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Abstract

In syntax-based machine translation, rule
selection is the task of choosing the cor-
rect target side of a translation rule among
rules with the same source side. We de-
fine a discriminative rule selection model
for systems that have syntactic annota-
tion on the target language side (string-
to-tree). This is a new and clean way to
integrate soft source syntactic constraints
into string-to-tree systems as features of
the rule selection model. We release our
implementation as part of Moses.

1 Introduction

Syntax-based machine translation is well known
for its ability to handle non-local reordering.
Syntax-based models either use linguistic annota-
tion on the source language side (Huang, 2006;
Liu et al., 2006), target language side (Galley et
al., 2004; Galley et al., 2006) or are syntactic in
a structural sense only (Chiang, 2005). Recent
shared tasks have shown that systems integrat-
ing information on the target language side, also
called string-to-tree systems, achieve the best per-
formance on several language pairs (Bojar et al.,
2014). At the same time, soft syntactic features
significantly improve the translation quality of hi-
erarchical systems (Hiero) as shown in (Marton et
al., 2012; Chiang, 2010; Liu et al., 2011; Cui et
al., 2010). Improving the performance of string-
to-tree systems through the integration of soft syn-
tactic constraints on the source language side is
therefore an interesting task.

So far, all approaches on this topic include soft
syntactic constraints into the rules of string-to-tree
(Zhang et al., 2011; Huck et al., 2014) or string-
to-dependency (Huang et al., 2013) systems and
define heuristics to determine to what extent these
constituents match the syntactic structure of the

source sentence. We propose a novel way to in-
tegrate soft syntactic constraints into a string-to-
tree system. We define a discriminative rule se-
lection model for string-to-tree machine transla-
tion. We consider rule selection as a multi-class
classification problem where the task is to select
the correct target side of a rule given its source
side as well as contextual information about the
source sentence and the considered rule. So far,
such models have been applied to systems without
syntactic annotation on the target language side.
He et al. (2008), He et al. (2010) and Cui et al.
(2010) apply such rule selection models to hier-
archical machine translation, Liu et al. (2008) to
tree-to-string systems and Zhai et al. (2013) to
systems based on predicate argument structures.
When target side syntactic annotations are taken
into account, the task of rule selection has to be
reformulated (see Section 2) while the same type
of model can be used in approaches without target
annotations. This work is the first attempt to define
a rule selection model for a string-to-tree system.
We make our implementation publicly available as
part of Moses.!

We show in Section 2 that string-to-tree rule se-
lection is different from the hierarchical case ad-
dressed by previous work and define our rule se-
lection model. In Section 3 we present the train-
ing procedure before providing a proof-of-concept
evaluation in Section 4.

2 Rule selection for string-to-tree SM'T

2.1 String-to-tree machine translation

We present string-to-tree machine translation as
implemented in Moses (which is the framework
that we use). String-to-tree rules have the form
X/A — (a,7,~). On the source language side,

"We use the string-to-tree component of Moses (Williams
and Koehn, 2012; Hoang et al., 2009) in which we integrate
the high-speed classifier Vowpal Wabbit http://hunch.
net/~vw/.
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Ces cellules présentent plusieurs caractéristiques spécifiques

se\;rral specific characﬁeristics

These cells present JJ. ]J NS
D”{ NNS VBP

\/P
Ces robots ont des componements caractéristiques similaires

\ si llarmours
These robots hav J /[3 P/N NS
D’K ?NS A" P

\/

Figure 1: Word-aligned sentence pairs with target-
side parse.

Diverses caractéristiques importantes
Varjous important
" J

Figure 2: Partial translation during decoding.

all non-terminals have the unique label X while
on the target language side non-terminals are an-
notated with syntactic labels n, € N;. The left-
hand side X/A consists of source and target non-
terminals. In the right hand side (rhs), « is a string
of source terminal symbols and the non-terminal
X. The string ~ consists of target terminals and
non-terminals n; € N;. The alignment ~ is a one-
to-one correspondence between source and target
non-terminal symbols. String-to-tree rules are ex-
tracted from pairs of strings and trees as exempli-
fied in Figure 1. Rules 7; and 792 are example rules
extracted from this data.

