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Abstract

Ratnaparkhi (1996) introduced a method
of inferring a tag dictionary from anno-
tated data to speed up part-of-speech tag-
ging by limiting the set of possible tags for
each word. While Ratnaparkhi’s tag dic-
tionary makes tagging faster but less accu-
rate, an alternative tag dictionary that we
recently proposed (Moore, 2014) makes
tagging as fast as with Ratnaparkhi’s tag
dictionary, but with no decrease in accu-
racy. In this paper, we show that a very
simple semi-supervised variant of Ratna-
parkhi’s method results in a much tighter
tag dictionary than either Ratnaparkhi’s
or our previous method, with accuracy
as high as with our previous tag dictio-
nary but much faster tagging—more than
100,000 tokens per second in Perl.

1 Overview

In this paper, we present a new method of con-
structing tag dictionaries for part-of-speech (POS)
tagging. A tag dictionary is simply a list of words1

along with a set of possible tags for each word
listed, plus one additional set of possible tags for
all words not listed. Tag dictionaries are com-
monly used to speed up POS-tag inference by re-
stricting the tags considered for a particular word
to those specified by the dictionary.

Early work on POS tagging generally relied
heavily on manually constructed tag dictionaries,
sometimes agumented with tag statistics derived
from an annotated corpus (Leech et al., 1983;
Church, 1988; Cutting et al., 1992). Merialdo
(1994) relied only on a tag dictionary extracted
from annotated data, but he used the annotated

1According to the conventions of the field, POS tags are
assigned to all tokens in a tokenized text, including punctu-
ation marks and other non-word tokens. In this paper, all of
these will be covered by the term word.

tags from his test data as well as his training data to
construct his tag dictionary, so his evaluation was
not really fair.2 Ratnaparkhi (1996) seems to have
been the first to use a tag dictionary automatically
extracted only from training data.

Ratnaparkhi’s method of constructing a tag dic-
tionary substantially speeds up tagging compared
to considering every possible tag for every word,
but it noticeably degrades accuracy when used
with a current state-of-the-art tagging model. We
recently presented (Moore, 2014) a new method of
constructing a tag dictionary that produces a tag-
ging speed-up comparable to Ratnaparkhi’s, but
with no decrease in tagging accuracy. In this pa-
per, we show that a very simple semi-supervised
variant of Ratnaparkhi’s method results in a much
tighter tag dictionary than either Ratnaparkhi’s or
our previous method, with accuracy as high as we
previously obtained, while allowing much faster
tagging—more than 100,000 tokens per second
even in a Perl implementation.

1.1 Tag Dictionaries and Tagging Speed
A typical modern POS tagger applies a statistical
model to compute a score for a sequence of tags
t1, . . . , tn given a sequence of words w1, . . . , wn.
The tag sequence assigned the highest score by the
model for a given word sequence is selected as the
tagging for the word sequence. If T is the set of
possible tags, and there are no restrictions on the
form of the model, then the time to find the highest
scoring tag sequence is potentially O(n|T |n) or
worse, which would be intractable.

To make tagging practical, models are normally
defined to be factorable in a way that reduces the
time complexity to O(n|T |k), for some small in-
teger k. For models in which all tagging deci-
sions are independent, or for higher-order mod-

2Merialdo (1994, p. 161) acknowledged this: “In some
sense this is an optimal dictionary for this data, since a word
will not have all its possible tags (in the language), but only
the tags it actually had within the text.”
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els pruned by fixed-width beam search, k = 1, so
the time to find the highest scoring tag sequence is
O(n|T |). But this linear dependence on the size of
the tag set means that reducing the average number
of tags considered per token should further speed
up tagging, whatever the underlying model or tag-
ger may be.

1.2 Ratnaparkhi’s Method
For each word observed in an annotated training
set, Ratnaparkhi’s tag dictionary includes all tags
observed with that word in the training set, with all
possible tags allowed for all other words. Ratna-
parkhi reported that using this tag dictionary im-
proved per-tag accuracy from 96.31% to 96.43%
on his Penn Treebank (Marcus et al., 1993) Wall
Street Journal (WSJ) development set, compared
to considering all tags for all words.

With a more accurate model, however, we found
(Moore, 2014) that while Ratnaparkhi’s tag dictio-
nary decreased the average number of tags per to-
ken from 45 to 3.7 on the current standard WSJ de-
velopment set, it also decreased per-tag accuracy
from 97.31% to 97.19%. This loss of accuracy
can be explained by the fact that 0.5% of the de-
velopment set tokens are known words with a tag
not seen in the training set, for which our model
achieved 44.5% accuracy with all word/tag pairs
permitted. With Ratnaparkhi’s dictionary, accu-
racy for these tokens is necessarily 0%.

