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Abstract

We present novel features designed with a
deep neural network for Machine Trans-
lation (MT) Quality Estimation (QE). The
features are learned with a Continuous
Space Language Model to estimate the
probabilities of the source and target seg-
ments. These new features, along with
standard MT system-independent features,
are benchmarked on a series of datasets
with various quality labels, including post-
editing effort, human translation edit rate,
post-editing time and METEOR. Results
show significant improvements in predic-
tion over the baseline, as well as over sys-
tems trained on state of the art feature sets
for all datasets. More notably, the addition
of the newly proposed features improves
over the best QE systems in WMT12 and
WMT14 by a significant margin.

1 Introduction

Quality Estimation (QE) is concerned with pre-
dicting the quality of Machine Translation (MT)
output without reference translations. QE is ad-
dressed with various features indicating fluency,
adequacy and complexity of the translation pair.
These features are used by a machine learning al-
gorithm along with quality labels given by humans
to learn models to predict the quality of unseen
translations.

A variety of features play a key role in QE.
A wide range of features from source segments
and their translated segments, extracted with the
help of external resources and tools, have been
proposed. These go from simple, language-
independent features, to advanced, linguistically
motivated features. They include features that
summarise how the MT systems generate transla-
tions, as well as features that are oblivious to the
systems. The majority of the features in the lit-
erature are extracted from each sentence pair in

isolation, ignoring the context of the text. QE
performance usually differs depending on the lan-
guage pair, the specific quality score being opti-
mised (e.g., post-editing time vs translation ad-
equacy) and the feature set. Features based on
n-gram language models, despite their simplicity,
are among those with the best performance in most
QE tasks (Shah et al., 2013b). However, they may
not generalise well due to the underlying discrete
nature of words in n-gram modelling.

Continuous Space Language Models (CSLM),
on the other hand, have shown their potential
to capture long distance dependencies among
words (Schwenk, 2012; Mikolov et al., 2013). The
assumption of these models is that semantically or
grammatically related words are mapped to simi-
lar geometric locations in a high-dimensional con-
tinuous space. The probability distribution is thus
much smoother and therefore the model has a bet-
ter generalisation power on unseen events. The
representations are learned in a continuous space
to estimate the probabilities using neural networks
with single (called shallow networks) or multi-
ple (called deep networks) hidden layers. Deep
neural networks have been shown to perform bet-
ter than shallow ones due to their capability to
learn higher-level, abstract representations of the
input (Arisoy et al., 2012). In this paper, we ex-
plore the potential of these models in context of
QE for MT. We obtain more robust features with
CSLM and improve the overall prediction power
for translation quality.

The paper is organised as follows: In Section
2 we briefly present the related work. Section 3
describes the CSLM model training and its vari-
ous settings. In Section 4 we propose the use of
CSLM features for QE. In Section 5 we present
our experiments along with their results.

2 Related Work

For a detailed overview of various features and
algorithms for QE, we refer the reader to the
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WMT12-14 shared tasks on QE (Callison-Burch
et al., 2012; Bojar et al., 2013; Ling et al., 2014).
Most of the research work lies on deciding which
aspects of quality are more relevant for a given
task and designing feature extractors for them.
While simple features such as counts of tokens
and language model scores can be easily extracted,
feature engineering for more advanced and useful
information can be quite labour-intensive.

Since their introduction in (Bengio et al.,
2003), neural network language models have
been successfully exploited in many speech and
language processing problems, including auto-
matic speech recognition (Schwenk and Gau-
vain, 2005; Schwenk, 2007) and machine trans-
lation (Schwenk, 2012).

Recently, (Banchs et al., 2015) used a Latent
Semantic Indexing approach to model sentences
as bag-of-words in a continuous space to measure
cross language adequacy. (Tan et al., 2015) pro-
posed to train models with deep regression for ma-
chine translation evaluation in a task to measure
semantic similarity between sentences. They re-
ported positive results on simple features; larger
feature sets did not improve these results.

