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Abstract

We introduce pre-post-editing, possibly
the most basic form of interactive trans-
lation, as a touch-based interaction with
iteratively improved translation hypothe-
ses prior to classical post-editing. We re-
port simulated experiments that yield very
large improvements on classical evalua-
tion metrics (up to 21 BLEU) as well as
on a parameterized variant of the TER
metric that takes into account the cost of
matching/touching tokens, confirming the
promising prospects of the novel transla-
tion scenarios offered by our approach.

1 Introduction

As shown by oracle studies (Wisniewski et al.,
2010; Turchi et al., 2012; Marie and Max, 2013),
Statistical Machine Translation (SMT) systems
produce results that are of significantly lower qual-
ity than what could be produced from their avail-
able resources. As a pragmatic solution, human
intervention is commonly used for improving au-
tomatic draft translations, in so-called post-editing
(PE), but is also studied earlier in the translation
process in a variety of interactive strategies, in-
cluding e.g. completion assistance and local trans-
lation choices (e.g. (Foster et al., 2002; Koehn and
Haddow, 2009; Gonzélez-Rubio et al., 2013)). Al-
though interactive machine translation does facil-
itate the work of the SMT system in certain situa-
tions by allowing it to make efficient use of knowl-
edge contributed by the human translator, post-
editing has been shown to remain a faster alter-
native (Green et al., 2014). Nevertheless, this ac-
tivity usually requires complex intervention from
an expert translator (Carl et al., 2011).

In this work we reduce interaction with an SMT
system to its most basic form: similarly to what a
human translator is likely to do when first reading
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a draft translation to post-edit, we require a user
to simply spot those segments of a draft transla-
tion that can participate in an acceptable transla-
tion. The corresponding information is then used
by a SMT system in a soft way to improve the
draft translation. This process may be iteratively
repeated as long as enough improvements are ob-
tained, and terminates with classical post-editing
on the obtained translation, hence we dub it pre-
post-editing (PPE). We resort to simulated pre-
post-editing and post-editing, as in other works
(Carl et al., 2011; Denkowski et al., 2014), to
measure translation performance on some avail-
able reference translation using both classical met-
rics and a variant of the TER metric (Snover et
al., 2006), where, essentially, the cost of a token
matching operation is a parameterized fraction of
the cost of the other token edit operations. With
the implementation of appropriate strategies in the
SMT system, we show under reasonable assump-
tions that this approach has the potential to signifi-
cantly reduce the amount of human effort required
to obtain a final translation.

In the remainder of this article, we describe the
technical details of pre-post-editing (Section 2),
report experiments conducted on two translation
directions and two domains (Section 3), and fi-
nally discuss our proposal and introduce our future
work (Section 4).

2 Touch-based pre-post-editing

In our PPE framework, the human pre-post-editor
has to mark n-grams from a translation hypoth-
esis that can take part in a correct translation.!
The annotated n-grams are counted, as an n-gram
can appear more than once in the same sentence,
and a “positive” 6-gram language model (LM)

' A touch-based interface when a keyboard is not available
or typing is inconvenient lends itself particularly well to PPE.
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(positive-1m) is trained on these counts®. A
“negative” LM (negative-1m) is also trained
on the counted n-grams left unannotated. Then,
all bi-phrases from the SMT system’s phrase ta-
ble that match an annotated n-gram, according to
the source token alignments provided by the de-
coder, are removed from the main phrase table
and stored in a separate “positive” phrase table
(positive-pt). Conversely, n-grams contain-
ing at least one token left unannotated are consid-
ered as incorrect, and the set of bi-phrases match-
ing these n-grams are removed and stored in a
“negative” phrase table (negative-pt).

As source tokens can appear more than once in a
source text, they are located: an identifier is con-
catenated to each token to make it unique in the
source text. Tokens of the source phrases in the
phrase table are accordingly also located, so each
bi-phrase is duplicated as needed to cover all lo-
cated tokens. Using located tokens allows our PPE
framework to treat differently source tokens that
are correctly translated from incorrectly translated
ones in the same sentence or text. Figure 1 shows
an example of phrase table extraction, using lo-
cated source tokens>, for one iteration of PPE.

If an n-gram is annotated as correct, all its in-
ner n-grams of lower order are also deemed cor-
rect. Although annotating translations of high
quality may be less expensive by explicitely anno-
tating incorrect n-grams instead of correct ones,
such annotations would not permit to identify cor-
rect n-grams inside incorrect ones, as illustrated
in Figure 2. PPE can thus be worded as a simple
problem for the pre-post-editor: which sequences
of tokens should appear in the final translation?

The newly extracted phrase tables and LMs*,
along with the remainder of the original phrase
table and the original LM, are used to re-decode
the source text in a first iteration of PPE. A new
PPE annotation can then be performed on the new
translations. The newly extracted “positive” and
“negative” phrase tables are merged with the cor-
responding phrase table of the previous iteration.
The extracted n-gram counts from the current iter-
ation and the counts of the previous iterations are
summed, and the LMs are re-trained with the up-
dated counts. A new iteration of PPE is then per-

2We used SRILM (Stolcke, 2002) to train the LMs with
Witten-Bell smoothing.

