
Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pages 1132–1142,
Lisbon, Portugal, 17-21 September 2015. c©2015 Association for Computational Linguistics.

Automatically Solving Number Word Problems

by Semantic Parsing and Reasoning

Shuming Shi1, Yuehui Wang2*, Chin-Yew Lin1, Xiaojiang Liu1 and Yong Rui1
1 Microsoft Research

{shumings, cyl, xiaojl, yongrui}@microsoft.com

2 University of Science and Technology of China

wyh9346@mail.ustc.edu.cn

Abstract

This paper presents a semantic parsing

and reasoning approach to automatically

solving math word problems. A new

meaning representation language is de-

signed to bridge natural language text and

math expressions. A CFG parser is imple-

mented based on 9,600 semi-automati-

cally created grammar rules. We conduct

experiments on a test set of over 1,500

number word problems (i.e., verbally ex-

pressed number problems) and yield

95.4% precision and 60.2% recall.

1 Introduction

Computers, since their creation, have exceeded

human beings in (speed and accuracy of) mathe-

matical calculation. However, it is still a big chal-

lenge nowadays to design algorithms to automat-

ically solve even primary-school-level math word

problems (i.e., math problems described in natural

language).

Efforts to automatically solve math word prob-

lems date back to the 1960s (Bobrow, 1964a, b).

Previous work on this topic falls into two catego-

ries: symbolic approaches and statistical learning

methods. In symbolic approaches (Bobrow,

1964a, b; Charniak, 1968; Bakman, 2007; Liguda

& Pfeiffer, 2012), math problem sentences are

transformed to certain structures by pattern

matching or verb categorization. Equations are

then derived from the structures. Statistical learn-

ing methods are employed in two recent papers

(Kushman et al., 2014; Hosseini et al., 2014).

Most (if not all) previous symbolic approaches

suffer from two major shortcomings. First, natural

language (NL) sentences are processed by simply

applying pattern matching and/or transformation

rules in an ad-hoc manner (refer to the related

work section for more details). Second, surpris-

ingly, they seldom report evaluation results about

the effectiveness of the methods (except for some

examples for demonstration purposes). For the

small percentage of work with evaluation results

available, it is unclear whether the patterns and

rules are specially designed for specific sentences

in a test set.

Figure 1: Number word problem examples

In this paper, we present a computer system

called SigmaDolphin which automatically solves

math word problems by semantic parsing and rea-

soning. We design a meaning representation lan-

guage called DOL (abbreviation of dolphin lan-

guage) as the structured semantic representation

of NL text. A semantic parser is implemented to

transform math problem text into DOL trees. A

reasoning module is included to derive math ex-

pressions from DOL trees and to calculate final

answers. Our approach falls into the symbolic cat-

egory, but makes improvements over previous

symbolic methods in the following ways,

* Work done while this author was an intern at Microsoft
Research

1). One number is 16 more than another. If the
smaller number is subtracted from 2/3 of the larger,
the result is 1/4 of the sum of the two numbers. Find
the numbers.

2). Nine plus the sum of an even integer and its
square is 3 raised to the power of 4. What is the num-
ber?

3). The tens digit of a two-digit number is 3 more
than the units digit. If the number is 8 more than 6
times the sum of the digits, find the number.

4). If the first and third of three consecutive even in-
tegers are added, the result is 12 less than three times
the second integer. Find the integers.

1132

1) We introduce a systematic way of parsing

NL text, based on context-free grammar (CFG).

2) Evaluation is enhanced in terms of both data

set construction and evaluation mechanisms. We

split the problem set into a development set

(called dev set) and a test set. Only the dev set is

accessible during our algorithm design (especially

in designing CFG rules and in implementing the

parsing algorithm), which avoids over-tuning to-

wards the test set. Three metrics (precision, recall,

and F1) are employed to measure system perfor-

mance from multiple perspectives, in contrast to

all previous work (including the statistical ones)

which only measures accuracy.

We target, in experiments, a subtype of word

problems: number word problems (i.e., verbally

expressed number problems, as shown in Figure

1). We hope to extend our techniques to handle

general math word problems in the future.

We build a test set of over 1,500 problems and

make a quantitative comparison with state-of-the-

art statistical methods. Evaluation results show

that our approach significantly outperforms base-

line methods on our test set. Our system yields an

extremely high precision of 95.4% and a reasona-

ble recall of 60.2%, which shows promising appli-

cation of our system in precision-critical situa-

tions.

2 Related Work

2.1 Math word problem solving

Most previous work on automatic word problem

solving is symbolic. STUDENT (Bobrow, 1964a,

b) handles algebraic problems by first transform-

ing NL sentences into kernel sentences using a

small set of transformation patterns. The kernel

sentences are then transformed to math expres-

sions by recursive use of pattern matching.

CARPS (Charniak, 1968, 1969) uses a similar ap-

proach to solve English rate problems. The major

difference is the introduction of a tree structure as

the internal representation of the information

gathered for one object. Liguda & Pfeiffer (2012)

propose modeling math word problems with aug-

mented semantic networks. Addition/subtraction

problems are studied most in early research (Bri-

ars & Larkin, 1984; Fletcher, 1985; Dellarosa,

1986; Bakman, 2007; Ma et al., 2010). Please re-

fer to Mukherjee & Garain (2008) for a review of

symbolic approaches before 2008.

