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Abstract

The multilingual Paraphrase Database
(PPDB) is a freely available automatically
created resource of paraphrases in mul-
tiple languages. In statistical machine
translation, paraphrases can be used to
provide translation for out-of-vocabulary
(OOV) phrases. In this paper, we show
that a graph propagation approach that
uses PPDB paraphrases can be used to im-
prove overall translation quality. We pro-
vide an extensive comparison with previ-
ous work and show that our PPDB-based
method improves the BLEU score by up
to 1.79 percent points. We show that
our approach improves on the state of the
art in three different settings: when faced
with limited amount of parallel training
data; a domain shift between training
and test data; and handling a morpho-
logically complex source language. Our
PPDB-based method outperforms the use
of distributional profiles from monolin-
gual source data.

1 Introduction

Translation coverage is a major concern in statis-
tical machine translation (SMT) which relies on
large amounts of parallel, sentence-aligned text. In
(Callison-Burch et al., 2006), even with a training
data size of 10 million word tokens, source vocab-
ulary coverage in unseen data does not go above
90%. The problem is worse with multi-word OOV
phrases. Copying OOVs to the output is the most
common solution. However, even noisy transla-
tions of OOVs can improve reordering and lan-
guage model scores (Zhang et al., 2012). Translit-
eration is useful but not a panacea for the OOV
problem (Irvine and Callison-Burch, 2014b). We
find and remove the named entities, dates, etc. in

the source and focus on the use of paraphrases to
help translate the remaining OOVs. In Sec. 5.2 we
show that handling such OOVs correctly does im-
prove translation scores.

In this paper, we build on the following re-
search: Bilingual lexicon induction is the task
of learning translations of words from monolin-
gual data in source and target languages (Schafer
and Yarowsky, 2002; Koehn and Knight, 2002;
Haghighi et al., 2008). The distributional pro-
file (DP) approach uses context vectors to link
words as potential paraphrases to translation can-
didates (Rapp, 1995; Koehn and Knight, 2002;
Haghighi et al., 2008; Garera et al., 2009). DPs
have been used in SMT to assign translation can-
didates to OOVs (Marton et al., 2009; Daumé
and Jagarlamudi, 2011; Irvine et al., 2013; Irvine
and Callison-Burch, 2014a). Graph-based semi-
supervised methods extend this approach and
propagate translation candidates across a graph
with phrasal nodes connected via weighted para-
phrase relationships (Razmara et al., 2013; Saluja
et al., 2014; Zhao et al., 2015). Saluja et al. (2014)
extend paraphrases for SMT from the words to
phrases, which we also do in this work. Bilin-
gual pivoting uses parallel data instead of con-
text vectors for paraphrase extraction (Mann and
Yarowsky, 2001; Schafer and Yarowsky, 2002;
Bannard and Callison-Burch, 2005; Callison-
Burch et al., 2006; Zhao et al., 2008; Callison-
Burch, 2008). Ganitkevitch and Callison-Burch
(2014) published a large-scale multilingual Para-
phrase Database (PPDB) http://paraphrase.

org which includes lexical, phrasal, and syntactic
paraphrases (available for 22 languages with up to
170 million paraphrases each).

To our knowledge, this paper is the first com-
prehensive study of the use of PPDB for statistical
machine translation model training. Our frame-
work has three stages: 1) a novel graph con-
struction approach for PPDB paraphrases linked
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with phrases from parallel training data. 2) Graph
propagation that uses PPDB paraphrases. 3) An
SMT model that incorporates new translation can-
didates. Sec. 3 explains these three stages in detail.

Using PPDB has several advantages: 1) Re-
sources such as PPDB can be built and used for
many different tasks including but not limited to
SMT. 2) PPDB contains many features that are
useful to rank the strength of a paraphrase con-
nection and with more information than distribu-
tional profiles. 3) Paraphrases in PPDB are often
better than paraphrases extracted from monolin-
gual or comparable corpora because a large-scale
multilingual paraphrase database such as PPDB
can pivot through a large amount of data in many
different languages. It is not limited to using
the source language data for finding paraphrases
which distinguishes it from previous uses of para-
phrases for SMT.