(r1) X/NP — ( X; caractéristiques Xo, JJ1 JJ2 charac-
teristics )

(r2) X/NP — ( X caractéristiques X2, NN S; charac-
teristic J.J3 )

During decoding, CYK+ chart parsing (Chappe-
lier et al., 1998) with cube pruning and language
model scoring is performed on an input sentence
such as F' below. Each time a rule is applied to
the input sentence, candidate target trees are built.
Figure 2 shows the partial translations built after
the segments Diverses and importantes have been
decoded. Given these partial translations, rule r;
can be applied in a further decoding step.

F' (Diverses)x1 caractéristiques (importantes)xo n’ont
pas été prises en compte.
(Various)x, characteristics (important)x., were not
considered.

2.2 String-to-tree rule selection

Rule selection is the problem of selecting the rule
with the correct target side among rules with the
same source side. For hierarchical machine trans-
lation (Hiero), the rule selection problem consists
of choosing, among 73 and 74, the rule that cor-
rectly applies to F' (r3 in our example).

(r3) X/X — ( X; caractéristiques X2, X1 X characteris-
tics )

(r4) X/X — ( X, caractéristiques X2, X characteristic
X2)

Rule selection models disambiguate between these
rules using context information about the source
sentence and the shape of the rules.

In string-to-tree machine translation, the rule
selection problem is different. Because the decod-
ing process is guided by target side syntactic an-
notation, partial trees built during decoding must
be considered when new rules are applied. For
instance, when a rule is selected to translate sen-
tence F' given the partial translations in Figure 2,
then the non-terminals in the target side of this
rule must match the constituents selected so far.
Consequently, rules r; and ro (Section 2.1) are
not competing during rule selection.” Competing
rules for r; would be r5 and ¢ below.

(rs) X/NP — ( X, caractéristiques X2, JJ1 properties
JJ2)

(re) X/NP — ( Xi caractéristiques X2, JJ1 JJ2 fea-
tures )

For consistency with decoding, we redefine the
rule selection problem for the string-to-tree case.
In this setup, it is the task of disambiguating rules
with the same source side and aligned target non-
terminals. As a consequence, our rule selection
model (presented next) is not only normalized over
the source rhs of the rules but also takes target
non-terminals into account. The default rule scor-
ing procedure for string-to-tree rules implemented
in Moses uses the same normalization as we do.
However, Williams and Koehn (2012) propose to
normalize string-to-tree rules over the source rhs
only.

2This is because their target side non-terminals are differ-
ent.
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SENT

NP VN \NP
SN, L TS
Ces robots ont des (comportements)X1 caractéristiques A

(similaires)X2

Figure 3: French sentence with input parse tree.

2.3 Rule selection model

We denote string-to-tree rules with X/A —
(a,y,~), as in Section 2.1. By Nt;, we de-
note target non-terminals with their alignment to
source non-terminals.> C(f, ) is context infor-
mation in the source sentence f and the source
side @. R(«,y) represents features on string-to-
tree rules. The rule selection model estimates
P(y | C(f,a),R(c,7),a, Nt;) and is normal-
ized over the set G’ of candidate target sides ' for
a given « and Nty. The function GTO : « — G’
generates, given the source side « and target non-
terminals Nt; , the set G’ of all corresponding

target sides 4'. The estimated distribution can be
written as:

P(’Y ‘ C(f7 Oé),R(Oé,’y),O(,Ntt) =
eXp(Z,L- )‘lhl(c(fv a)vR(aa’y)aa7Ntt)))

Z"{/EGTO((X,Ntt) exp(Zi Azh’l(c(fv O(), R(av ’Y/)v «, Ntf))

In the same fashion as (Cui et al., 2010) do for
the hierarchical case, we define a global rule selec-
tion model instead of a model that is local to the
source side of each rule.

To illustrate the feature templates C'(f, ) and
R(a, ) of our rule selection model, we suppose
that rule r; has been extracted from the French
sentence in Figure 3. The syntactic features are:

- Does o match a constituent: no_match

- Type of matched constituent: None

- Lowest parent of unmatched constituent: NP
- Span width covered by a: 3

The rule internal features are:

- Source side a: X1 _caractéristiques_X2 (one feature)

- Target side y: JJ1_JJ2_characteristics

- Aligned terminals in « and 7 car-
actéristiques«—characteristics

- Aligned non-terminals in o and v: X1JJI X2—JJ2

- Best baseline translation probability: Most_Frequent

Our rule selection model is integrated in the
Moses string-to-tree system as an additional fea-
ture of the log-linear model.

3For rule r1,r5 and 7g, Nt, would be J.J; and J Js.

