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Abstract

Continuous-space translation models have
recently emerged as extremely powerful
ways to boost the performance of existing
translation systems. A simple, yet effec-
tive way to integrate such models in infer-
ence is to use them in an N -best rescor-
ing step. In this paper, we focus on this
scenario and show that the performance
gains in rescoring can be greatly increased
when the neural network is trained jointly
with all the other model parameters, using
an appropriate objective function. Our ap-
proach is validated on two domains, where
it outperforms strong baselines.

1 Introduction

Over the past few years, research on neural net-
works (NN) architectures for Natural Language
Processing has been rejuvenated. Boosted by early
successes in language modelling for speech recog-
nition (Schwenk, 2007; Le et al., 2011), NNs have
since been successufully applied to many other
tasks (Socher et al., 2013; Huang et al., 2012;
Yang et al., 2013). In particular, these techniques
have been applied to Statistical Machine Trans-
lation (SMT), first to estimate continuous-space
translation models (CTMs) (Schwenk et al., 2007;
Le et al., 2012; Devlin et al., 2014), and more
recently to implement end-to-end translation sys-
tems (Cho et al., 2014; Sutskever et al., 2014).

In most SMT settings, CTMs are used as an ad-
ditional feature function in the log-linear model,
and are conventionally trained by maximizing the
regularized log-likelihood on some parallel train-
ing corpora. Since this objective function requires
to normalize scores, several alternative training
objectives have recently been proposed to speed
up training and inference, a popular and effec-
tive choice being the Noise Contrastive Estimation

(NCE) introduced in (Gutmann and Hyvärinen,
2010). In any case, NN training is typically per-
formed (a) in isolation from the other components
of the SMT system and (b) using a criterion that
is unrelated to the actual performance of the SMT
system (as measured for instance by BLEU). It is
therefore likely that the resulting NN parameters
are sub-optimal with respect to their intended use.

In this paper, we study an alternative training
regime aimed at addressing problems (a) and (b).
To this end, we propose a new objective func-
tion used to discriminatively train or adapt CTMs,
along with a training procedure that enables to take
the other components of the system into account.
Our starting point is a non-normalized extension
of the n-gram CTM of (Le et al., 2012) that we
briefly restate in section 2. We then introduce our
objective function and the associated optimization
procedure in section 3. As will be discussed, our
new training criterion is inspired both from max-
margin methods (Watanabe et al., 2007) and from
pair-wise ranking (PRO) (Hopkins and May, 2011;
Simianer et al., 2012). This proposal is evaluated
in an N -best rescoring step, using the framework
of n-gram-based systems, within which they in-
tegrate seamlessly. Note, however that it could
be used with any phrase-based system. Experi-
mental results for two translation tasks (section 4)
clearly demonstrate the benefits of using discrimi-
native training on top of an NCE-trained model, as
it almost doubles the performance improvements
of the rescoring step in all settings.

2 n-gram-based CTMs

The n-gram-based approach in Machine Trans-
lation is a variant of the phrase-based ap-
proach (Zens et al., 2002). Introduced in (Casacu-
berta and Vidal, 2004), and extended in (Mariño et
al., 2006; Crego and Mariño, 2006), this approach
is based on a specific factorization of the joint
probability of parallel sentence pairs, where the
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source sentence has been reordered beforehand.

2.1 n-gram-based Machine Translation
Let (s, t) denote a sentence pair made of a source
s and target t sides. This sentence pair is decom-
posed into a sequence of L bilingual units called
tuples defining a joint segmentation. In this frame-
work, tuples constitute the basic translation units:
like phrase pairs, they represent a matching be-
tween a source and a target chunk . The joint prob-
ability of a synchronized and segmented sentence
pair can be estimated using the n-gram assump-
tion. During training, the segmentation is obtained
as a by-product of source reordering, (see (Crego
and Mariño, 2006) for details). During the infer-
ence step, the SMT decoder will compute and out-
put the best derivation in a small set of pre-defined
reorderings.

Note that the n-gram translation model manipu-
lates bilingual tuples. The underlying set of events
is thus much larger than for word-based models,
while the training data (parallel corpora) are typ-
ically order of magnitude smaller than monolin-
gual resources. As a consequence, data sparsity
issues for such models are particularly severe. Ef-
fective workarounds consist in factorizing the con-
ditional probabitily of tuples into terms involv-
ing smaller units: the resulting model thus splits
bilingual phrases in two sequences of respectively
source and target words, synchronised by the tuple
segmentation. Such bilingual word-based n-gram
models were initially described in (Le et al., 2012).
We assume here a similar decomposition.