1 http://www.wolframalpha.com

No empirical evaluation results are reported in

most of the above work. Almost all of these ap-

proaches parse NL text by simply applying pattern

matching rules in an ad-hoc manner. For example,

as mentioned in Bobrow (1964b), due to the pat-

tern “($, AND $)”, the system would incorrectly

divide “Tom has 2 apples, 3 bananas, and 4

pears.” into two “sentences”: “Tom has 2 apples,

3 bananas.” and “4 pears.”

WolframAlpha1 shows some examples2 of au-

tomatically solving elementary math word prob-

lems, with technique details unknown to the gen-

eral public. Other examples on the web site

demonstrate a large coverage of short phrase que-

ries on math and other domains. By randomly se-

lecting problems from our dataset and manually

testing on their web site, we find that it fails to

handle most problems in our problem collection.

Statistical learning methods have been pro-

posed recently in two papers: Hosseini et al.

(2014) solve single step or multi-step homoge-

nous addition and subtraction problems by learn-

ing verb categories from the training data. Kush-

man et al. (2014) can solve a wide range of word

problems, given that the equation systems and so-

lutions are attached to problems in the training set.

The method of the latter paper (referred to as

KAZB henceforth) is used as one of our baselines.

2.2 Semantic parsing

There has been much work on analyzing the se-

mantic structure of NL strings. In semantic role

labeling and frame-semantic parsing (Gildea &

Jurafsky, 2002; Carreras & Marquez, 2004;

Marquez et al., 2008; Baker et al., 2007; Das et

al., 2014), predicate-argument structures are dis-

covered from text as their shallow semantic repre-

sentation. In math problem solving, we need a

deeper and richer semantic representation from

which to facilitate the deriving of math expres-

sions.

Another type of semantic parsing work (Zelle

& Mooney, 1996; Zettlemoyer & Collins, 2005;

Zettlemoyer & Collins, 2007; Wong & Mooney,

2007; Cai & Yates, 2013; Berant et al., 2013;

Kwiatkowski et al., 2013; Berant & Liang, 2014)

maps NL text into logical forms by supervised or

semi-supervised learning. Some of them are based

on or related to combinatory categorial grammar

(CCG) (Steedman, 2000). Abstract Meaning Rep-

resentation (AMR) (Banarescu et al., 2013) keeps

richer semantic information than CCG and logical

2 https://www.wolframalpha.com/examples/Elementary-

Math.html (bottom-right part)

1133

forms. In Section 3.1.4, we discuss the differences

between DOL, AMR, and CCG, and explain why

we choose DOL as the meaning representation

language for math problem solving.

3 Approach

Consider the first problem in Figure 1 (written be-

low for convenience),
One number is 16 more than another. If the smaller

number is subtracted from 2/3 of the larger, the result

is 1/4 of the sum of the two numbers. Find the numbers.

To automatically solve this problem, the com-

puter system needs to figure out, somehow, that 1)

two numbers x, y are demanded, and 2) they sat-

isfy the equations below,

 x = 16 + y

(2/3)x – y = (x + y) / 4

(1)

(2)

To achieve this, reasoning must be performed

based on common sense knowledge and the infor-

mation provided by the source problem. Given the

difficulty of performing reasoning directly on un-

structured and ambiguous natural language text, it

is reasonable to transform the source text into a

structured, less ambiguous representation.

Our approach contains three modules:

1) A meaning representation language called

DOL newly designed by us as the semantic

representation of natural language text.

2) A semantic parser which transforms natu-

ral language sentences of a math problem

into DOL representation.

3) A reasoning module to derive math expres-

sions from DOL representation.

Figure 2: DOL example

3.1 DOL: Meaning representation language

Every meaningful piece of NL text is represented

in DOL as a semantic tree of various node types.

Figure 2 shows the DOL representation of the sec-

ond problem of Figure 1. It contains two semantic

trees, corresponding to the two sentences.

3.1.1 Node types

Node types of a DOL tree include constants, clas-

ses, and functions. Each interim node of a tree is

always a function; and each leaf node can be a

constant, a class, or a zero-argument function.

Constants in DOL refer to specific objects in

the world. A constant can be a number (e.g., 3.57),

a lexical string (like “New York”), or an entity.

Classes: An entity class refers to a category of

entities sharing common semantic properties. For

example, all cities are represented by the class lo-

cation.city; and math.number is a class for all

numbers. It is clear that,

3.14159 ∈ math.number

city.new_york ∈ location.city

A class C1 is a sub-class (denoted by ⊆) of an-

other class C2 if and only if every instance of C1

are in C2. The following holds according to com-

mon sense knowledge,

math.number ⊆ math.expression

person.pianist ⊆ person.performer

Template classes are classes with one or more

parameters, just like template classes in C++. The

most important template class in DOL is

t.list<c,m,n>

where c is a class; m and n are integers. Each in-

stance of this class is a list containing at least m

and at most n elements of type c. For example,

each instance of t.list<math.number,2,+∞> is a

list containing at least 2 numbers.

Functions are used in DOL as the major way

to form larger language units from smaller ones.

A function is comprised of a name, a list of core

arguments, and a return type. DOL enables func-

tion overloading (again borrowing ideas from pro-

gramming languages). That is, one function name

can have multiple core-argument specifications.

