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Abstract

Many NLP systems use dependency
parsers as critical components. Jonit learn-
ing parsers usually achieve better parsing
accuracies than two-stage methods. How-
ever, classical joint parsing algorithms
significantly increase computational com-
plexity, which makes joint learning im-
practical. In this paper, we proposed an ef-
ficient dependency parsing algorithm that
is capable of capturing multiple edge-label
features, while maintaining low computa-
tional complexity. We evaluate our parser
on 14 different languages. Our parser
consistently obtains more accurate results
than three baseline systems and three pop-
ular, off-the-shelf parsers.

1 Introduction

Natural language processing (NLP) systems, like
machine translation (Xie et al., 2011), resource-
low languages processing (McDonald et al., 2013;
Ma and Xia, 2014), word sense disambigua-
tion (Fauceglia et al., 2015) , and entity corefer-
ence resolution (Durrett and Klein, 2013), are be-
coming more sophisticated, in part because of uti-
lizing syntacitc knowledges such as dependency
parsing trees.

Dependency parsers predict dependency struc-
tures and dependency type labels on each edge.
However, most graph-based dependency parsing
algorithms only produce unlabeled dependency
trees, particularly when higher-order factoriza-
tions are used (Koo and Collins, 2010; Ma and
Zhao, 2012b; Martins et al., 2013; Ma and Zhao,
2012a). A two-stage method (McDonald, 2006) is
often used because the complexity of some joint
learning models is unacceptably high. On the
other hand, joint learning models can benefit from
edge-label information that has proven to be im-

portant to provide more accurate tree structures
and labels (Nivre and Scholz, 2004).

Previous studies explored the trade-off between
computational costs and parsing performance.
Some work (McDonald, 2006; Carreras, 2007)
simplified labeled information to only single la-
bel features. Other work (Johansson and Nugues,
2008; Bohnet, 2010) used richer label features
but increased systems’ complexities significantly,
while achieving better parsing accuracy. Yet, there
are no previous work addressing the problem of
good balance between parsing accuracy and com-
putational costs for joint parsing models.

In this paper, we propose a new dependency
parsing algorithm that can utilize edge-label infor-
mation of more than one edge, while simultane-
ously maintaining low computational complexity.
The component needed to solve this dilemma is an
inner-to-outer greedy approximation to avoid an
exhaustive search. The contributions of this work
are (i) showing the effectiveness of edge-label in-
formation on both UAS and LAS. (ii) proposing a
joint learning parsing model which achieves both
effectiveness and efficience. (iii) giving empiri-
cal evaluations of this parser on different treebanks
over 14 languages.

2 Joint Parsing Algorithm

2.1 Basic Notations

In the following, x represents a generic input sen-
tence, and y represents a generic dependency tree.
Formally, for a sentence x, dependency parsing is
the task of finding the dependency tree y with the
highest-score for x:

y∗(x) = argmax
y∈Y(x)

Score(x, y). (1)

Here Y(x) denotes the set of possible dependency
trees for sentence x.

In this paper, we adopt the second-order sib-
ling factorization (Eisner, 1996; McDonald and
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Pereira, 2006), in which each sibling part consists
of a tuple of indices (h,m, c) where (h,m) and
(h, c) are a pair of adjacent edges to the same side
of the head h. By adding labele information to this
factorization, Score(x, y) can be rewritten as:

Score(x, y) =
∑

(h,m,c,l1,l2)∈y

Ssib(h,m, c, l1, l2)

=
∑

(h,m,c,l1,l2)∈y

λT f(h,m, c, l1, l2)
(2)

where Ssib(h,m, c, l1, l2) is the score function for
the sibling part (h,m, c) with l1 and l2 being the
labels of edge (h,m) and (h, c), respectively. f
are feature functions and λ is the parameters of
parsing model.