2.2 Neural Architectures
The estimation of n-gram probabilities can be per-
formed via multi-layer NN structures, as described
in (Bengio et al., 2003; Schwenk, 2007) for a
monolingual language model. The standard feed-
forward structure is used to estimate the trans-
lation models sketched in the previous section.
We give here a brief description, more details are
in (Le et al., 2012): first, each context word is pro-
jected into language dependent continuous spaces,
using two projection matrices for the source and
target languages. The continuous representations
are then concatenated to form the representation
of the context, which is used as input for a feed-
forward NN predicting a target word.

In such architecture, the size of output vocab-
ulary is a bottleneck when normalized distribu-
tions are expected. Various workarounds have

been proposed, relying for instance on a struc-
tured output layer using word-classes (Mnih and
Hinton, 2008; Le et al., 2011). A more effective
alternative, which however only delivers quasi-
normalized scores, is to train the network using
the Noise Contrastive Estimation or NCE (Gut-
mann and Hyvärinen, 2010; Mnih and Teh, 2012).
This technique is readily applicable for CTMs and
has been adopted here. We therefore assume that
the NN outputs a positive score bθ(w, c) for each
word w given its context c; this score is simply
computed as bθ(w, c) = exp(aθ(w, c)), where
aθ(w, c) is the activation at the output layer; θ de-
notes all the network free parameters.

3 Discriminative Training of CTMs

In SMT, the primary role of CTMs is to help
the system in ranking a set of hypotheses so that
the top scoring hypotheses correspond to the best
translations, where quality is measured using au-
tomatic metrics such as BLEU (Papineni et al.,
2002). Given the computational burden of con-
tinuous models, the prefered use of CTMs is to
rescore a list of N-best hypotheses, a scenario we
favor here; note that their integration in a first pass
search is also possible (Niehues and Waibel, 2012;
Vaswani et al., 2013; Devlin et al., 2014). The im-
portant point is to realize that the CTM score will
in any case be composed with several scores com-
puted by other components: reordering model(s),
monolingual language model(s), etc. In this sec-
tion, we propose a discriminative training frame-
work which implements a tight integration of the
CTM with the rest of the system.

3.1 A Discriminative Training Framework

The decoder generates a list of N hypotheses for
each source sentence s. Each hypothesis h is com-
posed of a target sentence t along with its associ-
ated derivation and is evaluated as follows:

Gλ,θ(s,h) =
M∑
k=1

λkfk(s,h) + λM+1fθ(s,h),

whereM conventional feature functions1 f1...fM ,
estimated during the training phase, are scaled by
coefficients λ1...λM . The introduction of a con-
tinuous model during the rescoring step is imple-
mented by adding the feature fθ(s,h), which ac-

1The functions used in our experiments are similar to the
ones used in other phrase-based systems (Crego et al., 2011).
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Algorithm 1 Joint optimization of θ and λ

1: Init. of θ and λ
2: for each iteration do
3: for P mini-batch do . λ is fixed
4: Compute the sub-gradient of L(θ) for

each sentence s in the mini-batch
5: Update θ
6: end for
7: Update λ on development set . θ is fixed
8: end for

cumulates, over all contexts c and word w, the
CTM log-score log bθ(w, c).
Gλ,θ depends both on the NN parameters θ

and on the log-linear coefficients λ. We pro-
pose to train these two sets of parameters, by al-
ternatively updating θ through SGD on the train-
ing corpus, and updating λ using conventional al-
gorithms on the development data. This proce-
dure, which has also been adopted in recent stud-
ies (e.g. (He and Deng, 2012; Gao and He, 2013))
is sketched in algorithm 1. In practice, the train-
ing data is successively divided into mini-batches
of 128 sentences. Each mini-batch is used to com-
pute the sub-gradient of the training criterion (see
section 3.2) and to update θ. After each training
iteration of the CTM, λs are retuned on the de-
velopment set; we use here the K-Best Mira algo-
rithm of Cherry and Foster (2012) as implemented
in MOSES.2

3.2 Loss function

The training criterion considered here draws in-
spiration both from max-margin methods (Watan-
abe et al., 2007) and from the pair-wise ranking
(PRO) (Hopkins and May, 2011; Simianer et al.,
2012). The choice of a ranking loss seems to be
the most appropriate in our setting; as in many
recent studies on discriminative training for MT
(e.g. (Chiang, 2012; Flanigan et al., 2013)), the
integration of the translation metric into the loss
function is critical to obtain parameters that will
yield good translation performance.