Below are two specifications for fn.math.sum

(which appears in the example of Figure 2).

nf.math.sum!1:

$1: math.expression; $2: math.expression

return type: math.expression

return value: The sum of its arguments

nf.math.sum!2:

$1: t.list<math.expression,2,+∞>

return type: math.expression

return value: The sum of the elements in $1

English: Nine plus the sum of an even integer and

its square is 3 raised to the power of 4. What is the

number?

DOL trees:

vf.be.equ

nf.math.sum

nf.list-v1

math.integer

nf.math.power

4 3 9

1 mf.number.even

nf.math.2nd_power

nf.it-v1

nf.math.sum

vf.be.equ

nf.what nf.list-v1

math.number 1

1134

Here “$1: math.expression” means the first ar-

gument has type math.expression.

DOL supports three kinds of functions: noun

functions, verb functions, and modifier functions.

Noun functions map entities to their properties

or to other entities having specific relations with

the argument(s). For example, nf.math.sum maps

math expressions to their sum. Noun functions are

used to represent noun phrases in natural language

text. More noun functions are shown in Table 1.

Among all noun functions, nf.list has a special

important position due to its high frequency in

DOL trees. The function is specified below,

nf.list

$1: class; $2: math.number

return type: t.list<$1>

return value: An entity list with cardinality $2

and element type $1

For example nf.list(math.number,5) returns a

list containing 5 elements of type math.number. It

is the semantic representation of “five numbers”.

Pronoun functions are special zero-argument

noun functions. Examples are nf.it (representing

an already-mentioned entity or event) and nf.what

(denoting an unknown entity or entity list).

Verb functions act as sentences or sub-sen-

tences in DOL. As an example, vf.be.equ (in Fig-

ure 2) is a verb function that has two arguments of

the quantity type.

vf.be.equ

$1: quantity.generic; $2: quantity.generic

return type: t.vf

Meaning: Two quantities $1 and $2 have the

same value

In addition to core arguments ($1, $2, etc.),

many functions can take additional extended ar-

guments as their modifiers. Our last function type

called modifier functions often take the role of ex-

tended arguments, to modify noun functions, verb

functions, or other modifier functions. Modifier

functions are used in DOL as the semantic repre-

sentation of adjectives, adverb phrases (including

conjunctive adverb phrases), and prepositional

phrases in natural languages. In the example of

Figure 2, the function mf.number.even modifies

the noun function nf.list as its extended argument.

3.1.2 Entity variables

Variables are assigned to DOL sub-trees for indi-

cating the co-reference of sub-trees to entities and

for facilitating the construction of logical forms

and math expressions from DOL. In Figure 2, the

same variable v1 (meaning a variable with ID 1)

is assigned to two sub-trees in the first sentence

and one sub-tree in the second sentence. Thus the

three sub-trees refer to the same entity.

Function Remarks

nf.math.numerator
 $1: math.fraction
 ret: math.number

Get the numerator of fraction

$1

nf.math.gcd
 $1: t.list<math.integer,2,+∞>
 ret: math.integer

Get the greatest common di-

visor of the elements of $1

nf.e.height
 $1: e.concrete
 ret: quantity.length

Get the height of $1 which is

a concrete entity

vf.believe
 $1: e.agent; $2: t.vf.std
 ret: t.vf

Agent $1 believes that $2 is

true as a predicate

mf.number.even
 ret: t.mf.adj

Indicating the property of be-

ing an even number

Table 1: Example DOL functions

3.1.3 Key features of DOL

DOL has some nice characteristics that are critical

to building a high-precision math problem solving

system. That is why we invent DOL as our mean-

ing representation language instead of employing

an existing one.

First, DOL is a strongly typed language. Every

function has clearly defined argument types and a

return type. A valid DOL tree must satisfy the

type-compatibility property:

Type-compatibility: The type of each child of a

function node should match the corresponding ar-

gument type of the function.

For example, in Figure 2, the return type of

nf.math.power is math.expression, which matches

the second argument of vf.be.equ. However, the

following two trees (yielded from the correspond-

ing pieces of text) are invalid because they do not

satisfy type-compatibility.

sum of 100 [unreasonable text]

nf.math.sum!2(100) [invalid DOL tree]

sum of 3 and Jordan [unreasonable text]

nf.math.sum!2({3, “Jordan”}) [invalid tree]

Second, we maintain in DOL an open-domain

type system. The type system contains over 1000

manually verified classes and more automatically

generated ones (refer to Section 3.2.1 for more de-

tails). Such a comprehensive type system makes it

possible to define various kinds of functions and

to perform type-compatibility checking. In con-

trast, most previous semantic languages have at

most 100+ types at the grammar level. In addition,

by introducing template classes, we avoid main-

taining a lot of potentially duplicate types and re-

duce the type system management efforts. To the

best of our knowledge, template classes are not

1135

available in other semantic representation lan-

guages.

Third, DOL has built-in data structures like

t.list and nf.list which greatly facilitate both func-

tion declaration and text representation (espe-

cially math text representation). For example, the

two variants of nf.math.sum (refer to Section 3.1.1

for their specifications) are enough to represent

the following English phrases:

3 plus 5

 nf.math.sum!1(3, 5)

sum of 3, 5, 7, and 9

 nf.math.sum!2(nf.list(3, 5, 7, 9))

sum of ten thousand numbers

 nf.math.sum!2(nf.list(math.number,10000))

Without t.list or nf.list, we would have to define

a lot of overloaded functions for nf.math.sum to

deal with different numbers of addends.