2.2 Exact Search Parsing
The unlabeled sibling parser introduces three
types of dynamic-programming structures: com-
plete spans C(s,t), which consist of the headword
s and its descendents on one side with the endpoint
t, incomplete spans I(s,t), which consist of the de-
pendency (s, t) and the region between the head s
and the modifier t, and sibling spans S(s,t), which
represent the region between successive modifiers
s and t of some head. To capture label infor-
mation, we have to extend each incomplete span
Is,t to Is,t,l to store the label of dependency edge
from s to t. The reason is that there is an edge
shared by two adjacent sibling parts (e.g. (h,m, c)
and (h, c, c′) share the edge (h, c)). So the in-
complete span I(s,t) does not only depend on the
label of dependency (s, t), but also the label of
the dependency (s, r) for each split point r. The
dynamic-programming procedure for new incom-
plete spans1 are

I(s,t,l) = max
s<r≤t

S(r,t)+max
l′∈L

I(s,r,l′)+Ssib(s, r, t, l′, l) (3)

where L is set of all edge labels. Then we have,

I(s,t) = max
l∈L

I(s,t,l) (4)

l∗(s,t) = argmax
l∈L

I(s,t,l) (5)

The graphical specification of the this parsing al-
gorithm is provided in Figure 1 (a). The compu-
tational complexity of the exactly searching algo-
rithm is O(|L|2n3) time and O(|L|n2) space. In
practice, |L| is probably large. For English, the
number of edge labels in Stanford Basic Depen-
dencies (De Marneffe et al., 2006) is 45, and the

1Symmetric right-headed versions are elided for brevity
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Figure 1: The dynamic-programming structures
and derivation of four parsing algorithms. I(s,t,l)
and I(s,t) are depicted as trapezoids with solid and
dashed lines, respectively. C(s,t) are depicted as
triangles and S(s,t) are depicted as boxes. Sym-
metric right-headed versions are elided for brevity.

number in the treebank of CoNLL-2008 shared
task is 70. So it is impractical to perform an ex-
haustive search for parsing, and more efficient ap-
proximating algorithms are needed.

2.3 Two Intermediate Models

In this section, we describe two intuitive simpli-
fications of the labeled parsing model presented
above. For the two simplified parsing models, ef-
ficient algorithms are available.

2.3.1 Model 0: Single-edge Label
In this parsing model, labeled features are re-
stricted to a single edge. Specifically,

Ssib(h,m, c, l1, l2) = Ssib(h, c, l2).

Then the dynamic-programming derivation for
each incomplete span becomes

I(s,t) = max
s<r≤t

{
I(s,r) + S(r,t) + max

l∈L
Ssib(s, t, l)

}
= max

s<r≤t

{
I(s,r) + S(r,t) + Ssib(s, t, l(s, t))

}
where l(s, t) = argmax

l∈L
Ssib(s, t, l).

In this case, therefore, we do not have to ex-
tend incomplete spans. The computational cost to
calculate l(s, t) is O(|L|n2) time, so the compu-
tational complexity of this algorithm is O(n3 +
|L|n2) time and O(n2) space.

1323



2.3.2 Model 1: Sibling with Single Label
As remarked in McDonald (2006), Model 0 can
be slightly enriched to include single label features
associated with a sibling part. Formally,

Ssib(h,m, c, l1, l2) = Ssib(h,m, c, l2).

Now, the dynamic-programming derivation is

I(s,t) = max
s<r≤t

{
I(s,r) + S(r,t) + Ssib(s, r, t, l(s, r, t))

}
where l(s, r, t) = argmax

l∈L
Ssib(s, r, t, l).

The additional algorithm to calculate the best
edge label l(s, r, t) takes O(|L|n3) time. There-
fore, this algorithm requires O(|L|n3) time and
O(n2) space2. Figure 1 (b) and Figure 1 (c) pro-
vide the graphical specifications for Model 0 and
Model 1, respectively.