3 Model Training

We create training examples using the rule extrac-
tion procedure in (Williams and Koehn, 2012).4
We begin by generating a rule-table using this pro-
cedure. Then, each time a rule r X/A —
(ar, 7y, ~) can be extracted from the training data,
we generate a new training example. The target
side v of the extracted rule is a positive instance
and gets a loss of 0. To generate negative sam-
ples, we collect all rules 9, ..., r, that have the
same source language side as r as well as the same
aligned target non-terminals Nt,. Each of these
rules is a negative example and gets a cost of 1.
As an example, suppose that rule r; introduced in
Section 2.1 has been extracted from the training
example in Figure 1. The target side ”JJ; JJ2
characteristics” is a correct class and gets a cost of
0. The target side of all other rules having the same
source side and aligned target non-terminals, such
as rule r5 and rg, are incorrect classes.

For model training, we use the cost-sensitive
one-against-all-reduction (Beygelzimer et al,
2005) of Vowpal Wabbit (VW).> We avoid over-
fitting to training data by employing early stop-
ping once classifier accuracy decreases on a held-
out dataset.

4 Experiments

4.1 Experimental Setup

Our baseline system is a syntax-based system with
linguistic annotation on the target language side
(string-to-tree). We use the version implemented
in the Moses open source toolkit (Hoang et al.,
2009; Williams and Koehn, 2012) with standard
parameters. Rule extraction is performed as in
(Galley et al., 2004) with rule composition (Gal-
ley et al., 2006; DeNeefe et al., 2007). Non-lexical
unary rules are removed (Chung et al., 2011) and
scope-3 pruning (Hopkins and Langmead, 2010)
is performed. Rule scoring is done using relative
frequencies normalized over the source rhs and
aligned non-terminals in the target rhs. The con-
trastive system is the same string-to-tree system
but augmented with our rule selection model as a
feature of the log-linear model.

“Which is based on (Galley et al., 2004; Galley et al.,
2006; DeNeefe et al., 2007).

SSpecifically, the label dependent version of Cost Sensi-
tive One Against All which uses classification.

SWe use the development set which is also used for MIRA
tuning.
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‘ System ‘ science ‘ medical ‘ news ‘
3406 |  49.87 | 1835 |
3436 | 4957 | 18.59 |

‘ Baseline ‘

‘ Contrastive ‘

Table 2: String-to-tree system evaluation results.

We evaluate the baseline and our global model
on three domains: (1) news, (2) medical,
and (3) science. The training data for news
is taken from Europarl-v4. Development and
test sets are from the news translation task of
WMT 2009 (Callison-Burch et al., 2009). For
medical we use the biomedical data from
EMEA (Tiedemann, 2009). Since this is a parallel
corpus only, we first removed duplicate sentences
and then constructed development and test sets by
randomly selecting sentence pairs. As training
data for science we use the scientific abstracts
data provided by Carpuat et al. (2013). Table 1
gives an overview of the corpora sizes.

Berkeley parser (Petrov et al., 2006) is used to
parse the English side of each parallel corpus (for
string-to-tree rule extraction) as well as for pars-
ing the French source side (for feature extraction).
We trained a 5-gram language model on the En-
glish side of each training corpus using the SRI
Language Modeling Toolkit (Stolcke, 2002). We
train the model in the standard way and gener-
ate word alignments using GIZA++. After train-
ing, we reduced the number of translation rules
by only keeping the 30-best rules with the same
source side according to the direct rule transla-
tion rule probability. Our rule selection model was
trained with VW. All systems were tuned using
batch MIRA (Cherry and Foster, 2012). We mea-
sured the overall translation quality with 4-gram
BLEU (Papineni et al., 2002), which was com-
puted on tokenized and lowercased data for all sys-
tems. Statistical significance is computed with the
pairwise bootstrap resampling technique of Koehn
(2004).

4.2 Results

Table 2 displays the BLEU scores for our experi-
ments. On science and news, small improve-
ments are achieved while for medical a small
decrease is observed. None of these differences is
statistically significant.

An analysis of the system outputs for each do-
main showed that the small improvements are due
to the fact that in string-to-tree systems there is not

enough ambiguity between competing rules dur-
ing decoding. To support this conjecture, we first
analyzed rule diversity by looking at the negative
samples collected during training example acqui-
sition. In a second step, we compared the results
of the string-to-tree systems in Table 2 with a sys-
tem where the translation rules are much more am-
biguous. To this aim, we applied our approach to a
hierarchical system in the same line as (Cui et al.,
2010). Finally, we further tested the ability of our
system to disambiguate between competing rules
by training a model on the concatenation of all do-
mains.