PPDB is a natural resource for paraphrases.
However, PPDB was not built with the specific ap-
plication to SMT in mind. Other applications such
as text-to-text generation have used PPDB (Gan-
itkevitch et al., 2011) but SMT brings along a
specific set of concerns when using paraphrases:
translation candidates should be transferred suit-
ably across paraphrases. There are many cases,
e.g. when faced with different word senses where
transfer of a translation is not appropriate. Our
proposed methods of using PPDB use graph prop-
agation to transfer translation candidates in a way
that is sensitive to SMT concerns.

In our experiments (Sec. 5) we compare our
approach with the state-of-the-art in three differ-
ent settings in SMT: 1) when faced with limited
amount of parallel training data; 2) a domain shift
between training and test data; and 3) handling
a morphologically complex source language. In
each case, we show that our PPDB-based approach
outperforms the distributional profile approach.

2 Paraphrase Extraction

Our goal is to produce translations for OOV
phrases by exploiting paraphrases from the mul-
tilingual PPDB (Ganitkevitch and Callison-Burch,
2014) by using graph propagation. Since our ap-
proach relies on phrase-level paraphrases we com-
pare with the current state of the art approaches
that use monolingual data and distributional pro-
files to construct paraphrases and use graph prop-
agation (Razmara et al., 2013; Saluja et al., 2014).

2.1 Paraphrases from Distributional Profiles
A distributional profile (DP) of a word or phrase
was first proposed in (Rapp, 1995) for SMT. Given
a word f , its distributional profile is:

DP (f) = {〈A(f, wi)〉 | wi ∈ V }

V is the vocabulary and the surrounding words
wi are taken from a monolingual corpus using a
fixed window size. We use a window size of 4
words based on the experiments in (Razmara et al.,
2013). DPs need an association measure A(·, ·) to
compute distances between potential paraphrases.
A comparison of different association measures
appears in (Marton et al., 2009; Razmara et al.,
2013; Saluja et al., 2014) and our preliminary ex-
periments validated the choice of the same asso-
ciation measure as in these papers, namely Point-
wise Mutual Information (Lin, 1998) (PMI). For
each potential context word wi:

A(f, wi) = log2
P (f, wi)
P (f)P (wi)

(1)

To evaluate the similarity between two phrases we
use cosine similarity. The cosine coefficient of two
phrases f1 and f2 is:

S(f1, f2) = cos(DP (f1), DP (f2)) =∑
wi∈V A(f1, wi)A(f2, wi)√∑

wi∈V A(f1, wi)2
√∑

wi∈V A(f2, wi)2
(2)

where V is the vocabulary. Note that in Eqn. (2)
wi’s are the words that appear in the context of f1

or f2, otherwise the PMI values would be zero.
Considering all possible candidate paraphrases

is very expensive. Thus, we use the heuristic ap-
plied in previous works (Marton et al., 2009; Raz-
mara et al., 2013; Saluja et al., 2014) to reduce the
search space. For each phrase we keep candidate
paraphrases which appear in one of the surround-
ing context (e.g. Left Right) among all occur-
rences of the phrase.

2.2 Paraphrases from bilingual pivoting
Bilingual pivoting uses parallel corpora between
the source language, F , and a pivot language T .
If two phrases, f1 and f2, in a same language are
paraphrases, then they share a translation in other
languages with p(f1|f2) as a paraphrase score:

S(f1, f2) = p(f1|f2) =
∑

t

p(f1|t)p(t|f2) (3)
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Figure 2: A small sample of the real graph constructed from the Arabic PPDB for Arabic to English translation. Filled nodes
(1 and 6) are phrases from the SMT phrase table (unfilled nodes are not). Edge weights are set using a log-linear combination
of scores from PPDB. Phrase #6 has different senses (‘gold’ or ‘left’); and it has a paraphrase in phrase #7 for the ‘gold’ sense
and a paraphrase in phrase #2 for the ‘left’ sense. After propagation, phrase #2 receives translation candidates from phrase #6
and phrase #1 reducing the probability of translation from unrelated senses (like the ‘gold’ sense). Phrase #8 is a misspelling
of phrase #7 and is also captured as a paraphrase. Phrase #6 propagates translation candidates to phrase #8 through phrase
#7. Morphological variants of phrase #6 (shown in bold) also receive translation candidates through graph propagation giving
translation candidates for morphologically rich OOVs.

Figure 1: English paraphrases extracted by pivot-
ing over German shared translation (Bannard and
Callison-Burch, 2005).

where t is a phrase in language T . p(f1|t) and
p(t|f2) are taken from the phrase table extracted
from parallel data for languages F and T . In Fig. 1
from (Bannard and Callison-Burch, 2005) we see
that paraphrase pairs like (in check, under con-
trol) can be extracted by pivoting over the German
phrase unter kontrolle.