3.1.4 Comparing with other languages

Among all meaning representation languages,

AMR (Banarescu et al., 2013) is most similar to

DOL. Their major differences are: First, they use

very different mechanisms to represent noun

phrases. In AMR, a sentence (e.g., “the boy de-

stroyed the room”) and a noun phrase (e.g., “the

boy’s destruction of the room”) can have the same

representation. While in DOL, a sentence is al-

ways represented by a verb function; and a noun

phrase is always a noun function or a constant.

Second, DOL has a larger type system and is

stricter in type compatibility checking. Third,

DOL has template classes and built-in data struc-

tures like t.list and nf.list to facilitate the represen-

tation of math concepts.

CCG (Steedman, 2000) provides a transparent

interface between syntax and semantics. In CCG,

semantic information is defined on words (e.g.,

“λx.odd(x)” for “odd” and “λx.number(x)” for

“number”). In contrast, DOL explicitly connects

NL text patterns to semantic elements. For exam-

ple, as shown in Table 2 (Section 3.2.1), one CFG

grammar rule connects pattern “{$1} raised to the

power of {$2}” to function nf.math.power.

Logical forms are another way of meaning rep-

resentation. We choose not to transform NL text

directly to logical forms for two reasons: On one

hand, state-of-the-art methods for mapping NL

text into logical forms typically target short, one-

sentence queries in restricted domains. However,

many math word problems are long and contain

multiple sentences. On the other hand, variable-id

assignment is a big issue in direct logical form

construction for many math problems. Let’s use

the following problem (i.e., the first problem of

Figure 1) to illustrate,

One number is 16 more than another. If the smaller

number is subtracted from 2/3 of the larger, the result

is 1/4 of the sum of the two numbers. Find the numbers.

For this problem, it is difficult to determine

whether “the smaller number” refers to “one num-

ber” or “another” in directly constructing logical

forms. It is therefore a challenge to construct a

correct logical form for such kinds of problems.

Our solution to the above challenge is assigning

a new variable ID (which is different from the IDs

of “one number” and “another”) and to delay the

final variable-ID assignment to the reasoning

stage. To enable this mechanism, the meaning

representation language should support a lazy var-

iable ID assignment and keep as much infor-

mation (e.g., determiners, plurals, modifiers) from

the noun phrases as possible. DOL is a language

that always keeps the structure information of

phrases, whether or not it has been assigned a var-

iable ID.

In summary, compared with other languages,

DOL has some unique features which make it

more suitable for our math problem solving sce-

nario.

3.2 Semantic Parsing

Our parsing algorithm is based on context-free

grammar (CFG) (Chomsky, 1956; Backus, 1959;

Jurafsky & Martin, 2000), a commonly used

mathematical system for modeling constituent

structure in natural languages.

3.2.1 CFG for connecting DOL and NL

The core part of a CFG is the set of grammar

rules. Example English grammar rules for build-

ing syntactic parsers include “S → NP VP”, “NP →

CD | DT NN | NP PP”, etc. Table 2 shows some

example CFG rules in our system for mapping

DOL nodes to natural language word sequences.

The left side of each rule is a DOL element (a

function, class, or constant); and the right side is a

sequence of words and arguments. The grammar

rules are consumed by our parser for building

DOL trees from NL text.

So far there are 9,600 grammar rules in our sys-

tem. For every DOL node type, the lexicon and

grammar rules are constructed together in a semi-

automatic way. Math-related classes, functions,

and constants and their grammar rules are manu-

ally built by referring to text books and online tu-

1136

torials. About 35 classes and 200 functions are ob-

tained in this way. Additional instances of each

element type are constructed in the ways below.

Classes: Additional classes and grammar rules

are obtained from two data sources: Freebase 3

types, and automatically extracted lexical seman-

tic data. By treating Freebase types as DOL clas-

ses and the mapping from types to lexical names

as grammar rules, we get the first version of gram-

mar for classes. To improve coverage, we run a

term peer similarity and hypernym extraction al-

gorithm (Hearst, 1992; Shi et al., 2010; Zhang et

al., 2011) on a web snapshot of 3 billion pages,

and get a peer-similarity graph and a collection of

is-a pairs. An is-a pair example is (Megan Fox,

actress), where “Megan Fox” and “actress” are in-

stance and type names respectively. In our peer

similarity graph, “Megan Fox” and “Britney

Spears” have a high similarity score. The peer

similarity graph is used to clean the is-a data col-

lection (with the idea that peer terms often share

some common type names). Given the cleaned is-

a data, we sort the type names by weight and man-

ually create classes for top-1000 type names. For

example, create a class person.actress and add a

grammar rule “person.actress → actress”. For the

other 2000 type names in the top 3000, we create

classes and rules automatically, in the form of

“class.TN → TN”, where TN is a type name. For

example, create rule “class.succulent → succu-

lent” for name “succulent”.

vf.be.equ($1,$2) → {$1} be equal to {$2}
 | {$1} equal {$2}
 | {$1} be {$2}
vf.give($1,$2,$3) → {$1} give {$2} to {$3}
 | {$1} give {$3} {$2}
nf.math.sum!1($1,$2) → {$1} plus {$2}
 | {$2} added to {$1}
nf.math.sum!2($1) → sum of {$1}
 | addition of {$1}
nf.math.power($1,$2)