Translation hypotheses hi are scored using a
sentence-level approximation of BLEU denoted
SBLEU(hi). Let ri be the rank of hypothesis
hi when hypotheses are sorted according to their
sentence-level BLEU. Critical hypotheses are de-

2http://www.statmt.org/moses/

fined as follows:3

Cαδ (s) = {(i, k) : 1 ≤ k, i ≤ N, rk − ri ≥ δ,
∆i,kGλ,θ(s,h) < α∆i,kSBLEU(h).

A pair of hypotheses is thus deemed critical when
a large difference in SBLEU is not reflected
by the difference of scores, which falls below a
threshold. This threshold is defined by the differ-
ence between their sentence-level BLEU, multi-
plied by α. Our loss function L(θ) is defined with
respect to this critical set and can be written as:4∑
(i,k)∈Cαδ (s)

α∆i,kSBLEU(h)−∆i,kGλ,θ(s,hi)

Initialization is an important issue when opti-
mizing NN. Moreover, our training procedure de-
pends heavily on the log-linear coefficients λ. To
initialize θ, preliminary experiments (Do et al.,
2014; Do et al., 2015) show that it is more effi-
cient to start from a NN pre-trained using NCE,
while the discriminative loss is used only in a fine-
tuning phase. Given the pre-trained CTM’s scores,
we initialize λ by optimizing it on the develop-
ment set. This strategy forces the training of θ to
focus on errors made by the system as a whole.

4 Experiments

4.1 Tasks and Corpora
The discriminative optimization framework is
evaluated both in a training and in an adaptation
scenario. In the training scenario, the CTM is
trained on the same parallel data as the one used
for the baseline system. In the adaptation sce-
nario, large out-of-domain corpora are used to
train the baseline SMT system, while the CTM is
trained on a much smaller, in-domain corpus and
only serves for rescoring. An intermediate situa-
tion (partial training) is when only a fraction of
the training data is re-used to estimate the CTM:
this situation is interesting because it allows us to
train the CTM much faster than in the training sce-
nario.5

Two domains are investigated. For the
TED Talkstask6 the only parallel in-domain data
contains 180K sentence pairs; the out-of-domain

3∆i,k denotes the difference of values (for SBLEU or
Gλ,θ) between hypthoses hi and hk.

4This is for one single training sample.
5The discriminative training step also uses the develop-

ment data.
6http://workshop2014.iwslt.org/
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dev test train
Training scenario

Baseline Ncode on TED 28.1 32.3 65.6
Baseline + CTM NCE 28.9 33.1 64.1
Baseline + CTM discriminative 29.0 33.5 64.9

Adaptation scenario
Baseline Ncode on WMT 28.5 32.0 33.3
Baseline + CTM NCE 29.2 33.0 34.9
Baseline + CTM discriminative 29.8 33.9 35.8

Table 1: BLEU scores for the TED Talkstasks.

data is much larger and contains all corpora al-
lowed in the translation shared task of WMT’14
(English-French), amounting to 12M parallel sen-
tences. The second task is the medical transla-
tion task of WMT’147 (English to French) for
which we use all authorized corpora. The Patent-
Abstract corpus, made of 200K parallel sentence
pairs, is used either for adaptation or partial train-
ing for the CTM. Experimental results are re-
ported on official evaluation sets, as well as on the
CTM training set.

All translation systems are based on the open
source implementation8 of the bilingual n-gram
approach to MT. For the NN structure, each vo-
cabulary’s word is projected into a 500-dimension
space followed by two hidden layers of 1000 and
500 units. For the discriminative training and
adaptation tasks, baseline SMT systems are used
to generate respectively 600 and 300 best hypothe-
ses for each sentence of the in-domain corpus. 9

4.2 Experimental results
Results in Table 1 measure the impact of discrim-
inative training on top of an NCE-trained model
for the two TED Talks conditions. In the adapta-
tion task, the discriminative training of the CTM
gives a large improvement of 0.9 BLEU score
over the CTM only trained with NCE and 1.9 over
the baseline system. However, for the training sce-
nario, these gains are reduced respectively to 0.4
and 1.2 BLEU points. The BLEU scores (in the
train column) measured on the N -best lists used
to train the CTM provide an explanation for this
difference: in training, theN -best lists contain hy-
potheses with an overoptimistic BLEU score, to
be compared with the ones observed on unseen
data. As a result, adding the CTM significantly