The multilingual Paraphrase Database
(PPDB) (Ganitkevitch and Callison-Burch,
2014) is a published resource for paraphrases
extracted using bilingual pivoting. It leverages
syntactic information and other resources to filters
and scores each paraphrase pair using a large set
of features. These features can be used by a log
linear model to score paraphrases (Zhao et al.,
2008). We used a linear combination of these fea-
tures using the equation in Sec. 3 of (Ganitkevitch
and Callison-Burch, 2014) to score paraphrase
pairs. PPDB version 1 is broken into different
levels of coverage. The smaller sizes contain only
better-scoring, high-precision paraphrases, while
larger sizes aim for high coverage.

Algorithm 1 PPDB Graph Propagation for SMT
PhrTable = PhraseTableGeneration();
ParaDB = ParaphraseExtraction(); (Sec. 2)
InitGraph = GraphConstruct(PhrTable, ParaDB); (Sec. 3.1)
PropGraph = GraphPropagation(InitGraph); (Sec. 3.2)
for phrase ∈ {OOVs} do

newTrans = TranslationFinder(PropGraph, phrase);
Augment(PhrTable, newTrans); (Sec. 3.3)

TuneMT(PhrTable);

3 Methodology

After paraphrase extraction we have paraphrase
pairs, (f1, f2) and a score S(f1, f2) we can in-
duce new translation rules for OOV phrases us-
ing the steps in Algo. (1): 1) A graph of source
phrases is constructed as in (Razmara et al., 2013);
2) translations are propagated as labels through the
graph as explained in Fig. 2; and 3) new trans-
lation rules obtained from graph-propagation are
integrated with the original phrase table.

3.1 Graph Construction
We construct a graph G(V,E,W ) over all source
phrases in the paraphrase database and the source
language phrases from the SMT phrase table ex-
tracted from the available parallel data. V cor-
responds to the set of vertices (source phrases),
E is the set of edges between phrases and W is
weight of each using the score function S defined
in Sec. 2. V has two types of nodes: seed (labeled)
nodes, Vs, from the SMT phrase table, and regu-
lar nodes, Vr. Note that in this step OOVs are part
of these regular nodes, and we try to find transla-
tion in the propagation step for all of these regu-
lar nodes. In graph construction and propagation,
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we do not know which phrasal nodes correspond
to OOVs in the dev and test set. Fig. 2 shows a
small slice of the actual graph used in one of our
experiments; This graph is constructed using the
paraphrase database on the right side of the figure.
Filled nodes have a distribution over translations
(the possible “labels” for that node). In our setting,
we consider the translation e to be the “label” and
so we propagate the labeling distribution p(e|f)
which is taken from the feature function for the
SMT log-linear model that is taken from the SMT
phrase table and we propagate this distribution to
unlabeled nodes in the graph.

3.2 Graph Propagation
Considering the translation candidates of known
phrases in the SMT phrase table as the “labels” we
apply a soft label propagation algorithm in order to
assign translation candidates to “unlabeled” nodes
in the graph, which include our OOV phrases.
As described by the example in Fig. 2 we wish
two outcomes: 1) transfer of translations (or “la-
bels”) to unlabeled nodes (OOV phrases) from la-
beled nodes, and 2) smoothing the label distribu-
tion at each node. We use the Modified Adsorption
(MAD) algorithm (Talukdar and Crammer, 2009)
for graph propagation. Suppose we have m dif-
ferent possible labels plus one dummy label, a soft
label Ŷ ∈ ∆m+1 is a m + 1 dimension probabil-
ity vector. The dummy label is used when there is
low confidence on correct labels. Based on MAD,
we want to find soft label vectors for each node by
optimizing the objective function below:

min
Ŷ

µ1

∑
v∈Vs

P1,v||Yv − Ŷ ||22 +

µ2

∑
v∈V,u∈N(v)

P2,vWv,u||Ŷv − Ŷu||22 +

µ3

∑
v∈V

P3,v||Ŷv −Rv||22

(4)