→ {$1} raised to the {power|exponent} of {$2}
nf.list($1,$2) → {$2} {$1}
mf.number.even → even
mf.condition.if($1) → if {$1}
mf.approximately → approximately
 | roughly
education.university → university
math.number → number
math.integer → integer

Table 2: Example grammar for connecting DOL

and NL

3 Freebase: http://www.freebase.com/

Functions: Additional noun functions are auto-

matically created from Freebase properties and at-

tribute extraction results (Pasca et al., 2006;

Durme et al., 2008), using a similar procedure

with creating classes from Freebase types and is-

a extraction results. We have over 50 manually

defined math-related verb functions. Our future

plan is automatically generating verb functions

from databases like PropBank (Kingsbury &

Palmer, 2002), FrameNet (Fillmore et al., 2003),

and VerbNet4 (Schuler, 2005). Additional modi-

fier functions are automatically created from an

English adjective and adverb list, in the form of

“mf.adj.TN → TN” and “mf.adv.TN → TN”

where TN is the name of an adjective or adverb.

Figure 3: The DOL semantic parse tree for “Nine

plus an integer is equal to 314”

Figure 4: A syntactic parse tree

3.2.2 Parsing

Parsing for CFG is a well-studied topic with lots

of algorithms invented (Kasami, 1965; Earley,

1970). The core idea behind almost all the algo-

rithms is exploiting dynamic programming to

achieve efficient search through the space of pos-

sible parse trees. For syntactic parsing, a well-

known serious problem is ambiguity: the appear-

ance of many syntactically correct but semanti-

cally unreasonable parse trees. Modern syntactic

parsers reply on statistical information to reduce

4 VerbNet: http://verbs.colorado.edu/~mpalmer/pro-

jects/verbnet.html

vf.be.equ

314 nf.math.sum

9 list

1 math.integer

integer an is equal to 314 plus Nine

S

VP NP

Nine

CD

NP PP

NP

plus

IN

an

DT

integer

NN

ADJP

is

VB

equal

JJ PP

to

IN

314

CD

NP

1137

ambiguity. They are often based on probabilistic

CFGs (PCFGs) or probabilistic lexicalized CFGs

trained on hand-labeled TreeBanks.

With the new set of DOL-NL grammar rules

(examples in Table 2) and the type-compatibility

property (Section 3.1.3), ambiguity can hopefully

be greatly reduced, because semantically unrea-

sonable parsing often results in invalid DOL trees.

We implement a top-down parser for our new

CFG of Section 3.2.1, following the Earley algo-

rithm (Earley, 1970). No probabilistic information

is attached in the grammar rules because no Tree-

banks are available for learning statistical proba-

bilities for the new CFG. Figure 3 shows the parse

tree returned by our parser when processing a sim-

ple sentence. The DOL tree can be obtained by re-

moving the dotted lines (corresponding to the

non-argument part in the right side of the grammar

rules). A traditional syntactic parse tree is shown

in Figure 4 for reference.

During parsing, a score is calculated for each

DOL node. The score of a tree T is the weighted

average of the scores of its sub-trees,

𝑺(𝑻) =

∑ 𝑳(𝑻𝒊) ∙ 𝑺(𝑻𝒊)
𝒌
𝒊=𝟏

∑ 𝑳(𝑻𝒊)
𝒌
𝒊=𝟏

∙ 𝒑(𝑻) (3)

where 𝑇𝑖 is a sub-tree, and 𝐿(𝑇𝑖) is the number of

words to which the sub-tree corresponds in the

original text. If the type-compatibility property for

T is satisfied, 𝑝(𝑇)=1; otherwise 𝑝(𝑇)=0.

All leaf nodes are assigned a score of 1.0, ex-

cept for pure lexical string nodes (which are used

as named entity names). The score of a lexical

string node is set to 1/(1+𝜇n), where n is the num-

ber of words in the node, and 𝜇 (=0.2 in experi-

ments) is a parameter whose value does not have

much impact on parsing results. Such a score

function encourages interpreting a word sequence

with our grammar than treating it as an entity

name.

Among all candidate DOL trees yielded during

parsing, we return the one with the highest score

as the final parsing result. A null tree is returned

if the highest score is zero.

3.3 Reasoning

The reasoning module is responsible for deriving

math expressions from DOL trees and calculating

problem answers by solving equation systems.

Math expressions have different definitions in dif-

ferent contexts. In some definitions, equations and

inequations are excluded from math expressions.

In this paper, equations and inequations (like

“a=b” and “ax+b>0”) are called s-expressions be-

cause they represent mathematical sentences,

while other math expressions (like “x+5”) are

named n-expressions since they are essentially

noun phrases. Our definition of “math expres-

sions” therefore includes both n-expressions and

s-expressions.

Different types of nodes may generate different

types of math expressions. In most cases, s-ex-

pressions are derived from verb function nodes

and modifier function nodes, while n-expressions

are generated from constants and noun function

nodes. For example, the s-expression “9+x=314”

can be derived from the DOL tree of Figure 3, if

variable x represents the integer. In the same Fig-

ure, The n-expression “9+x” is derived from the

left sub-tree.

The pseudo-codes of our math expression deri-

vation algorithm are shown in Figure 5. The algo-

rithm generates the math expression for a DOL

tree T by first calling the expression derivation

procedure of sub-trees, and then applying the se-

mantic interpretation of T. All the s-expressions

derived so far are stored in an expression list

named XL.

