60)

Figure 1: The architecture of a recursive autoen-
coder, adapted from (Socher et al., 2011). Blue
nodes are original vectors and yellow nodes are
reconstructed vectors which are used to compute
reconstruction errors.

subphrases. We believe that these subphrases de-
termine syntactic and semantic properties of the
nonterminal X. We therefore enrich each nonter-
minal X with a semantic vector induced from vec-
tor representations of phrases that are replaced by
the nonterminal during rule extraction.

For an SCFG rule, we can learn semantic vec-
tors for nonterminals on both the source and target
side. Due to the space limitation, we introduce the
procedure of learning nonterminal vectors on the
source side. Semantic vectors on the target side
can be learned analogically.

For each source-side nonterminal X of a hi-
erarchical rule, we collect all source subphrases
replaced by X in a source subphrase set P =
{p1,p2, -+ ,pm}. We also count the number of
times of these phrases being replaced by non-
terminal X on training data during rule extrac-
tion. We collect these numbers in a count set
C ={ci,ca, -+ ,cn}. Based on the phrase set P,
count set C and learned phrase vector representa-
tions in P, we can compute a semantic vector v,
for nonterminal X in each SCFG rule.

We propose two general approaches to obtain
semantic vectors for nonterminals: a weighted
mean value method and a minimum distance
method.  Given phrase vector representations
P = {pP1,D2,.--,Pm} , we calculate the seman-
tic vector for a nonterminal generalized from these
phrases as follows.

Weighted mean value method (MV) computes
semantic vector v,, as:

Z?il Ci* Di (4)
doimici

Minimum distance method (MD) finds a point
in semantic space to minimize the sum of Eu-

vy =

clidean distances of vectors in P, to this point.
Formally,

m d
Uy = argglinz Z(pij —vzj)? (5)
Yz =1 1

j=

We use the stochastic gradient descent algorithm
to find the minimal distance and the point v;. The
component v;; can be updated by v;; < vz; +

Aa‘?)fj where fis > ", \/Z?:l(pij — vz5)? and
A is the learning rate.

Similar to the center of gravity, the semantic
vector v, learned by this method acts as a semantic
centroid for all vectors of phrases that are substi-
tuted by X. Nonterminals in different hierarchical
translation rules will have different semantic cen-
troids. These centroids will help translation model
capture semantic diversity to a certain degree.

3.3 Mapping Source-Side Representations
onto Target-Side Semantic Space

As we discussed in Section 1, directly learning
vector representations for target phrases is very
costly in practice. Inspired by Mikolov et al.
(2013b), we adopt vector projection to alleviate
this problem. Different from mapping represen-
tations from the source side to the target side
by learning a linear matrix on word alignments
(Mikolov et al., 2013b), we project source multi-
word phrase representations onto the target seman-
tic space in a nonlinear manner as we believe that
nonlinear relations between languages are more
reasonable. Specifically, we use a neural network
to achieve this goal. Our neural network is a multi-
layer feed-forward neural network with one hid-
den layer. The functional form can be written in
the following equation:

7 = tanh(W® (tanh (W ® s7c) + b)) 4 b))
(6)
where sr¥c is the input vector which is learned
in the source semantic space, W () denotes the
weight matrix for connections between input and
hidden neurons and W *) denotes the weight ma-
trix for links between hidden neurons and output,
b®3) and b are bias terms. To train the neural
network, we optimize the following objective:

N

.1 - S
J = argmin NZ””QZ' — P+ RO) D)
w®) w4 i=1
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where N is the number of training examples, trg;
is the target vector representation for the ith ex-
ample learned by RAE and p; is the output of the
neural network for the source vector representa-
tion src; of ith example. R(6) is the regularizer
on parameters:

A
R(6) = W ®)

where W denotes parameters for parameter matri-
ces W), W® and bias terms b() , b(4),

4 Semantic Nonterminal Refinement
Model

In this section, we describe our semantic nonter-
minal refinement model on the basis of induced
real-valued semantic vectors for nonterminals.

4.1 Nonterminal Representations in
Hierarchical Rules

We incorporate learned semantic representa-
tions of nonterminals into hierarchical rules. In
particular, ordinary hierarchical rules take the fol-
lowing form:

X — (aXsb, cXyd) )

where a/b, c/d are strings of terminals on the
source and target side, s and ¢ are placeholders de-
noting the nonterminal X on the source or target
side, X and X, are aligned to each other.
Representations for nonterminals can be on ei-
ther the source or target side. They are attached to
hierarchical rules as follows:

X — (aXsb, cXid, v, Uzt) (10)
where v, is the source- or target-side semantic
representation for nonterminal. In this way, we
keep original translation rules intact and decorate
nonterminals with their semantic representations.