In this objective function, µi and Pi,v are hyper-
parameters (∀v : ΣiPi,v = 1). Rv ∈ ∆m+1 is
our prior belief about labeling. First component
of the function tries to minimize the difference of
new distribution to the original distribution for the
seed nodes. The second component insures that
nearby neighbours have similar distributions, and
the final component is to make sure that the dis-
tribution does not stray from a prior distribution.
At the end of propagation, we wish to find a la-
bel distribution for our OOV phrases. We describe

in Sec. 4.2.2 the reasons for choosing MAD over
other graph propagation algorithms. The MAD
graph propagation generalizes the approach used
in (Razmara et al., 2013). The Structured Label
Propagation algorithm (SLP) was used in (Saluja
et al., 2014; Zhao et al., 2015) which uses a graph
structure on the target side phrases as well. How-
ever, we have found that in our diverse experimen-
tal settings (see Sec. 5) MAD had two properties
we needed compared to SLP: one was the use of
graph random walks which allowed us to control
translation candidates and MAD also has the abil-
ity to penalize nodes with a large number of edges
(also see Sec. 4.2.2).

3.3 Phrase Table Integration

After propagation, for each potential OOV phrase
we have a list of possible translations with corre-
sponding probabilities. A potential OOV is any
phrase which does not appear in training, but could
appear in unseen data. We do not look at the dev
or test data to produce the augmented phrase ta-
ble. The original phrase table is now augmented
with new entries providing translation candidates
for potential OOVs; Last column in Table 2 shows
how many entries have been added to the phrase
table for each experimental settings. A new fea-
ture is added to the standard SMT log-linear dis-
criminative model and introduced into the phrase
table. This new feature is set to either 1.0 for
the phrase table entries that already existed; or `i
which is the log probability (from graph propaga-
tion) for the translation candidate i for potential
OOVs. In case the dummy label exists with high
probability or the label distribution is uniform, an
identity rule is added to the phrase table (copy over
source to target).

4 Analysis of the Framework

4.1 Propagation of poor translations

Automatic paraphrase extraction generates many
possible paraphrase candidates and many of them
are likely to be false positives for finding transla-
tion candidates for OOVs. Distributional profiles
rely on context information which is not sufficient
to derive accurate paraphrases for many phrases
and this results in many low quality paraphrase
candidates. Bilingual pivoting uses word align-
ments which can also introduce errors depending
on the size and quality of the bilingual data used.
Alignment errors also introduce poor translations.
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Size Nodes Edges Max
Neigh.

Ave
Neigh.

S 23K 31K 32 1.38
M 41K 69K 33 1.69
L 74K 199K 67 2.69
XL 103K 548K 330 5.33
XXL 122K 2073K 1231 16.968
XXXL 125K 7558K 5255 60.27

Table 1: Statistics of the graph constructed using
the English lexical PPDB. We have built similar
graphs for French and Arabic.

In graph propagation, these errors may be propa-
gated and result in poor translations for OOVs.

We could address this issue by aggressively
pruning the potential paraphrase candidates to im-
prove the precision. However, this results in a dra-
matic drop in coverage and many OOV phrases do
not obtain any translation candidates. We use a
combination of the following three steps to aug-
ment our graph propagation framework.

4.1.1 Graph pruning and PPDB sizes
Pruning the graph avoids error propagation by re-
moving unreliable edges. Pruning removes edges
with an edge weight lower than a minimum thresh-
old or by limiting the number of neighbours to the
top-K edges (Talukdar, 2009). PPDB has different
sizes with different levels of accuracy and cover-
age. We can do graph pruning simply by choosing
to use different sizes of PPDB. As we can see in
Fig. 3 results vary from language to language de-
pending on the pruning used. For instance, the L
size results in the best score for French-English.
We choose the best size of PPDB for each lan-
guage based on a separate held-out set and inde-
pendently from each of the SMT-based tasks in our
experimental results. Our conclusion from our ex-
periments with the different sizes of PPDB is that
removing phrases (or nodes in our graph) is not
desirable. However, removing unreliable edges is
useful. As seen in Table 1, increasing the size
of PPDB leads to a rapid increase in nodes fol-
lowed by a larger number of edges in the very large
PPDB sizes.

4.1.2 Pruning the translation candidates
Another solution to the error propagation issue is
to propagate all translation candidates but when
providing translations to OOVs in the final phrase

Base S M L XL

29

29.5

30

B
L

E
U

sc
or

e

Spanish - English French - English

Figure 3: Effect of PPDB size on improving
BLEU score for Spanish and French

table to eliminate all but the top L translations
for each phrase (which is the usual ttable limit in
phrase-based SMT (Koehn et al., 2003)). Based
on a development set, separate from the test sets
we used, we found that the best value of L was 10.