Algorithm MathExpDerivation

 Input: DOL tree T

Output: Math expression X(T)

Global data structure: Expression list XL

1: For each child Ci of T

2: X(Ci) = MathExpDerivation(Ci)

3: If X(Ci) is an s-expression

4: Add X(Ci) to XL

5: X(T) ← Applying the semantic interpretation

of T

6: Return X(T)

Figure 5: Math expression derivation algorithm

vf.be.equ($1,$2) → X($1) = X($2) (1)

nf.math.sum!1($1,$2) → X($1) + X($2) (2)

nf.math.sum!2($1) → ∑ 𝐗(𝐞)𝐞∈$𝟏 (3)

nf.math.gcd($1) → gcd({X(e) | 𝐞 ∈ $𝟏}) (4)

nf.list($1,$2) → V = (v1, v2…, vn), n=X($2) (5)

mf.number.even → X($↑) % 2 = 0 (6)

Table 3: Example semantic interpretations

The semantic interpretation of DOL nodes

plays a critical role in the algorithm. Table 3

shows some example interpretations of some rep-

resentative DOL functions. In the table, $1, $2 etc.

are function arguments, and $↑ for a modifier

node denotes the node which the modifier modi-

fies. So far the semantic interpretations are built

manually. Please note that it is not necessary to

make semantic interpretations for every DOL

1138

node in solving number word problems. For ex-

ample, most class nodes and many adverb nodes

can have null interpretations at the moment.

4 Experiments

4.1 Experimental setup

Datasets: Our problem collection5 contains 1,878

math number word problems, collected from two

web sites: algebra.com6 (a web site for users to

post math problems and get help from tutors) and

answers.yahoo.com7. Problems on both sites are

organized into categories. For algebra.com, prob-

lems are randomly sampled from the number

word problems category; for answers.yahoo.com,

we first randomly sample an initial set of prob-

lems from the math category and then ask human

annotators to manually choose number word

problems from them. Math equations 8 and an-

swers to the problems are manually added by hu-

man annotators.

We randomly split the dataset into a dev set (for

algorithm design and debugging) and a test set.

More subsets are extracted to meet the require-

ments of the baseline methods (see below). Table

4 shows the statistics of the datasets.

Baseline methods: We compare our approach

with two baselines: KAZB (Kushman et al., 2014)

and BasicSim.

KAZB is a learning-based statistical method

which solves a problem by mapping it to one of

the equation templates determined by the anno-

tated equations in the training data. We run the

ALLEQ version of their algorithm since it per-

forms much better than the other two (i.e., 5EQ

and 5EQ+ANS). Their codes support only linear

equations and require that there are at least two

problems for each equation template (otherwise

an exception will be thrown). By choosing prob-

lems from the collection that meet these require-

ments, we build a sub-dataset called LinearT2. In

the dataset of KAZB, each equation template cor-

responds to at least 6 problems. So we form an-

other sub-dataset called LinearT6 by removing

from the test set the problems for which the asso-

ciated equation template appears less than 6 times.

BasicSim is a simple statistical method which

works by computing the similarities between a

testing problem and those in the training set, and

then applying the equations of the most similar

problem. This method has similar performance

5 Available from http://research.microsoft.com/en-us/pro-

jects/dolphin/
6 http://www.algebra.com

with KAZB on their dataset, but does not have the

two limitations mentioned above. Therefore we

adopt it as the second baseline.

For both baselines, experiments are conducted

using 5-fold cross-validation with the dev set al-

ways included in the training data. In other words,

we always use the dev set and 4/5 of the test set as

training data for each fold.

Evaluation metrics: Evaluation is performed in

the setting that a system can choose NOT to an-

swer all problems in the test set. In other words,

one has the flexibility of generating answers only

when she knows how to solve it or she is confident

about her answer. In this setting, the following

three metrics are adopted in reporting evaluation

results (assuming, in a test set of size n, a system

generates answers for m problems, where k of

them are correct):

Precision: k/m

Recall (or coverage): k/n

F1: 2PR/(P+R) = 2k/(m+n)

Dataset #problems #sentences
(average)

#words
(average)

All
dev 374 1.79 20.3
test 1,504 1.75 22.5

Linear
dev 247 1.78 19.6
test 986 1.72 19.0

LinearT2
dev 172 1.85 18.8
test 669 1.71 17.4

LinearT6
dev 71 1.96 16.8
test 348 1.80 16.1

Table 4: Dataset statistics (Linear: problems with

linear equations; T2: problems corresponding to

template size ≥ 2)

4.2 Experimental results

The Overall evaluation results are summarized in

Table 5, where “Dolphin” represents our ap-

proach. The results show that our approach signif-

icantly outperforms (with p<<0.01 according to

two-tailed t-test) the two baselines on every test

set, in terms of precision, recall, and F-measure.

Our approach achieves a particularly high preci-

sion of 95%. That means once an answer is pro-

vided by our approach, it has a very high proba-

bility of being correct.

Please note that our grammar rules and parsing

algorithm are NOT tuned for the evaluation data.

Only the dev set is referred to in system building.

7 https://answers.yahoo.com/
8 Math equations are used in the baseline approaches as part

of training data.

1139

Since the baselines generate results for all prob-

lems, the precision, recall, and F1 are all the same

for each dataset.