4.2 The Model

The proposed semantic nonterminal refinement
model estimates the semantic similarity between
a phrase p and nonterminal X. The phrase p and
nonterminal X will have a high similarity score in
the representation space if they are semantically
similar. The higher semantic similarity scores are,
the more compatible nonterminals are with corre-
sponding phrases.

There is another nonterminal S in glue rules,
which are formalized as follows:

S — (S1X2, 51X9) (11)

S — (X1, X1) 12)

This nonterminal S is different from X. We there-
fore treat it as a special case in the computation of
semantic similarity.

In this work, we explore two approaches to
compute similarity: one based on cosine similarity
and the other based on Euclidean distance.

Given a phrase vector representation p’ and non-
terminal X semantic vector v, Cosine Similarity
(CS) is computed as:

cos(p,vy) = 75 2
oA

We set o for the Cosine Similarity between the
glue rule and its corresponding phrase as follows:

SeSim = § )
B (0%

(13)

hierarchical rules
(14)

gluerules

As for Euclidean Distance (ED), it is computed
according to the following formula:

d
dist(P,vy) = \| Y _(pi —vai)®  (15)
=1
and similarly we set /3 for glue rules:
L dist(p,vg) hierarchical rules
SeSim = { B gluerules (16)

5 Decoding

We incorporate the proposed model as a new
feature into the hierarchical phrase-based transla-
tion system. Specifically, two features are added
into the baseline system:

1. Source-side semantic similarity between
source phrases and nonterminals

2. Target-side semantic similarity between tar-
get phrases and nonterminals

We compute source- and target-side similari-
ties based on representations of nonterminals and
phrasal substitutions for each applied rule, and
sum up these similarities to calculate the total
score of a derivation on the two features.
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Figure 2: Architecture of SMT system with the
proposed semantic nonterminal refinement model.

The integration of the source-side semantic
nonterminal refinement model into the decoder is
trivial. For the target-side model, however, we
have to consider the efficiency issue as we men-
tioned in Section 1. We introduce two different
methods to integrate the target-side model into the
decoder: 1) projection and 2) two-pass decoding.
In the first integration method, a mapping neu-
ral network is trained to map source phrase rep-
resentations onto the target semantic space as de-
scribed in Section 3.3. The projection can be lin-
ear if we remove the hidden layer in the projection
neural network. This is similar to the mapping
matrix learned by Mikolov et al. (2013b). We
calculate semantic similarities between projected
representations of phrases and those of nontermi-
nals. In the two-pass decoding, we collect tar-
get phrase candidates from 100-best translations
for each source sentence generated by the base-
line in the first pass and learn vector represen-
tations for these target phrase candidates. Then
in the second pass, we decode source sentence
with our target semantic nonterminal refinement
model using learned target phrase vector represen-
tations. If a target phrase appears in the collected
set, the target-side semantic nonterminal refine-
ment model will calculate the semantic similarity
between the target phrase and the corresponding
nonterminal on the target semantic space; other-
wise the model will give a penalty. This is because
this phrase is not a desirable phrase as it is not used
in 100-best translations.

The weights of these two features are tuned by
the Minimum Error Rate Training (MERT)(Och,
2003), together with weights of other sub-models
on a development set. Figure 2 shows the architec-
ture of SMT system with the proposed semantic
nonterminal refinement model.

6 Experiment

In this section, we conducted a series of exper-
iments on Chinese-to-English translation using
large-scale bilingual training data, aiming at the
following questions:

1. Which approach is better for learning nonter-
minal representations, weighted mean value
or minimum distance?

2. Can the target-side semantic nonterminal re-
finement model improve translation quality?
And which method is better for integrating
the target-side semantic model into transla-
tion, projection or two-pass decoding?

3. Does the combination of source and target se-
mantic nonterminal refinement models pro-
vide further improvement?

6.1 Setup

Our training corpus contains 2.9M sentence pairs
with 80.9M Chinese words and 86.4M English
words from LDC data'. We used NIST MTO3 as
our development set, NIST MTO06 as our develop-
ment test set and MTOS8 as our final test set.

We ran Giza++ on the training corpus in both
Chinese-to-English and English-to-Chinese direc-
tions and applied the “grow-diag-final” refine-
ment rule (Koehn et al., 2003) to obtain word
alignments. We used the SRI Language Model-
ing Toolkit?> (Stolcke and others, 2002) to train
our language models. MERT (Och, 2003) was
adopted to tune feature weights of the decoder.
We used the case-insensitive BLEU? as our eval-
uation metric. In order to alleviate the instabil-
ity of MERT , we followed Clark et al. (2011) to
perform three runs of MERT and reported average
BLEU scores over the three runs for all our exper-
iments.