1.3 Our Previous Method
We previously presented (Moore, 2014) a tag dic-
tionary constructed by using the annotated train-
ing set to compute a smoothed probability estimate
for any possible tag given any possible word, and
for each word in the training set, including in the
dictionary the tags having an estimated probabil-
ity greater than a fixed threshold T . In this ap-
proach, the probability p(t|w) of tag t given word
w is computed by interpolating a discounted rel-
ative frequency estimate of p(t|w) with an esti-
mate of p(t) based on “diversity counts”, taking
the count of a tag t to be the number of distinct
words ever observed with that tag. The distribu-
tion p(t) is also used to estimate tag probabilities
for unknown words, so the set of possible tags for
any word not explicitly listed is {t|p(t) > T}.

If we think of w followed by t as a word bi-
gram, this is exactly like a bigram language model
estimated by the interpolated Kneser-Ney (KN)
method described by Chen and Goodman (1999).

The way tag diversity counts are used has the de-
sirable property that closed-class tags receive a
very low estimated probability of being assigned
to a rare or unknown word, even though they oc-
cur very often with a small number of frequent
words. A single value for discounting the count
of all observed word/tag pairs is set to maximize
the estimated probability of the reference tagging
of the development set. When T was chosen to
be the highest threshold that preserves our model’s
97.31% per tag WSJ development set accuracy, we
obtained an average of 3.5 tags per token.

1.4 Our New Approach

We now present a new method that reduces the av-
erage number of tags per token to about 1.5, with
no loss of tagging accuracy. We apply a simple
variant of Ratnaparkhi’s method, with a training
set more than 4,000 times larger than the Penn
Treebank WSJ training set. Since no such hand-
annotated corpus exists, we create the training set
automatically by running a version of our tagger
on the LDC English Gigaword corpus. We thus
describe our approach as a semi-supervised vari-
ant of Ratnaparkhi’s method. Our method can be
viewed as an instance of the well-known technique
of self-training (e.g., McClosky et al., 2006), but
ours is the first use of self-training we know of for
learning inference-time search-space pruning.

We introduce two additional modifications of
Ratnaparki’s approach. First, with such a large
training corpus, we find it unnecessary to keep in
the dictionary every tag observed with every word
in the automatically-annotated data. So, we esti-
mate a probability distribution over tags for each
word in the dictionary according to unsmoothed
relative tag frequencies, and include for each word
in the dictionary only tags whose probability given
the word is greater than a fixed threshold.

Second, since our tokenized version of the En-
glish Gigaword corpus contains more than 6 mil-
lion unique words, we reduce the vocabulary of the
dictionary to the approximately 1 million words
having 10 or more occurrences in the corpus. We
treat all other tokens as instances of unknown
words, and we use their combined unsmoothed
relative tag frequencies to estimate a tag probabil-
ity distribution for unknown words. We use the
same threshold on this distribution as we do for
words explicitly listed in the dictionary, to obtain
a set of possible tags for unknown words.
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2 Experimental Details

In our experiments, we use the WSJ corpus from
Penn Treebank-3, split into the standard training
(sections 0–18), development (sections 19–21),
and test (sections 22-24) sets for POS tagging.

The tagging model we use has the property that
all digits are treated as indistinguishable for all
features. We therefore also make all digits in-
distinguishable in constructing tag dictionaries (by
internally replacing all digits by “9”), since it does
not seem sensible to give two different dictionary
entries based on containing different digits, when
the tagging model assigns them the same features.

2.1 The Tagging Model

The model structure, feature set, and learning
method we use for POS tagging are essentially the
same as those in our earlier work, treating POS
tagging as a single-token independent multiclass
classification task. Word-class-sequence features
obtained by supervised clustering of the annotated
training set replace the hidden tag-sequence fea-
tures frequently used for POS tagging, and ad-
ditional word-class features obtained by unsuper-
vised clustering of a very large unannotated corpus
provide information about words not occurring in
the training set. For full details of the feature set,
see our previous paper (Moore, 2014).

The model is trained by optimizing the mul-
ticlass SVM hinge loss objective (Crammer and
Singer, 2001), using stochastic subgradient de-
scent as described by Zhang (2004), with early
stopping and averaging. The only difference from
our previous training procedure is that we now use
a tag dictionary to speed up training, while we pre-
viously used tag dictionaries only at test time.