4.1.3 External Resources for Filtering
Applying more informative filters can be also used
to improve paraphrase quality. This can be done
through additional features for paraphrase pairs.
For example, edit distance can be used to capture
misspelled paraphrases. We use a Named Entity
Recognizer to exclude names, numbers and dates
from the paraphrase candidates. Even after remov-
ing these tokens, 3.32% of tokens of test set are
still OOVs . In addition, we use a list of stop words
to remove nodes which have too many connec-
tions. These two filters improve our results (more
in Sec. 5).

4.2 Path sensitivity

Graph propagation has been used in many NLP
tasks like POS tagging, parsing, etc. but propa-
gating translations in a graph as labels is much
more challenging. Due to huge number of pos-
sible labels (translations) and many low quality
edges, it is very likely that many wrong transla-
tions are rapidly propagated in few steps. Raz-
mara et al. (2013) show that unlabeled nodes in-
side the graph, called bridge nodes, are useful for
the transfer of translations when there is no other
connection between an OOV phrase and a node
with known translation candidates. However, they
show that using the full graph with long paths of
bridge nodes hurts performance. Thus the propa-
gation has to be constrained using path sensitivity.
Fig. 4 shows this issue in a part of an English para-
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stock bank margin majoritystock
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Figure 4: Sensitivity issue in graph propagation
for translations. “Lager” is a translation candidate
for “stock”, which is transferred to “majority” af-
ter 3 iterations.

phrase graph. After three iterations, German trans-
lation “Lager” reaches “majority” which is totally
irrelevant as a translation candidate. Transfer of
translation candidates should prefer close neigh-
bours and only with a very low probability to other
nodes in the graph.

4.2.1 Pre-structuring the graph
Razmara et al. (2013) avoid a fully connected
graph structure. They pre-structure the graph
into bipartite graphs (only connections between
phrases with known translation and OOV phrases)
and tripartite graphs (connections can also go from
a known phrasal node to an OOV phrasal node
through one node that is a paraphrase of both
but does not have translations, i.e. it is an unla-
beled node). In these pre-structured graphs there
are no connections between nodes of the same
type (known, OOV or unlabeled). We apply this
method in our low resource setting experiments
(Sec. 5.3) to compare our bipartite and tripartite
results to Razmara et al. (2013). In the rest of the
experiments we use the tripartite approach since it
outperforms the bipartite approach.

4.2.2 Graph random walks
Our goal is to limit the number of hops in the prop-
agation of translation candidates preferring closely
connected and highly probable edge weights. Op-
timization for the Modified Adsorption (MAD)
objective function in Sec. 3.2 can be viewed as
a controlled random walk (Talukdar et al., 2008;
Talukdar and Crammer, 2009). This is formal-
ized as three actions: inject, continue and aban-
don with corresponding pre-defined probabilities
Pinj , Pcont and Pabnd respectively as in (Taluk-
dar and Crammer, 2009). A random walk through
the graph will transfer labels from one node to an-
other node, and probabilities Pcont and Pabnd con-
trol exploration of the graph. By reducing the val-
ues of Pcont and increasing Pabnd we can control

the label propagation process to optimize the qual-
ity of translations for OOV phrases. Again, this is
done on a held-out development set and not on the
test data. The optimal values in our experiments
for these probabilities are Pinj = 0.9, Pcont =
0.001, Pabnd = 0.01.

4.2.3 Early stopping of propagation
In Modified Adsorption (MAD) (see Sec. 3.2)
nodes in the graph that are closely linked will tend
to similar label distributions as the number of it-
erations increase (even when the path lengths in-
crease). In our setting, smoothing the label distri-
bution helps in the first few iterations, but is harm-
ful as the number of iterations increase due to the
factors shown in Fig. 4. We use early stopping
which limits the number of iterations. We varied
the number of iterations from 1 to 10 on a held-out
dev set and found that 5 iterations was optimal.

5 Evaluation

We first show the effect of OOVs on translation
quality, then evaluate our approach in three dif-
ferent SMT settings: low resource SMT, domain
shift, and morphologically complex languages.
In each case, we compare results of using para-
phrases extracted by Distributional Profile (DP)
and PPDB in an end-to-end SMT system.
Important: no subset of the test data sentences
are used in the bilingual corpora for paraphrase ex-
traction process.