In this paper, we propose to estimate the prob-
abilities of source and target segments with con-
tinuous space language models based on a deep
architecture and to use these estimated probabili-
ties as features along with standard feature sets in
a supervised learning framework. To the best of
our knowledge, such approach has not been stud-
ied before in the context of QE for MT. The result
shows significant improvements in many predic-
tion tasks, despite its simplicity. Monolingual data
for source and target language is the only resource
required to extract these features.

3 Continuous Space Language Models

A key factor for quality inference of a translated
text is to determine the fluency of such a text and
how well it conforms to the linguistic regularities
of the target language. It involves grammatical
correctness, idiomatic and stylistic word choices
that can be derived by using n-gram language
models. However, in high-order n-grams, the pa-
rameter space is sparse and conventional mod-
elling is inefficient. Neural networks model the
non-linear relationship between the input features
and target outputs. They often outperform con-
ventional techniques in difficult machine learning
tasks. Neural network language models (CSLM)
alleviate the curse of dimensionality by projecting

words into a continuous space, and modelling and
estimating probabilities in this space.

The architecture of a deep CSLM is illus-
trated in Figure 1. The inputs to a CSLM
model are the (K − 1) left-context words
(wi−K+1, . . . , wi−2, wi−1) to predict wi. A one-
hot vector encoding scheme is used to repre-
sent the input wi−k with an N -dimensional vec-
tor. The output of CSLM is a vector of pos-
terior probabilities for all words in vocabulary,
P (wi|wi−1, wi−2, . . . , wi−K+1). Due to the large
output layer (vocabulary size), the complexity of a
basic neural network language model is very high.
Schwenk (2007) proposed efficient training strate-
gies in order to reduce the computational complex-
ity and speed up the training time. They process
several examples at once and use a short-list vo-
cabulary V with only the most frequent words.

Figure 1: Deep CSLM architecture.

Following the settings mentioned in (Schwenk
et al., 2014), all CSLM experiments described
in this paper are performed using deep networks
with four hidden layers: first layer for the projec-
tion (320 units for each context word) and three
hidden layers of 1024 units with tanh activation.
At the output layer, we use a softmax activation
function applied to a short-list of the 32k most
frequent words. The probabilities of the out-of-
vocabulary words are obtained from a standard
back-off n-gram language model. The projection
of the words onto the continuous space and the
training of the neural network is done by the stan-
dard back-propagation algorithm and outputs are
the converged posterior probabilities. The model
parameters are optimised on a development set.

4 CSLM and Quality Estimation

In the context of MT, CSLMs are generally trained
on the target side of a given language pair to ex-
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press the probability that the generated sentence
is “correct” or “likely”, without looking at the
source sentence. However, QE is also concerned
with how well the source segments can be trans-
lated. Therefore, we trained two models, one for
each side of a given language pair. We extracted
the probabilities for QE training and test sets for
both source and its translation with their respec-
tive models and used them as features, along with
other features, in a supervised learning setting.

Finally, we also used CSLM in a spoken lan-
guage translation (SLT) task. In SLT, an auto-
matic speech recogniser (ASR) is used to decode
the source language text from audio. This creates
an extra source of variability, where different ASR
models and configurations give different outputs.
In this paper, we use QE to exploit different ASR
outputs (i.e. MT inputs) which in turn can lead to
different MT outputs.

5 Experiments

We focus on experiments with sentence level QE
tasks. Our English-Spanish experiments are based
on the WMT QE shared task data from 2012 to
2015.1 These tasks are diverse in nature, with dif-
ferent sizes and labels such as post-editing effort
(PEE), post-editing time (PET) and human trans-
lation error rate (HTER). The results reported in
Section 5.5 are directly comparable with the of-
ficial systems submitted for each of the respec-
tive tasks. We also performed experiments on the
IWSLT 2014 English-French SLT task 2 to study
the applicability of our models on n-best ASR
(MT inputs) comparison.

5.1 QE Datasets
In Table 1 we summarise the data and tasks for our
experiments. We refer readers to the WMT and
IWSLT websites for detailed descriptions of these
datasets. All datasets are publicly available.

WMT12: English-Spanish news sentence trans-
lations produced by a Moses “baseline” statisti-
cal MT (SMT) system, and judged for perceived
post-editing effort in 1–5 (highest-lowest), taking
a weighted average of three annotators (Callison-
Burch et al., 2012).