Our training procedure makes multiple passes
through the training data considering each train-
ing example in turn, comparing the current model
score of the correct tag for the example to that of
the highest scoring incorrect tag and updating the
model if the score of the correct tag does not ex-
ceed the score of the highest scoring incorrect tag
by a specified margin. In our new version of this
procedure, we use the KN-smoothed tag dictio-
nary described in Section 1.3. to speed up finding
the highest scoring incorrect tag.

Recall that the KN-smoothed tag dictionary es-
timates a non-zero probability p(t|w) for every
possible word/tag pair, and that the possible tags
for a given word are determinted by setting a

threshold T on this probability. In each pass
through the training set, we use the same probabil-
ity distribution p(t|w) determined from the statis-
tics of the annotated training data, but we employ
an adaptive method to determine what threshold T
to use in each pass.

For the first pass through the training set, we
set an initial threshold T0 to the highest value
such that for every token in the development set,
p(t|w) ≥ T0, where t is the correct tag for the to-
ken and w is the word for the token. At the end
of each training pass i, while evaluating the cur-
rent model on the development set for early stop-
ping using threshold Ti−1, we also find the high-
est probability threshold Ti such that choosing a
lower threshold would not enable any additional
correct taggings on the development set using the
current model. This threshold will normally be
higher than T0, because we disregard tokens in the
development set for which the correct tag would
not be selected by the model resulting from the
previous pass at any threshold. Ti is then used as
the threshold for training pass i + 1. Whenever
the selected threshold leaves only one tag remain-
ing for a particular training example, we skip that
example in training.

On the first pass through the training set, use of
this method resulted in consideration of an aver-
age of 31.36 tags per token, compared to 45 to-
tal possible tags. On the second and all subse-
quent passes, an average of 10.48 tags were con-
sidered per token. This sped up training by a fac-
tor of 3.7 compared to considering all tags for all
tokens, with no loss of tagging accuracy when a
development-set-optimized KN-smoothed tag dic-
tionary is also used at test time.

2.2 Tagging the Gigaword Corpus

To construct our new tag dictionary, we need
an automatically-tagged corpus several orders of
magnitude larger than the hand-tagged WSJ train-
ing set. To obtain this corpus we ran a POS
tagger on the LDC English Gigaword Fifth Edi-
tion3 corpus, which consists of more than 4 bil-
lion words of English text from seven newswire
sources. We first removed all SGML mark-up, and
performed sentence-breaking and tokenization us-
ing the Stanford CoreNLP toolkit (Manning et al,
2014). This produced 4,471,025,373 tokens of

3https://catalog.ldc.upenn.edu/
LDC2011T07
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Tag Dictionary Accuracy Tags/Token Unambig Tokens/Sec
Pruned KN-smoothed 97.31% 3.48 45.3% 69k
Unpruned semi-supervised 97.31% 1.97 51.7% 82k
Pruned semi-supervised 97.31% 1.51 66.8% 103k

Table 1: WSJ development set token accuracy and tagging speed for different tag dictionaries

6,616,812 unique words. We tagged this corpus
using the model described in Section 2.1 and a
KN-smoothed tag dictionary as described in Sec-
tion 1.3, with a threshold T = 0.0005. The tagger
we used is based on the fastest of the methods de-
scribed in our previous work (Moore, 2014, Sec-
tion 3.1). Tagging took about 26 hours using a
single-threaded implementation in Perl on a Linux
workstation equipped with Intel Xeon X5550 2.67
GHz processors.

2.3 Extracting the Tag Dictionary

We extracted a Ratnaparkhi-like tag dictionary for
the 957,819 words with 10 or more occurrences
in our corpus. Tokens of all other words in the
corpus were treated as unknown word tokens and
used to define a set of 24 tags4 to be used for words
not explicitly listed in the dictionary. To allow
pruning the dictionary as described in Section 1.4,
for each word (including the unknown word), we
computed a probability distribution p(t|w) using
unsmoothed relative frequencies. As noted above,
we treated all digits as indistinguishable in con-
structing and applying the dictionary.