Dataset Method
Precision

(%)
Recall

(%)
F1
(%)

LinearT6
KAZB 49.1 49.1 49.1
BasicSim 59.7 59.7 59.7
Dolphin 98.1 72.9 83.6

LinearT2
KAZB 37.5 37.5 37.5
BasicSim 46.3 46.3 46.3
Dolphin 97.3 68.0 80.0

Linear
BasicSim 32.3 32.3 32.3
Dolphin 95.7 63.6 76.4

Test set
all

BasicSim 29.0 29.0 29.0
Dolphin 95.4 60.2 73.8

Table 5: Evaluation results

The reason for such a high precision is that, by

transforming NL text to DOL trees, the system

“understands” the problem (or has structured and

accurate information about quantity relations).

Therefore it is more likely to generate correct re-

sults than statistical methods who simply “guess”

according to features. By examining the problems

in the dev set that we cannot generate answers, we

find that most of them are due to empty parsing

results.

On the other hand, statistical approaches have

the advantage of generating answers without un-

derstanding the semantic meaning of problems (as

long as there are similar problems in the training

data). So they are able to handle (with probably

low precision) problems that are complex in terms

of language and logic.

Please pay attention that our experimental re-

sults reported here are on number word problems.

General math word problems are much harder to

our approach because the entity types, properties,

relations, and actions contained in general word

problems are much larger in quantity and more

complex in quality. We are working on extending

our approach to general math word problems.

Now our DOL language and CFG grammar al-

ready have a good coverage on common entity

types, but the coverage on properties, relations,

and actions is quite limited. As a result, our parser

fails to parse many sentences in general math

word problems because they contain properties,

relations or actions that are unknown to our sys-

tem. We also observe that sometimes we are able

to parse a problem successfully, but cannot derive

math expressions in the reasoning stage. This is

often because some relations or actions in the

problem are not modeled appropriately. As future

work, we plan to extend our DOL lexicon and

grammar to improve the coverage of properties,

relations, and actions. We also plan to study the

mechanism of modeling relations and actions.

5 Conclusion

We proposed a semantic parsing and reasoning

approach to automatically solve math number

word problems. We have designed a new meaning

representation language DOL to bridge NL text

and math expressions. A CFG parser is imple-

mented to parse NL text to DOL trees. A reason-

ing module is implemented to derive math expres-

sions from DOL trees, by applying the semantic

interpretation of DOL nodes. We achieve a high

precision and a reasonable recall on our test set of

over 1,500 problems. We hope to extend our tech-

niques to handling general math word problems

and to other domains (like physics and chemistry)

in the future.

Acknowledgments

We would like to thank the annotators for their ef-

forts in assigning math equations and answers to

the problems in our dataset. Thanks to the anony-

mous reviewers for their helpful comments and

suggestions.

Reference

J.W. Backus. 1959. The syntax and semantics of the

proposed international algebraic language of the

Zurich ACM-GAMM conference. Proceedings of

the International Conference on Information Pro-

cessing, 1959.

Y. Bakman. 2007. Robust understanding of word prob-

lems with extraneous information. http://arxiv.org/

abs/math/0701393. Accessed Feb. 2nd, 2015.

C. Baker, M. Ellsworth, and K. Erk. 2007. SemEval-

2007 Task 19: Frame semantic structure extraction.

In Proceedings of SemEval.

L. Banarescu, C. Bonial, S. Cai, M. Georgescu, K.

Griffitt, U. Hermjakob, K. Knight, P. Koehn, M.

Palmer, and N. Schneider. 2013. Abstract meaning

representation for sembanking. In Proc. of the Lin-

guistic Annotation Workshop and Interoperability

with Discourse.

J. Berant, A. Chou, R. Frostig, and P. Liang. 2013. Se-

mantic parsing on Freebase from question-answer

pairs. In Empirical Methods in Natural Language

Processing (EMNLP).

J. Berant and P. Liang. 2014. Semantic Parsing via Par-

aphrasing. In ACL'2014.

1140

D.G. Bobrow. 1964a. Natural language input for a

computer problem solving system. Report MAC-

TR-1, Project MAC, MIT, Cambridge, June

D.G. Bobrow. 1964b. Natural language input for a

computer problem solving system. Ph.D. Thesis,

Department of Mathematics, MIT, Cambridge

D.L. Briars, J.H. Larkin. 1984. An integrated model of

skill in solving elementary word problems. Cogni-

tion and Instruction, 1984, 1 (3) 245-296.

Q. Cai and A. Yates. 2013. Large-scale semantic pars-

ing via schema matching and lexicon extension. In

Association for Computational Linguistics (ACL).

X. Carreras. and L. Marquez. 2004. Introduction to the

CoNLL-2004 shared task: Semantic role labeling. In

Proceedings of CoNLL.

E. Charniak. 1968. CARPS: a program which solves

calculus word problems. Report MAC-TR-51, Pro-

ject MAC, MIT, Cambridge, July

E. Charniak. 1969. Computer solution of calculus word

problems. In Proceedings of international joint con-

ference on artificial intelligence. Washington, DC,

pp 303–316

N. Chomsky. 1956. Three models for the description of

language. Information Theory, IRE Transactions on,

2(3), 113-124.

S. Clark, and J. Curran. 2007. Wide-coverage efficient

statistical parsing with CCG and log-linear models.

Computational Linguistics, 33(4):493-552.