5.1 Experimental Setup
We use CDEC1 (Dyer et al., 2010) as an end-
to-end SMT pipeline with its standard features2.
fast align (Dyer et al., 2013) is used for word
alignment, and weights are tuned by minimizing
BLEU loss on the dev set using MIRA (Cram-
mer and Singer, 2003). This setup is used for
most of our experiments: oracle (Sec. 5.2), do-
main adaptation (Sec. 5.4) and morphologically
complex languages (Sec. 5.5). But as we wish
to fairly compare our approach with Razmara et
al. (2013) on low resource setting, we follow their
setup in Sec. 5.3: Moses (Koehn et al., 2007) as
SMT pipeline, GIZA++ (Och and Ney, 2003) for
word alignment and MERT (Och, 2003) for tun-
ing. We add our own feature to the SMT log-linear
model as described in Sec. 3.3.

1http://www.cdec-decoder.org
2EgivenFCoherent, SampleCountF, CountEF, MaxLexF-

givenE, MaxLexEgivenF, IsSingletonF, IsSingletonEF
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Experiments OOV type/token Rules added
Case 1 1830 / 2163 7.0K
Case 2 - Med. 2294 / 4190 7.8K
Case 2 - Sci. 5272 / 14121 10.4K
Case 3 1543 / 1895 8.1K

Table 2: Statistics of settings in Sec. 5. Last col-
umn shows how many rules added in the phrase
table integration step.

KenLM (Heafield, 2011) is used to train a 5-
gram language model on English Gigaword (V5:
LDC2011T07). For scalable graph propagation
we use the Junto framework3. We use maximum
phrase length 10. For our experiments we use
the Hadoop distributed computing framework ex-
ecuted on a cluster with 12 nodes (each node has
8 cores and 16GB of RAM). Each graph propaga-
tion iteration takes about 3 minutes.

For French, we apply a simple heuristic to de-
tect named entities: words that are capitalized in
the original dev/test set that do not appear at the
beginning of a sentence are named entities. Based
on eyeballing the results, this works very well in
our data. For Arabic, AQMAR is used to exclude
named-entities (Mohit et al., 2012). For each of
the experimental settings below we show the OOV
statistics in Table 2.

5.2 Impact of OOVs: Oracle experiment

This oracle experiment shows that translation of
OOVs beyond named entities, dates, etc. is poten-
tially very useful in improving output translation.
We trained a SMT system on 10K French-English
sentences from the Europarl corpus(v7) (Koehn,
2005). WMT 2011 and WMT 2012 are used as
dev and test data respectively. Table 4 shows the
results in terms of BLEU on dev and test. The
first row is baseline which simply copies OOVs to
output. The second and third rows show the re-
sult of augmenting phrase-table by adding transla-
tions for single-word OOVs and phrases contain-
ing OOVs. The last row shows the oracle result
where dev and test sentences exist inside the train-
ing data and all the OOVs are known (Fully ob-
servers cannot avoid model and search errors).

5.3 Case 1: Limited Parallel Data

In this experiment we use a setup similar to (Raz-
mara et al., 2013). To have fair comparison,

3Junto : https://github.com/parthatalukdar/junto

Fr-En Dev Test
Baseline 27.90 28.08
+ Lexical OOV 28.10 28.31
+ Phrasal OOV 28.50 28.85
Fully observed 46.88 49.21

Table 4: The impact of translating OOVs.

we use 10K French-English parallel sentences,
randomly chosen from Europarl to train trans-
lation system, as reported in (Razmara et al.,
2013). ACL/WMT 20054 is used for dev and test
data. We re-implement their paraphrase extraction
method (DP) to extract paraphrases from French
side of Europarl (2M sentences). We use unigram
nodes to construct graphs for both DP and PPDB.
In bipartite graphs, each node is connected to at
most 20 nodes. For tripartite graphs, each node is
connected to 15 labeled and 5 unlabeled nodes.

For intrinsic evaluation, we use Mean-
Reciprocal-Rank (MRR) and Recall. MRR is
the mean of reciprocal rank of the candidate list
compared to the gold list (Eqn. 5). Recall shows
percentage of gold list covered by the candidate
list (Eqn. 6). Gold translations for OOVs are
given by concatenating the test data to training
and running a word aligner.