2.4 Inner-to-outer Greedy Search
Though the two intermediate parsing models,
model 0 and model 1, encode edge-label infor-
mation and have efficient parsing algorithms, the
labeled features they are able to capture are rela-
tively limited due to restricting their labeled fea-
ture functions to a single label. Our experimental
results show that utilizing these edge-label infor-
mation yields a slight improvement of parsing ac-
curacy (see Section 3 for details). In this section,
we describe our new labeled parsing model that
can exploit labeled features involving two edge-
labels in a sibling part. To achieve efficient search,
we adopt an method characterized by inferring la-
bels of outer parts from the labels of inner ones.

Formally, consider the maximization problem
in Eq 3. It can be treated as a two-layer maxi-
mization: first fixes a split point r and maximizes
over all edge-label l, then maximizes over all pos-
sible split points. Our approach approximates the
maximization in the first layer:

max
l′∈L

I(s,r,l′) + Ssib(s, r, t, l′, l)

≈ I(s,r) + Ssib(s, r, t, l∗(s,r), l)
(6)

Then the dynamic-programming derivation for
each incomplete span is

I(s,t) = max
s<r≤t

I(s,r)+S(r,t)+max
l∈L

Ssib(s, r, t, l∗(s,r), l) (7)

To compute I(s,t), we need to calculate

l(s, r, t, l∗(s,r)) = argmax
l∈L

Ssib(s, r, t, l∗(s,r), l), (8)

2We do not have to store l(s, r, t), as each l(s, r, t) will
be calculated exactly once.

which is similar to the calculation of l(s, r, t) in
Model 1. The only difference between them is
l∗(s,r) that can be calculated in previous derivations.
Thus, their computation costs are almost the same.

The procedure of our algorithm to derivate in-
complete spans can be regarded as two steps. At
the first step, the algorithm goes through all pos-
sible split points (Eq 7). Then at the second
step, at each split point r, it calculate the label
l(s, r, t, l∗(s,r)) (Eq 8) based on the sibling part
(s, r, t) and the label l∗(s,r) which is the “best” la-
bel for dependency edge (s, r) based on incom-
plete span I(s,r). The key insight of this algorithm
is the inner-to-outer dynamic-programming struc-
ture: inner modifiers (r) of a head (s) and their
“best” labels (l∗(s,r)) are generated before outer
ones (t). Thus, using already computed “best” la-
bels of inner dependency edges makes us get rid
of maximizing over two labels, l′ and l. Moreover,
we do not have to extend each incomplete span by
the augmentation with a “label” index. This makes
the space complexity remainsO(n2), which is im-
portant in practice. The graphical specification is
provided in Figure 1 (d).

3 Experiments

3.1 Setup

We conduct our experiments on 14 languages, in-
cluding the English treebank from CoNLL-2008
shared task (Surdeanu et al., 2008) and all 13 tree-
banks from CoNLL-2006 shared task (Buchholz
and Marsi, 2006). We train our parser using The k-
best version of the Margin Infused Relaxed Algo-
rithm (MIRA) (Crammer and Singer, 2003; Cram-
mer et al., 2006; McDonald, 2006). In our experi-
ments, we set k = 1 and fix the number of iteration
to 10, instead of tuning these parameters on devel-
opment sets. Following previous work, all exper-
iments are evaluated on the metrics of unlabeled
attachment score (UAS) and Labeled attachment
score (LAS), using the official scorer3 of CoNLL-
2006 shared task.

3.2 Non-Projective Parsing

The parsing algorithms described in the paper fall
into the category of projective dependency parsers,
which exclude crossing dependency edges. Since
the treebanks from CoNLL shared tasks con-
tain non-projective edges, we use the “mountain-