WMT13 (Task-1): English-Spanish sentence
translations of news texts produced by a Moses

1http://www.statmt.org/wmt[12,13,14,
15]/quality-estimation-task.html

2https://sites.google.com/site/
iwsltevaluation2014/slt-track

“baseline” SMT system. These were then post-
edited by a professional translator and labelled
using HTER. This is a superset of the WMT12
dataset, with 500 additional sentences for test, and
a different quality label (Bojar et al., 2013).

WMT14 (Task-1.1): English-Spanish news
sentence translations. The dataset contains source
sentences and their human translations, as well
as three versions of machine translations: by an
SMT system, a rule-based system system and a
hybrid system. Each translation was labelled by
professional translators with 1-3 (lowest-highest)
scores for perceived post-editing effort.

WMT14 (Task-1.3): English-Spanish news
sentence translations post-edited by a professional
translator, with the post-editing time collected on a
sentence-basis and used as label (in milliseconds).

WMT15 (Task-1): Large English-Spanish news
dataset containing source sentences, their machine
translations by an online SMT system, and the
post-editions of the translation by crowdsourced
translators, with HTER used as label.

IWSLT14: English-French dataset containing
source language data from the 10-best (sentences)
ASR system output. On the target side, the 1-
best MT translation is used. The ASR system
leads to different source segments, which in turn
lead to different translations. METEOR (Banerjee
and Lavie, 2005) is used to label these alternative
translations against a reference (human) transla-
tion. Both ASR and MT outputs come from a sys-
tem submission in IWSLT 2014 (Ng et al., 2014).
The ASR system is a multi-pass deep neural net-
work tandem system with feature and model adap-
tation and rescoring. The MT system is a phrase-
based SMT system produced using Moses.

Dataset Lang. Train Test Label
WMT12 en-es 1, 832 422 PEE 1-5
WMT13 en-es 2, 254 500 HTER 0-1
WMT14task1.1 en-es 3, 816 600 PEE 1-3
WMT14task1.3 en-es 650 208 PET (ms)
WMT15 en-es 11, 271 1, 817 HTER 0-1
IWSLT14 en-fr 8, 180 11, 240 MET. 0-1

Table 1: QE datasets: # sentences and labels.

5.2 CSLM Dataset

The dataset used for CSLM training consists of
Europarl, News-commentary and News-crawl cor-
pus. We used a data selection method (Moore
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and Lewis, 2010) to select the most relevant train-
ing data with respect to a development set. For
English-Spanish, the development data is the con-
catenation of newstest2012 and newstest2013 of
the WMT translation track. For English-French,
the development set is the concatenation of the
IWSLT dev2010 and eval2010. In Table 2 we
show statistics on the selected monolingual data
used to train back-off LM and CSLM.

Lang. Train Dev LM ppl CSLM ppl
en 4.3G 137.7k 164.63 116.58 (29.18%)
fr 464.7M 54K 99.34 64.88 (34.68%)
es 21.2M 149.4k 145.49 87.14 (40.10%)

Table 2: Training data size (number of tokens) and
language models perplexity (ppl). The values in
parentheses in last column shows percentage de-
crease in perplexity.

5.3 Feature Sets
We use the QuEst 3 toolkit (Specia et al., 2013;
Shah et al., 2013a) to extract two feature sets for
each dataset:
• BL: 17 features used as baseline in the WMT

shared tasks on QE.
• AF: 80 augmented MT system-independent

features4 (superset of BL). For the En-Fr SLT
task, we have additional 36 features (21 ASR
+ 15 MT-dependent features)

The resources used to extract these features (cor-
pora, etc.) are also available as part of the WMT
shared tasks on QE. The CSLM features for each
of the source and target segments are extracted us-
ing the procedure described in Section 3 with the
CSLM toolkit. 5

We trained QE models with following combina-
tion of features:
• BL + CSLMsrc,tgt: CSLM features for

source and target segments, plus the baseline
features.
• AF + CSLMsrc,tgt: CSLM features for

source and target segments, plus all available
features.