MRR =
1
|O|

|O|∑
i=1

1
ranki

for O = {OOVs} (5)

Recall =
|{gold list} ∩ {candidate list}|

|{gold list}| (6)

Table 5 compares DP and PPDB in terms of
BLEU, MRR and Recall. It indicates that PPDB
(large size) outperforms DP in both intrinsic and
extrinsic evaluation measures. Although tripartite
graph did not improve the results for DP, it results
in statistically significantly better BLEU score for
PPDB in comparison to DP (evaluated by MultE-
val (Clark et al., 2011)). Thus we use tripartite
graph in the rest of experiments. The last row in
the table shows the result of combining DP and
PPDB by multiplying the normalized scores of
both paraphrase lists.

This setting is included for three reasons: 1)
we exploit the small data size to explore differ-
ent choices in our approach such as, e.g. choos-
ing bipartite versus tripartite graph structures; 2)

4http://www.statmt.org/wpt05/mt-shared-task/
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OOV PPDB NNs DP NNs Reference sentence PPDB output DP output
procédés processus méthodes

outils
matériaux

... an agreement on proce-
dures in itself is a good
thing ...

... an agreement on the
procedure is a good ...

... an agreement on
products is a good ...

quantique quantiques - ... allowed us to achieve
quantum degeneracy ...

... allowed quantum de-
generacy ...

... quantique allowed
degeneracy ...

mlzm mlzmA ADTr ... voted 97-0 last week for
a non-binding resolution ...

... voted 97 last week on
not binding resolution ...

... voted 97 last week on
having resolution ...

Table 3: Examples comparing DP versus PPDB outputs on the test sets. NNs refer to nearest neighbours
in the graph for OOV phrase. Each row respectively corresponds to experimental settings (cases 1 to 3).

System MRR Recall BLEU
baseline - - 28.89
DP-bipartite 5.34 11.90 29.27
DP-tripartite 5.34 11.95 29.27
PPDBfr (L)-bipartite 12.05 22.08 29.46
PPDBfr (L)-tripartite 10.22 22.87 29.52
Combined-tripartite - - 29.28

Table 5: Results of PPDB and DP techniques.

to show how well our PPDB approach does com-
pared to the DP approach in terms of MRR and
recall; and 3) to show applicability of our ap-
proach for a low-resource language. However we
used French instead of a language which is truly
resource-poor due to the lack of available para-
phrases for a true resource poor language, e.g.
Malagasy.

5.4 Case 2: Domain Adaptation

Domain adaptation is another case that suffers
from massive number of OOVs. We compare our
approach with Marginal Matching (Irvine et al.,
2013), a state of the art approach in SMT domain
adaptation. We use their setup and data and com-
pare our results to their reported results (Irvine et
al., 2013). 250K lines of Hansard parliamentary
proceeding are used for training MT. Dev and test
sets are available for two different domains: Medi-
cal and Science domains. For medical domain ran-
dom subset of EMEA corpus (Tiedemann, 2009)
and for the science domain a corpus of scientific
articles (Carpuat et al., 2012) has been used. Un-
igram paraphrases using DP are extracted from
French side of Europarl.

Table 6 compares the results in terms of BLEU
score. In both medical and science domains,
graph-propagation approach using PPDB (large)
performs significantly better than DP (p < 0.02),
and has comparable results to Marginal Matching.

Systems Science Medical
baseline 22.20 25.32
DP-tripartite 22.76 25.81
PPDBfr (L)-tripartite 22.97 27.11
Marginal Matching 23.62 26.97

Table 6: BLEU scores for domain adaptation.

Systems BLEU
baseline 29.59
DP-tripartite 30.08
PPDBarabic (L)-tripartite 31.12

Table 7: BLEU score results for Arabic-English.

Marginal Matching performs better in science do-
main but graph-propagation approach with PPDB
outperforms it in medical domain getting a +1.79
BLEU score improvement over the baseline.

5.5 Case 3: Morphologically Rich Languages

Both Distribution Profiling and Bilingual Pivot-
ing propose morphological variants of a word as
paraphrase pairs. Even more so in PPDB due to
pivoting over English. We choose Arabic-English
task for this experiment. We train the SMT system
on 685K sentence pairs (randomly selected from
LDC2007T08 and LDC2008T09) and use NIST
OpenMT 2012 for dev and test data. Arabic side of
1M sentences of LDC2007T08 and LDC2008T09
is used to extract unigram paraphrases for DP. Ta-
ble 7 shows that PPDB (large; with phrases) re-
sulted in +1.53 BLEU score improvement over
DP which only slightly improved over baseline.