7www.statmt.org/wmt14/medical-task/
8ncode.limsi.fr/
9The threshold δ is set to 250 for 300-best and to 500 for

600-best lists, while α is set empirically.

dev test train
Partial training scenario

Baseline Ncode 40.4 37.4 45.8
Baseline + CTM NCE 40.8 38.1 45.2
Baseline + CTM discriminative 41.8 38.8 46.0

“Adaptation” scenario
Baseline Ncode 39.8 37.2 39.4
Baseline + CTM NCE 41.2 38.2 40.4
Baseline + CTM discriminative 41.8 38.9 41.5

Table 2: BLEU scores for the medical tasks.

worsens the performance on the discriminative
training data, contrarily to what is observed on the
development and test sets. Even if the results of
these two conditions cannot be directly compared
(the baselines are different), it seems that the pro-
posed discriminative training has a greater impact
on performance in the adaptation scenario, even
though the out-of-domain system initially yields
lower BLEU scores.

The medical translation task represents a dif-
ferent situation, in which a large-scale system is
built from multiples but domain-related corpora,
among which, one is used to train the CTM. Nev-
ertheless, results reported in Table 2 exhibit a sim-
ilar trend. For both conditions, the discrimina-
tive training gives a significant improvement, up
to 0.7 BLEU score over the one only trained with
NCE and up to 1.7 over the baseline system. Ar-
guably, the difference between the two conditions
is much smaller than what was observed with the
TED Talks task, due to the fact that the Patent-
Abstract corpus used to discriminatively train the
CTM only corresponds to a small subset of the
parallel data. However, the best strategy seems,
here again, to exclude the data used for the CTM
from the data used to train the baseline system.

5 Related work

It is important to notice that similar discrimina-
tive methods have been used to train phrase table’s
scores (He and Deng, 2012; Gao and He, 2013;
Gao et al., 2014), or a recurrent NNLM (Auli
and Gao, 2014). In recent studies, the authors
tend to limit the number of iterations to 1 (Gao
et al., 2014; Auli and Gao, 2014), while we still
advocate the general iterative procedure sketched
in Algo. 1. Initialization is also an important is-
sue when optimizing NN. In this work, we ini-
tialize CTM’s parameters by using a pre-training
procedure based on the model’s probabilistic in-
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terpretation and NCE algorithm to produce quasi-
normalized scores, while similar work in (Auli and
Gao, 2014) only uses un-normalized scores. The
initial values of λ also needs some investigation.
Gao et al. (2014) and Auli and Gao (2014) ini-
tialize λM+1 to 1, and normalize all other coef-
ficients; here we initialize λ by optimizing it on
the development set using the pre-trained CTM’s
scores. This strategy forces the training of θ to
focus on errors made by the system as a whole.
The fundamental difference of this work hence
lays in the use of the ranking loss described in
Section 3.2, whereas previous works use expected
BLEU loss. We plan a systematic comparison be-
tween these two criteria, along with some other
discriminative losses in a future work.

About the CTM’s structure, our used model is
based on the feed-forward CTM described in (Le
et al., 2012) and extended in (Devlin et al., 2014).
This structure, though simple, have been shown
to achieve impressive results, and with which effi-
cient tricks are available to speed up both train-
ing and inference. While models in (Le et al.,
2012) employ a structured output layer to reduce
softmax operation’s cost, we prefer the NCE self-
normalized output which is very efficient both
in training and inference. Another form of self-
normalization is presented in (Devlin et al., 2014)
but does not seem to have fast training. Finally,
although N -best rescoring is used in this work to
facilitate the discriminative training, other CTM’s
integration into SMT systems exist, such as lat-
tice reranking (Auli et al., 2013) or direct decod-
ing with CTM (Niehues and Waibel, 2012; Devlin
et al., 2014; Auli and Gao, 2014).

6 Conclusions

In this paper, we have proposed a new discrimina-
tive training procedure for continuous-space trans-
lation models, which correlates better with trans-
lation quality than conventional training meth-
ods. This procedure has been validated using an
n-gram-based CTM, but the general idea could be
applied to other continuous models which com-
pute a score for each translation hypothesis. The
core of the method lays in the definition of a new
objective function inspired both from max-margin
and Pairwise Ranking approach in MT, which en-
ables us to effectively integrate the CTM into the
SMT system through N -best rescoring. A major
difference with most past efforts along these lines

is the joint training of the CTM and the log-linear
parameters. In all our experiments, discriminative
training, when applied on a CTM initially trained
with NCE, yields substantial performance gains.
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