3 Experimental Results

Tagging the WSJ development set with an un-
pruned semi-supervised tag dictionary obtained
from the automatic tagging of the English Gi-
gaword corpus produced the same tagging accu-
racy as allowing all tags for all tokens or using
the pruned KN-smoothed tag dictionary used in
tagging the Gigaword corpus. Additional exper-
iments showed that we could prune this dictionary
with a threshold on p(t|w) as high as T = 0.0024
without decreasing development set accuracy. In
addition to applying this threshold to the tag prob-
abilities for all listed words, we also applied it to
the tag probabilities for unknown words, leaving
13 possible tags5 for those.

4CC, CD, DT, FW, IN, JJ, JJR, JJS, MD, NN, NNP,
NNPS, NNS, PRP, RB, RBR, RP, UH, VB, VBD, VBG,
VBN, VBP, and VBZ

5CD, FW, JJ, NN, NNP, NNPS, NNS, RB, VB, VBD,
VBG, VBN, and VBZ

Tagging the WSJ development set with these
two dictionaries is compared in Table 1 to tag-
ging with our previous pruned KN-smoothed dic-
tionary. The second column shows the accuracy
per tag, which is 97.31% for all three dictionaries.
The third column shows the mean number of tags
per token allowed by each dictionary. The fourth
column shows the percentage of tokens with only
one tag allowed, which is significant since the tag-
ger need not apply the model for such tokens—it
can simply output the single possible tag.

The last column shows the tagging speed in
tokens per second for each of the three tag dic-
tionaries, using the fast tagging method we pre-
viously described (Moore, 2014), in a single-
threaded implementation in Perl on a Linux work-
station equipped with Intel Xeon X5550 2.67 GHz
processors. Speed is rounded to the nearest 1,000
tokens per second, because we measured times to
a precision of only about one part in one hundred.
For the pruned KN-smoothed dictionary, we pre-
viously reported a speed of 49,000 tokens per sec-
ond under similar conditions. Our current faster
speed of 69,000 tokens per second is due to an
improved low-level implementation for computing
the model scores for permitted tags, and a slightly
faster version of Perl (v5.18.2).

The most restrictive tag dictionary, the pruned
semi-supervised dictionary, allows only 1.51 tags
per token, and our implementation runs at 103,000
tokens per second on the WSJ development set.
For our final experiments, we tested our tagger
with this dictionary on the standard Penn Treebank
WSJ test set and on the Penn Treebank-3 parsed
Brown corpus subset, as an out-of-domain eval-
uation. For comparison, we tested our previous
tagger and the fast version (english-left3words-
distsim) of the Stanford tagger (Toutanova et al.,
2003; Manning, 2011) recommended for prac-
tical use on the Stanford tagger website, which
we found to be by far the fastest of the six pub-
licly available taggers tested in our previous work
(Moore, 2014). The results of these tests are
shown in Table 2.6

6In Table 2, “OOV” has the standard meaning of a token
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WSJ All WSJ OOV WSJ Brown All Brown OOV Brown
Tagger Tokens/Sec Accuracy Accuracy Tokens/Sec Accuracy Accuracy
This work 102k 97.36% 91.09% 96k 96.55% 89.25%
Our previous 51k/54k/69k 97.34% 90.98% 40k/43k/56k 96.54% 89.36%
Stanford fast 80k 96.87% 89.69% 50k 95.53% 87.38%

Table 2: WSJ test set and Brown corpus tagging speeds and token accuracies

For our previous tagger, we give three speeds:
the speed we reported earlier, a speed for a dupli-
cate of the earlier experiment using the faster ver-
sion of Perl that we use here, and a third measure-
ment including both the faster version of Perl and
our improved low-level tagger implementation.

With the pruned semi-supervised dictionary, our
new tagger has slightly higher all-token accuracy
than our previous tagger on both the WSJ test set
and Brown corpus set, and it is much more accu-
rate than the fast Stanford tagger. The accuracy
on the standard WSJ test set is 97.36%, one of the
highest ever reported. The new tagger is also much
faster than either of the other taggers, achieving a
speed of more than 100,000 tokens per second on
the WSJ test set, and almost 100,000 tokens per
second on the out-of-domain Brown corpus data.

4 Conclusions

Our method of constructing a tag dictionary is
technically very simple, but remarkably effective.
It reduces the mean number of possible tags per
token by 57% and increases the number of un-
ambiguous tokens by by 47%, compared to the
previous state of the art (Moore, 2014) for a tag
dictionary that does not degrade tagging accuracy.
When combined with our previous work on fast
high-accuracy POS tagging, this tag dictionary
produces by far the fastest POS tagger reported
with anything close to comparable accuracy.
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