3http://ilk.uvt.nl/conll/software.html
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Two-stage Model 0 Model 1 Our Model Best in CoNLL
UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS System

ar 78.52 64.69 79.38 66.91 78.72 66.67 79.60 67.09 79.34 66.91 MD06
bg 91.98 86.75 92.34 87.47 92.12 87.41 92.68 87.79 92.04 87.57 MD06
zh 91.25 86.50 91.81 87.53 92.27 88.23 92.58 88.51 93.18 89.96 RD06
cs 87.32 76.56 87.36 78.42 87.72 78.90 88.01 79.31 87.30 80.18 MD06
da 90.96 84.63 91.24 85.47 91.50 85.79 91.44 85.55 90.58 84.79 MD06
nl 83.79 78.81 84.25 80.49 84.27 80.41 84.45 80.31 83.57 79.19 MD06
en 91.92 88.09 92.10 88.96 92.19 89.18 92.45 89.43 92.38 90.13 JN08
de 90.52 87.46 90.52 87.12 90.40 87.30 90.79 87.74 90.38 87.34 MD06
ja 93.14 90.95 93.32 91.29 93.52 91.80 93.54 91.80 93.10 91.65 NV06
pt 91.60 86.05 91.04 86.46 91.02 87.30 91.54 87.68 91.22 87.60 NV06
sl 83.03 70.80 83.23 72.88 83.93 73.38 84.39 73.74 83.17 73.44 MD06
es 85.61 80.95 86.05 82.83 86.42 83.59 86.44 83.29 86.05 82.25 MD06
sv 89.07 81.88 89.74 82.77 89.82 83.13 89.94 83.09 89.50 84.58 NV06
tr 75.02 57.78 75.40 60.25 74.75 59.73 75.32 60.39 75.82 65.68 NV06
av 87.41 80.14 87.70 81.35 87.76 81.63 88.08 81.84 87.69 82.23 – –

Table 1: UAS and LAS of non-projective versions of our parsing algorithms on 14 treebanks from
CoNLL shared tasks, together with three baseline systems and the best systems for each language re-
ported in CoNLL shared tasks. MD06 is McDonald et al. (2006), RD06 is Riedel et al. (2006), JN08
is Johansson and Nugues (2008), and NV06 is Nivre et al. (2006) Bold indicates the best result for a
language. Red values represent statistically significant improvements over two-stage baseline system
on the corresponding metrics with p < 0.01, using McNemar’s test. Blue values indicate statistically
significant improvements with p < 0.05.

climbing” non-projective parsing algorithm pro-
posed in McDonald and Pereira (2006). This ap-
proximating algorithm first searches the highest
scoring projective parse tree and then it rearranges
edges in the tree until the rearrangements do not
increase the score for the tree anymore 4.

3.3 Results and Comparison

Table 1 illustrates the parsing results our parser
with non-projective parsing algorithm, together
with three baseline systems—the two-stage sys-
tem (McDonald, 2006) and the two intermediate
models, Model 0 and Model 1—and the best sys-
tems reported in CoNLL shared tasks for each lan-
guage. Our parser achieves better parsing perfor-
mance on both UAS and LAS than all the three
baseline systems for 12 languages. The two ex-
ceptions are Portuguese and Turkish, on which our
parser achieves better LAS and comparable UAS.

Comparing with the best systems from CoNLL,
our parser achieves better performance on both
UAS and LAS for 9 languages. Moreover, the av-
erage UAS of our parser over the 14 languages is
better than that of the best systems in CoNLL. It
should be noted that the best results for 14 lan-
guages in CoNLL are not from one single system,
but different systems that achieved best results for

4Additional care is required in the non-projective approx-
imation since a change of one edge could result in a label
change for multiple edges

System UAS LAS
MaltParser 89.3 86.9
MSTParser 90.7 87.6
DNNParser 91.8 89.6
This Paper 92.4 89.9

Table 2: Parsing performance on PTB. The re-
sults for MaltParser, MSTParser and DNNParser
are from table 5 of Chen and Manning (2014).

different languages. The system of McDonald et
al. (2006) achieved the best average parsing per-
formance over 13 languages (excluding English)
in CoNLL-2006 shared tasks. Its average UAS and
LAS are 87.03% and 80.83%, respectively, while
our average UAS and LAS excluding English are
87.79% and 81.29%. So our parser shows signif-
icant improvement over the single best system re-
ported in CoNLL-2006 shared task.