We used word2vec toolkit* to train our word
embeddings and set the vector dimension d to 30.
In our training experiment, we used the continu-
ous bag-of-words model with a context window of
size 5. The monolingual corpus, which was used
to pre-train word embeddings, is extracted from

"The corpora include LDC2003E14, LDC2004T07,
LDC2005T06, LDC2005T10 and LDC2004T08 (Hong Kong
Hansards/Laws/News).

Zhttp://www.speech.sri.com/projects/srilm/download.html

3ftp://jaguar.ncsl.nist.gov/mt/resources/mteval-v11b.pl

*https://code.google.com/p/word2vec/
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the above parallel corpus in SMT. To train vec-
tor representations for multi-word phrases, we ran-
domly selected 1M bilingual sentences ° as train-
ing set and used the unsupervised greedy RAE fol-
lowing (Socher et al., 2011). We used a learning
rate of 10~3 for our minimum distance method
that learned the centroid of phrase representations
as the vector representation of the corresponding
nonterminal.

For projection neural network in Section 3.3,
we set 300 units for the hidden layer and dimen-
sionality of 30 for both input and output vectors.
Learning rate was set to 10~ and the regulariza-
tion coefficient \;, was set to 10~3. To construct
the training set for the projection neural network,
we selected phrase pairs from our rule table and
used their representations on the source and target
side as training examples. We randomly selected
5M examples as training set, 10k examples as de-
velopment set and 10k examples as test set. The
multi-layer projection neural network was trained
with the back-propagation and stochastic gradient
descent algorithm with a mini-batch size of 5k.

Our baseline system is an in-house hierarchical
phrase-based system (Chiang, 2007). The features
used in the baseline system includes a 4-gram
language model trained on the Xinhua section of
the English Gigaword corpus, a 3-gram language
model trained on the target part of the bilingual
training data, bidirectional translation probabili-
ties, bidirectional lexical weights, a word count,
a phrase count and a glue rule count.

In order to compare our proposed models with
previous methods on nonterminal refinement, we
re-implemented a syntax mismatch model (Syn-
Mis) which was used by Huang et al. (2013) and
integrated it into hierarchical phrase-based sys-
tem. Syn-Mis model decorates each nontermi-
nal with a distribution of head POS tags and uses
this distribution to measure the degree of syntactic
compatibility of translation rules with correspond-
ing source spans. In order to obtain head POS tags
for Syn-Mis model, we used the Stanford depen-
dency parser © (Chang et al., 2009) to parse Chi-
nese sentences in our training corpus and NIST de-
velopment/test sets.

SWe choose bilingual sentences because we want to ob-
tain bilingual training examples to train our projection neural
network as described in Section 3.3.

Shttp://nlp.stanford.edu/software/lex-parser.shtml

MTO06 | MTOS8 Avg
Baseline 30.54 23.58 27.06
Syn-Mis 31.23* | 24.38* | 27.81
MV +CSa=1.0 |31.44% | 24.23* | 27.84
MV+CSa=0 31.63* | 24.51* | 28.07
MV+CSa=-1.0 | 31.13 24.07* | 27.60
MD+ED3=0 31.02% | 23.74 27.38
MD +ED 3=0.5 | 31.357 | 24.08* | 27.72
MD+ED 3=1.0 | 31.06 23.90" | 27.48

Table 1: BLEU scores of our models against the
baseline and Syn-Mis model. “*”and “+”: sig-
nificantly better than Baseline at significance level
p < 0.01 and p < 0.05 respectively.

6.2 Different Approaches to Learn Vector
Representations for Nonterminals

Our first group of experiments were carried out
to investigate which approach is more appropri-
ate to learn semantic vectors for nonterminals. We
only used the source-side semantic nonterminal
refinement model in these experiments. In order
to validate the effectiveness of the proposed ap-
proaches for learning nonterminal semantic vec-
tors, we combined the minimum distance method
(MD) with the Euclidean Distance (ED) because
both of them are distance-based, and combined
the weighted mean value method (MV) with the
Cosine Similarity model (CS) as they belong to
vector-based approaches. We chose a = 1.0, 0,
-1.0 and G = 0, 0.5, 1.0 for glue rules to study
the impact of these parameters. We compared our
model with the baseline and Syn-Mis model.