4.3 Analysis of Rule Diversity

The amount of competing rules during decoding
can be estimated by looking at the negative sam-
ples collected for each training example. This
analysis showed that the diversity of rules contain-
ing non-terminal symbols is limited. We present
rules q; to g3 (taken from science) to illustrate
the poor diversity observed in our training exam-
ples.

(q1) X/PP — (a Xy X éventail X3, to DT JJ2 variety
PPs)

(¢2) X/PP — (a Xy X, éventail X3, to DTy JJ> range
PPy)

(¢g3) X/PP — (a X1 X, éventail X3, to DTy JJ» array
PPy)

Rules ¢; to g3 are the only rules with source side a
X1 Xs éventail X5. This number is very low given
that the source side contains three non-terminal
symbols out of which two are adjacent. More-
over, the difference between these rules is limited
to the lexical translation of éventail. This lack
of diversity is due to the constraint that compet-
ing string-to-tree rules must have the same aligned
non-terminal symbols, which is taken into account
when collecting negative samples. In other words,
the ambiguity between translation rules in a string-
to-tree system is heavily restricted by the target
side syntax.

The observed lack of diversity could be min-
imized by allowing rules with the same source
rhs to have different aligned target non-terminals.
In this perspective, rule scoring should be done
by normalizing over the source rhs only as
in Williams and Koehn (2012). The rule selection
model in Section 2.3 should then be redefined and
normalized over all rules with the same source rhs.
Another way to improve rule diversity would be
to remove target non-terminals and use preference
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news H

medical H science ‘

training data | 4th EuroParl corpus

(Tiedemann, 2009) (Carpuat et al., 2013)

training data size | 149,986 sentence pairs

111,081 sentence pairs

139,199 sentence pairs

] development size \ 1,025 sentences H

2,000 sentences H 2,907 sentences ‘

‘ test size ‘ 1,026 sentences H

1,999 sentences H 3,915 sentences ‘

Table 1: Overview of the sizes of the three domains.

System ‘ science ‘ medical ‘ news ‘
3122 | 4867 | 17.28 |
3227  49.66 | 17.38 |

‘ Baseline ‘

Contrastive ‘

Table 3: Hierarchical system evaluation results.
The results in bold are statistically significant im-
provements over the Baseline (at confidence p <
0.05).

grammars as in Huck et al. (2014).

4.4 Comparison with Hierarchical Rule
Selection

We applied our approach in a hierarchical phrase-
based setting (Hiero). To this end, we trained 3 Hi-
ero baseline systems and 3 Hiero systems aug-
mented with our rule selection model on the data
given in Section 4.1. The results of these ex-
periments are shown in Table 3. Our augmented
system largely outperforms the baselines. Inter-
estingly, hierarchical rule selection significantly
helps on the medical and scientific domain but
still yields results that are significantly lower than
those of the string-to-tree systems. This indicates
that systems with target side syntax better disam-
biguate than hierarchical models with improved
rule selection. Overall, we find the results of both
types of systems promising and we will consider
how to introduce more diversity into the rules of
string-to-tree systems.

4.5 Concatenation of Training Data

In order to further evaluate the ability of our model
to disambiguate string-to-tree rules, we trained a
system using the concatenated training data of all
3 domains as presented in Section 4.1. This global
model was then used to tune and decode using the
development and test data of each domain. The
results in Table 4 show that even on concatenated
data our rule selection model does not improve
over the baseline.

System ‘ science ‘ medical ‘ news ‘
3378 | 49481 19.12 |
3387  49.14 [ 19.00 |

‘ Baseline ‘

Contrastive ‘

Table 4: String-to-tree system evaluation results
with concatenated training data.

5 Conclusion and future work

We presented the first attempt to define a rule se-
lection model with syntactic features for string-to-
tree machine translation. We have shown that in
order to be applied to the string-to-tree case, the
rule selection problem must be redefined. An ex-
tensive evaluation on French-English translation
tasks for different domains has shown that rule se-
lection cannot significantly improve string-to-tree
systems. An analysis of rule diversity and an em-
pirical comparison with hierarchical rule selection
indicate that the low improvements are due to the
fact that the ambiguity between string-to-tree rules
is too small to be improved with a rule selection
model. In future work, we will use different tech-
niques to improve the diversity of the string-to-tree
rules considered during decoding in our system.
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