For the WMT12 task, we performed further exper-
iments to analyse the improvements with CSLM:
• CSLMsrc: Source side CSLM feature only.
• CSLMtgt: Target side CSLM feature only.
• CSLMsrc,tgt: Source and target CSLM fea-

tures by themselves.
3http://www.quest.dcs.shef.ac.uk/
480 features http://www.quest.dcs.shef.ac.

uk/quest_files/features_blackbox
5http://www-lium.univ-lemans.fr/cslm/

• FS(AF) + CSLMsrc,tgt: CSLM features in
addition to the best performing feature set
(FS(AF)) selected as described in (Shah et
al., 2013b; Shah et al., 2015).

5.4 Learning algorithms

We use the Support Vector Machines implementa-
tion of the scikit-learn toolkit to perform re-
gression (SVR) with either Radial Basis Function
(RBF) or linear kernel and parameters optimised
via grid search. To evaluate the prediction models
we use Mean Absolute Error (MAE), its squared
version – Root Mean Squared Error (RMSE), and
Pearson’s correlation (r) score.

Task System #feats MAE RMSE r

W
M

T
12

BL 17 0.6821 0.8117 0.5595
AF 80 0.6717 0.8103 0.5645
BL + CSLMsrc,tgt 19 0.6463 0.7977 0.5805
AF + CSLMsrc,tgt 82 0.6462 0.7946 0.5825

W
M

T
13

BL 17 0.1411 0.1812 0.4612
AF 80 0.1399 0.1789 0.4751
BL + CSLMsrc,tgt 19 0.1401 0.1791 0.4771
AF + CSLMsrc,tgt 82 0.1371 0.1750 0.4820

W
M

T
14

Ta
sk

1.
1 BL 17 0.5241 0.6591 0.2502

AF 80 0.4896 0.6349 0.3310
BL + CSLMsrc,tgt 19 0.4931 0.6351 0.3545
AF + CSLMsrc,tgt 82 0.4628∗ 0.6165∗ 0.3824∗

W
M

T
14

Ta
sk

1.
3 BL 17 0.1798 0.2865 0.5661

AF 80 0.1753 0.2815 0.5871
BL + CSLMsrc,tgt 19 0.1740 0.2758 0.6243
AF + CSLMsrc,tgt 82 0.1701∗∗ 0.2734 0.6201

W
M

T
15

BL 17 0.1562 0.2036 0.1382
AF 80 0.1541 0.1995 0.2205
BL + CSLMsrc,tgt 19 0.1501 0.1971 0.2611
AF + CSLMsrc,tgt 82 0.1471 0.1934 0.2862

IW
SL

T
14 BL 17 0.1390 0.1791 0.5012

AF 116 0.1361 0.1775 0.5211
BL + CSLMsrc,tgt 19 0.1358 0.1750 0.5321
AF + CSLMsrc,tgt 118 0.1337 0.1728 0.5445

Table 3: Results for datasets with various feature
sets. Figures with ∗ beat the official best systems,
and with ∗∗ are second best. Results with CSLM
features are significantly better than BL and AF on
all tasks (paired t-test with p ≤ 0.05).

Task System #feats MAE RMSE r

W
M

T
12

BL + CSLMsrc 18 0.6751 0.8125 0.5626
BL + CSLMtgt 18 0.6694 0.8023 0.5815
CSLMsrc,tgt 2 0.6882 0.8430 0.5314
FS(AF) 19 0.6131 0.7598 0.6296
FS(AF) + CSLMsrc,tgt 21 0.5950∗ 0.7442∗ 0.6482∗

Table 4: Impact of different combinations of
CSLM features on the WMT12 task. Figures with
∗ beat the official best system. Results with CSLM
features are significantly better than BL and AF on
all tasks (paired t-test with p ≤ 0.05).
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5.5 Results

Table 3 presents the results with different feature
sets for data from various shared tasks. It can be
noted that CSLM features always bring significant
improvements whenever added to either baseline
or augmented feature set. A reduction in both error
scores (MAE and RMSE) as well as an increase
in Pearson’s correlation with human labels can be
observed on all tasks. It is also worth noticing
that the CSLM features bring improvements over
all tasks with different labels, evidencing that dif-
ferent optimisation objectives and language pairs
can benefit from these features. However, the im-
provements are more visible when predicting post-
editing effort for WMT12 and WMT14’s Task 1.1.
For these two tasks, we are able to achieve state-
of-the-art performance by adding the two CSLM
features to all available or selected feature sets.