Results are shown in Table 1. From Table 1, we
observe that the proposed two approaches are able
to achieve significant improvements over the base-
line. (MV + CS) and (MD + ED) achieve up to an
absolute improvement of 1.09 and 0.81 (when v =
0 and 8 = 0.5) BLEU points respectively over the
baseline on the development test set MT06. And
the approach (MV + CS) with o = 0 outperforms
Syn-Mis by 0.4 BLEU points on MT06 without
using any syntactic information. The approach
(MV + CS) achieves better performance and it is
more efficient than (MD + ED) where the com-
putation of semantic centroids is time-consuming.
Therefore, we adopt the approach (MV + CS) with
a = 0 to learn semantic vectors for nonterminals
and compute semantic similarities in the follow-
ing experiments.
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| MT06 | MTO8 | Avg | MT06 | MTO08 | Avg
Baseline | 30.54 [ 2358 [27.06  Baseline 30.54 | 23.58 | 27.06
Linear Projection 30.70 | 23.66 | 27.18 Syn-Mis 31.23* | 24.38" | 27.81
Nonlinear Projection | 31.16 24.11*% | 27.64 Src Model ! 31.63* | 24.51* | 28.07
Two-pass decoding | 31.29" | 24.24* | 27.77 Trg Model 2 31.16 | 24.11* | 27.64
Combined-Model | 31.71* | 24.72* | 28.22

Table 2: Comparison of two-pass decoding, linear

and nonlinear projection methods for integrating the
target-side semantic nonterminal refinement model

in terms of BLEU scores. “*” “+7 0 sig-

and “+
nificantly better than Baseline at significance level
p < 0.01 and p < 0.05 respectively.

6.3 Effect of the Target Semantic
Nonterminal Refinement Models

In the second set of experiments, we further val-
idate the effectiveness of semantic nonterminal
vectors learned on the target side. In these exper-
iments, learning vector representations and com-
puting semantic similarities were performed on
the target language semantic space. We also com-
pared the two integration methods discussed in
Section 5 for the target-side model. With regard
to the projection method, we further compared the
linear projection (the projection neural network
without hidden layer) with the nonlinear projec-
tion (with hidden layer). Experiment results are
shown in Table 2.
From Table 2, we can see that

e Two-pass decoding achieves the highest
BLEU scores, which are higher than those of
the baseline by 0.75 and 0.66 BLEU points
on MT06 and MTO8 respectively. The rea-
son may be that noisy translation candidates
are filtered out in the first pass. This finding
is consistent with many other multiple-pass
systems in natural language processing, e.g.,
two-pass parsing (Zettlemoyer and Collins,
2007).

e Nonlinear projection achieves an improve-
ment of 0.62 BLEU points over the baseline
on MTO06. It outperforms linear projection
method on both sets. These empirical results
support our assumption that nonlinear rela-
tions between languages are more reasonable
than linear relations.

e The results prove that the target-side seman-
tic nonterminal refinement model is also able

' (MV + CS o =0) is used.
2 Nonlinear Projection is used.

Table 3: BLEU scores of the combination of the
source- and target-side semantic nonterminal re-

fine model. “*” “+” : significantly better

and “+
than Baseline at significance level p < 0.01 and
p < 0.05 respectively.

to improve the baseline system, although the
gain is less than that of the source-side coun-
terpart.

6.4 Combination of the Source and Target
Models

Finally, we integrated both the source- and target-
side semantic nonterminal refinement models into
the baseline system. In this experiment, we
adopted nonlinear projection to obtain target se-
mantic vector representations for target phrases.
These two models collectively achieve a gain of
up to 1.16 BLEU points over the baseline and
0.41 BLEU points over Syn-Mis model on aver-
age, which is shown in Table 3.

7 Conclusion

We have presented a framework to refine non-
terminal X in hierarchical translation rules with
semantic representations. The semantic vectors
are derived from vector representations of phrasal
substitutions, which are automatically learned us-
ing an unsupervised RAE. As the semantic non-
terminal refinement model is capable of select-
ing more semantically similar translation rules,
it achieves statistically significant improvements
over the baseline on Chinese-to-English transla-
tion. Experiment results have shown that

e Using (MV + CS) approach to learn semantic
representations for nonterminals can achieve
better performance than (MD + ED) in terms
of BLEU scores.

o Target-side semantic nonterminal refinement
model is able to substantially improve trans-
lation quality over the baseline. Two-pass de-
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coding method is superior to the projection
method.

e The simultaneous incorporation of the
source- and target-side models can achieve
further improvements over a single-side
model.

For the future work, we are interested in learn-
ing bilingual representations (Lauly et al., 2014;
Gouws et al., 2014) for nonterminals. We also
would like to extend our work by using more con-
textual lexical information to derive semantic vec-
tors for nonterminals.
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