3.4 Experiments on PTB

To make a thorough empirical comparison with
previous studies, we also evaluate our system on
the English Penn Treebanks (Marcus et al., 1993)
with Stanford Basic Dependencies (De Marn-
effe et al., 2006). We compare our parser with
three off-the-shelf parsers: MaltParser (Nivre and
Scholz, 2004; Zhang and Clark, 2008; Zhang
and Nivre, 2011), MSTParser (McDonald et al.,
2005), and the parser using Neural Networks
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F1 (UAS) F1 (LAS)
Label Description TST Ours diff TST Ours diff
MNR Adverbial of manner 54.01 66.10 12.10 52.23 62.15 9.92
OPRD Predicative complement of raising/control verb 86.61 96.92 10.31 86.61 89.89 3.28
APPO Apposition 77.40 82.62 5.22 72.74 77.03 4.29
ADV General adverbial 73.33 77.65 4.32 69.86 73.14 3.28
AMOD Modifier of adjective or adverbial 75.49 79.58 4.09 72.60 76.91 4.30
TMP Temporal adverbial or nominal modifier 73.47 76.76 3.29 64.50 68.59 4.09
DIR Adverbial of direction 62.42 65.02 2.60 62.42 64.61 2.19
LOC Locative adverbial or nominal modifier 75.78 78.35 2.57 63.11 65.83 2.72
OBJ Object 91.69 94.08 2.39 90.62 93.23 2.61

Table 3: Top 10 dependency labels on which our algorithm achieves most improvements on the F1 score
of UAS, together with the corresponding improvements of LAS. “TST” indicates the two-stage system.
The first column is the label name in the treebank. The second column is the label’s description from
Surdeanu et al. (2008).

(DNNParser) (Chen and Manning, 2014). The re-
sults are listed in Table 2. Clearly, our parser is
superior in terms of both UAS and LAS.

3.5 Analysis

To better understand the performance of our
parser, we analyze the distribution of our parser’s
UAS and LAS over different dependency labels
on the English CoNLL treebank, compared with
the ones of the two-stage model. Table 3 lists the
top 10 dependency labels on which our algorithm
achieves most improvements on the F1 score of
UAS, together with the corresponding improve-
ments of LAS.

From Table 3 we can see among the 10 labels,
there are 5 labels — “MNR”, “ADV”, “TMP”,
“DIR”, “LOC” — which are a specific kind of ad-
verbials. This illustrates that our parser performs
well on the recognition of different kinds of ad-
verbials. Moreover, the label “OPRD” and “OBJ”
indicate dependency relations between verbs and
their modifiers, too. In addition, our parser also
significantly improves the accuracy of apposi-
tional relations (“APPO”).

4 Conclusion

We proposed a new dependency parsing algo-
rithm which can jointly learn dependency struc-
tures and edge labels. Our parser is able to use
multiple edge-label features, while maintaining
low computational complexity. Experimental re-
sults on 14 languages show that our parser sig-
nificantly improves the accuracy of both depen-
dency structures (UAS) and edge labels (LAS),
over three baseline systems and three off-the-shelf
parsers. This demonstrates that jointly learning
dependency structures and edge labels can bene-

fit both performance of tree structures and label-
ing accuracy. Moreover, our parser outperforms
the best systems of different languages reported in
CoNLL shared task for 9 languages.

In future, we are interested in extending our
parser to higher-order factorization by increas-
ing horizontal context (e.g., from siblings to “tri-
siblings”) and vertical context (e.g., from siblings
to “grand-siblings”) and validating its effective-
ness via a wide range of NLP applications.
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Eryiǧit, and Svetoslav Marinov. 2006. Labeled
pseudo-projective dependency parsing with support
vector machines. In Proceedings of the Tenth Con-
ference on Computational Natural Language Learn-
ing (CoNLL-X), pages 221–225, New York City,
June.
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