For WMT12, we performed another set of ex-
periments to study the effect of CSLM features
by themselves and in combination. The results
in Table 4 show that the target side CSLM fea-
ture bring larger improvements than its source side
counterpart. We believe that it is because the tar-
get side feature directly reflects the fluency of the
translation, whereas the source side feature (re-
garded as a translation complexity feature) only
has indirect effect on quality. Interestingly, the
two CSLM features alone give comparable re-
sults (slightly worse) than the BL feature set 6 de-
spite the fact that these 17 features cover many
complexity, adequacy and fluency quality aspects.
CSLM features bring further improvements on
pre-selected feature sets, as shown in Table 3. We
also performed feature selection over the full fea-
ture set along with CSLM features, following the
procedure in (Shah et al., 2013b). Interestingly,
both CSLM features were selected among the top
ranked features, confirming their relevance.

In order to investigate whether our CSLM fea-
tures results hold for other feature sets, we ex-
perimented with the feature sets provided by most
teams participating in the WMT12 QE shared task.
These feature sets are very diverse in terms of the
types of features, resources used, and their sizes.
Table 5 shows the official results from the shared
task (Off.) (Callison-Burch et al., 2012), those
from training an SVR on these features with and
without CSLM features. Note that the official
scores are often different from the results obtained
with our SVR models because of differences in

6We compare results in terms of MAE scores only.

the learning algorithms. As shown in Table 5,
we observed similar improvements with additional
CSLM features over all of these feature sets.

System #feats Off. SVR SVR
without CSLM with CSLM

SDL 15 0.61 0.6115 0.5993
UU 82 0.64 0.6513 0.6371

Loria 49 0.68 0.6978 0.6729
UEdin 56 0.68 0.6879 0.6724
TCD 43 0.68 0.6972 0.6715

WL-SH 147 0.69 0.6791 0.6678
UPC 57 0.84 0.8419 0.8310
DCU 308 0.75 0.6825 0.6812

PRHLT 497 0.70 0.6699 0.6649

Table 5: MAE score on official WMT12 feature
sets using SVR with and without CSLM features.

6 Conclusions

We proposed novel features for machine transla-
tion quality estimation obtained using a deep con-
tinuous space language models. The proposed fea-
tures led to significant improvements over stan-
dard feature sets for a variety of datasets, outper-
forming the state-of-art on two official WMT QE
tasks. These results showed that different opti-
misation objectives and language pairs can bene-
fit from the proposed features. The proposed fea-
tures have been shown to also perform well on QE
within a spoken language translation task.

Both source and target CSLM features improve
prediction quality, either when used separately
or in combination. They proved complementary
when used together with other feature sets and
produce comparable results to high performing
baseline features when used alone for prediction.
Finally, results comparing all official WMT12 QE
feature sets showed significant improvements in
the predictions when CSLM features were added
to those submitted by participating teams. These
findings provide evidence that the proposed fea-
tures bring valuable information into prediction
models, despite their simplicity and the fact that
they require only monolingual data as resource,
which is available in abundance for many lan-
guages.

As future work, it would be interesting to ex-
plore various distributed word representations for
quality estimation and joint models that look at
both the source and the target sentences simulta-
neously.
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Trevor Cohn. 2013. QuEst - A translation qual-
ity estimation framework. In 51st Annual Meeting
of the Association for Computational Linguistics:
Demo Session, pages 79–84, Sofia, Bulgaria.

Liling Tan, Carolina Scarton, Lucia Specia, and Josef
van Genabith. 2015. Usaar-sheffield: Semantic
textual similarity with deep regression and machine
translation evaluation metrics. In Proceedings of the
9th International Workshop on Semantic Evaluation,
pages 85–89, Denver, Colorado.

1078