D. Das, D. Chen, A.F.T. Martins, N. Schneider and

N.A. Smith. 2014. Frame-Semantic Parsing. Com-

putational Linguistics 40:1, pages 9-56

D. Dellarosa. 1986. A computer simulation of chil-

dren’s arithmetic word problem solving. Behavior

Research Methods, Instruments, & Computers,

18:147–154

V. Durme, T. Qian, and L. Schubert. 2008. Class-

driven attribute extraction. In Proceedings of the

22nd International Conference on Computational

Linguistics-Volume 1, pp. 921-928. Association for

Computational Linguistics, 2008.

J. Earley. 1970. An efficient context-free parsing algo-

rithm. Communications of the ACM, 13(2), 94-102.

C.J. Fillmore, C.R. Johnson, and M.R. Petruck. 2003.

Background to FrameNet. International Journal of

Lexicography, 16(3).

C.R. Fletcher. 1985. Understanding and solving arith-

metic word problems: a computer simulation. Be-

havior Research Methods, Instruments, & Comput-

ers, 17:565–571

D. Gildea, and D. Jurafsky. 2002. Automatic labeling

of semantic roles. Computational Linguistics, 28(3).

M. Hearst. 1992. Automatic Acquisition of Hyponyms

from Large Text Corpora. In Fourteenth Interna-

tional Conference on Computational Linguistics,

Nantes, France.

M.J. Hosseini, H. Hajishirzi, O. Etzioni, and N. Kush-

man. 2014. Learning to Solve Arithmetic Word

Problems with Verb Categorization. In

EMNLP’2014.

D. Jurafsky, and J.H. Martin. 2000. Speech & language

processing. Pearson Education India.

T. Kasami. 1965. An efficient recognition and syntax-

analysis algorithm for context-free languages

(Technical report). AFCRL. 65-758.

P. Kingsbury, and M. Palmer. 2002. From TreeBank to

PropBank. In Proceedings of LREC.

N. Kushman, Y. Artzi, L. Zettlemoyer, and R. Barzi-

lay. 2014. Learning to automatically solve algebra

word problems. In Proc. of the Annual Meeting of

the Association for Computational Linguistics

(ACL).

T. Kwiatkowski, E. Choi, Y. Artzi, and L. Zettlemoyer.

2013. Scaling semantic parsers with on-the-fly on-

tology matching. In Empirical Methods in Natural

Language Processing (EMNLP).

I. Lev, B. MacCartney, C. Manning, and R. Levy.

2004. Solving logic puzzles: From robust pro-

cessing to precise semantics. In Proceedings of the

Workshop on Text Meaning and Interpretation. As-

sociation for Computational Linguistics.

C. Liguda, T. Pfeiffer. 2012. Modeling Math Word

Problems with Augmented Semantic Networks.

NLDB’2012, pp. 247-252.

Y. Ma, Y. Zhou, G. Cui, R. Yun, R. Huang. 2010.

Frame-based calculus of solving arithmetic multi-

step addition and subtraction word problems. In In-

ternational Workshop on Education Technology and

Computer Science, vol. 2, pp. 476–479.

L. Marquez, X. Carreras, K.C. Litkowski, and S. Ste-

venson. 2008. Semantic role labeling: an introduc-

tion to the special issue. Computational Linguistics,

34(2).

A. Mukherjee and U. Garain. 2008. A review of meth-

ods for automatic understanding of natural language

mathematical problems. Artificial Intelligence Re-

view, 29(2).

M. Pasca, D. Lin, J. Bigham, A. Lifchits, and A. Jain.

2006. Organizing and searching the world wide web

of facts-step one: the one-million fact extraction

challenge. In AAAI (Vol. 6, pp. 1400-1405).

K.K. Schuler. 2005. VerbNet: A broad-coverage, com-

prehensive verb lexicon. Dissertation. http://reposi-

tory.upenn.edu/dissertations/AAI3179808

1141

S. Shi, H. Zhang, X. Yuan, and J.-R. Wen. 2010. Cor-

pus-based semantic class mining: distributional vs.

pattern-based approaches. In Proceedings of the

23rd International Conference on Computational

Linguistics, pages 993–1001. Association for Com-

putational Linguistics.

M. Steedman. 2000. The Syntactic Process. The MIT

Press.

Y. W. Wong and R. J. Mooney. 2007. Learning syn-

chronous grammars for semantic parsing with

lambda calculus. In Association for Computational

Linguistics (ACL), pages 960–967.

M. Zelle and R.J. Mooney. 1996. Learning to parse da-

tabase queries using inductive logic proramming. In

Association for the Advancement of Artificial Intel-

ligence (AAAI), pages 1050–1055.

L.S. Zettlemoyer and M. Collins. 2005. Learning to

map sentences to logical form: Structured classifi-

cation with probabilistic categorial grammars. In

Uncertainty in Artificial Intelligence (UAI), pages

658–666.

L.S. Zettlemoyer and M. Collins. 2007. Online Learn-

ing of Relaxed CCG Grammars for Parsing to Log-

ical Form. In Proceedings of the Joint Conference

on Empirical Methods in Natural Language Pro-

cessing and Computational Natural Language

Learning (EMNLP-CoNLL).

F. Zhang, S. Shi, J. Liu, S. Sun, and C.-Y. Lin. 2011.

Nonlinear evidence fusion and propagation for hyp-

onymy relation mining. In ACL, volume 11, pages

1159–1168.

1142