6 Related Work

Sentence level paraphrasing has been used for gen-
erating alternative reference translations (Madnani
et al., 2007; Kauchak and Barzilay, 2006), or
augmenting the training data with sentential para-
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phrases (Bond et al., 2008; Nakov, 2008; Mirkin et
al., 2009). Phrase level paraphrasing was done us-
ing crowdsourcing (Resnik et al., 2010) or by us-
ing paraphrases in lattice decoding (Onishi et al.,
2010; Du et al., 2010).

Daumé and Jagarlamudi (2011) apply a genera-
tive model to domain adaptation based on canon-
ical correlation analysis Haghighi et al. (2008).
However, they use artificially created monolingual
corpora very related to the same domain as test
data. Irvine and Callison-Burch (2014a) gener-
ate a large, noisy phrase table by composing un-
igram translations which are obtained by a super-
vised method (Irvine and Callison-Burch, 2013).
Comparable monolingual data is used to re-score
and filter the phrase table. Zhang and Zong (2013)
use a large manually generated lexicon for do-
main adaptation. In contrast to these methods, our
method is unsupervised.

Alexandrescu and Kirchhoff (2009) use a
graph-based semi-supervised model determine
similarities between sentences, then use it to re-
rank the n-best translation hypothesis. Liu et al.
(2012) extend this model to derive some features
to be used during decoding. These approaches are
orthogonal to our approach. Saluja et al. (2014)
use Structured Label Propagation (Liu et al., 2012)
in two parallel graphs constructed on source and
target paraphrases. In their case the graph con-
struction is extremely expensive. Leveraging a
morphological analyzer, they reach significant im-
provement on Arabic. We can not directly com-
pare our results to (Saluja et al., 2014) because
they exploit several external resources such as
a morphological analyzer and also had different
sizes of training and test. In experiments (Sec. 5)
we obtained comparable BLEU score improve-
ment on Arabic-English by using bilingual pivot-
ing only on source phrases. (Saluja et al., 2014)
also use methods similar to (Habash, 2008) that
expand the phrase table with spelling and morpho-
logical variants of OOVs in test data. We do not
use the dev/test data to augment the phrase table.

Using comparable corpora to extract parallel
sentences and phrases (Munteanu and Marcu,
2006; Smith et al., 2010; Tamura et al., 2012) are
orthogonal to the approach we discuss here.

Bilingual and multilingual word and phrase rep-
resentation using neural networks have been ap-
plied to machine translation (Zou et al., 2013;
Mikolov et al., 2013a; Zhang et al., 2014). How-

ever, most of these methods focus on frequent
words or an available bilingual phrase table (Zou
et al., 2013; Zhang et al., 2014; Gao et al., 2014).
Mikolov et al. (2013a) learn a global linear projec-
tion from source to target using representation of
frequent words on both sides. This model can be
used to generate translations for new words, but a
large amounts of bilingual data is required to cre-
ate such a model. (Mikolov et al., 2013b) also
uses bilingual data to project new translation rules.
Zhao et al. (2015) extend Mikolov’s model to learn
one local linear projection for each phrase. Their
model reaches comparable results to Saluja et al.
(2014) while works faster. Alkhouli et al. (2014)
use neural network phrase representation for para-
phrasing OOVs and find translation for them using
a phrase-table created from limited parallel data.
Our experimental settings is different from the ap-
proaches in (Alkhouli et al., 2014; Mikolov et al.,
2013a; Mikolov et al., 2013b).

7 Conclusion and Future work

In future work, we would like to include transla-
tions for infrequent phrases which are not OOVs.
We would like to explore new propagation meth-
ods that can directly use confidence estimates and
control propagation based on label sparsity. We
also would like to expand this work for mor-
phologically rich languages by exploiting other
resources like morphological analyzer and cam-
pare our approach to the current state of art ap-
proaches which are using these types of resources.
In conclusion, we have shown significant improve-
ments to the quality of statistical machine transla-
tion in three different cases: low resource SMT,
domain shift, and morphologically complex lan-
guages. Through the use of semi-supervised graph
propagation, a large scale multilingual paraphrase
database can be used to improve the quality of sta-
tistical machine translation.
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