3Subsequent examples do not use located tokens.

“The extracted LMs are sentence-level, and are only used
on their specific sentence during PPE.

source un@Q0 retour@1 au@2 calme@3 précaire@4 .@5

hypothesis a return to calm is precarious .
target ref. return to precarious calm .
positive-pt negative-pt
source target source target
retour@1 au@2 return to précaire @4 is precarious
précaire@4 precarious calme@3 précaire@4  calm is precarious
.@5 . précaire@4 .@5 is precarious .

positive-1lm

negative-1lm
n-gram count

n-gram count

return
return to
to
calm

a
areturn to
to precarious
to calm is precarious .

Figure 1: Examples of some of the bi-phrases and
n-grams extracted for phrase tables and language
models according to a reference translation.

source

PPE#0
PPE#1

son impopularité semble étre en grande partie due au chomage

his unpopularity seems to be ‘ ‘ owing ‘ ‘ largely ‘ ‘ to unemployment ‘

his unpopularity seems to be largely owing to unemployment ‘

target ref his unpopularity seems to be largely owing to unemployment

Figure 2: Annotation example for two correct to-
kens forming an incorrect n-gram. At the first PPE
iteration a reordering is performed and the new hy-
pothesis now matches the reference translation.

formed with the updated models. The weights for
all, old or new, models in the log-linear combina-
tion are found by tuning on a development set for
each PPE iteration.” Figure 3 illustrates 4 itera-
tions of PPE from an initial translation hypothesis
assuming a given target reference translation.

3 Experiments

3.1 Data and systems

We ran experiments on two translation tasks of
different domains: the WMT’ 14 Medical trans-
lation task (medical) and the WMT’ 11 news
translation task (news) for the language pair en-fr
on both translation directions. For both tasks we
trained two competitive phrase-based SMT sys-
tems using Moses (Koehn et al., 2007) and WMT
data® (see Table 1). The tuning for all systems,
including our iteration-specific PPE systems, was
performed with kb-mira (Cherry and Foster,
2012).

3.2 An adapted evaluation metric: TERppg

Classical MT evaluation metrics cannot take into
account the interactive cost of PPE, and thus do

3In this work, we did not exceed 5 iterations.
*http://www.statmt.org/wmt14
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source
a la survie économique de Taiwan

¢’ est la réponse a une nouvelle prise de conscience selon laquelle les entreprises chinoises sont indispensables

PPE#0
PPE#1

this [is | the answer [to a new awareness that Chinese | companies are [essential to | the [ economic | survival of Taiwan
it |i8| the response | to a new awareness that Chinese ‘ firms are | essential to | Taiwan’s economic survival . ‘

PPE#2 [itis| the reply [to a new awareness that Chinese | enterprises \ is [essential to Taiwan’s economic survival . |

PPE#3 |[itis| responding [to a new awareness that Chinese| businesses [is essential to Taiwan’s economic survival . |

PPE#4

’it is responding to a new awareness that Chinese H business | is essential to Taiwan’s economic survival . \

target ref it is responding to a new awareness that Chinese business is essential to Taiwan’s economic survival .

Figure 3: Example of a pre-post-edition trace for French to English translation (using the news task,
cf. Section 3) using a given implicit target reference translation for simulating pre-post-editing and post-
editing. Each newly touched phrase is indicated with a green background. Phrases with a gray back-
ground indicate previously touched phrases but their tokens remain individually touchable by the user.

Tasks Corpus Sentences Tokens (fr-en)
train 12M  383M - 318M

news dev 2,525 73k - 65k
test 3,003 85k - 74k

train 4.9M 91M - 78M

medical dev 500 12k - 10k
test 1,000 26k - 21k

specialized LM 146M - 78M

for both tasks LM 2.5B - 6B

Table 1: Data used in this work.

not allow us to make direct comparisons with PE.
We thus adapt the TER (Snover et al., 2006)
metric, which typically uses 4 types of token
edits: substitution (s), insertion (i),
deletion (d) and shift (f). While these edit
types all have a (debatable) uniform cost of 1, the
operation of matching (m) a correct token is ig-
nored. We posit that this operation is in fact per-
formed by a human translator during PE (at the
minimum, by recognizing and skipping tokens),
and that it can be directly compared to our touch-
based selection of tokens for PPE. However, we
cannot at this stage of our work provide a realistic
cost value for this operation, and so we introduce
a match cost parameter «, and use the following
as our PPE-aware metric:
_ H#s+FHd+H#Fi+H#f 4 aFEm

TERppg = T ar (D

where r is the number of tokens in the reference
translation. Note that a null value for o makes
TERppg correspond to TER, while a value of 1
would indicate that a token matching/touch (m)
is e.g. as costly as a token rewriting (s). We antic-
ipate that a realistic value for v given a reasonably
skilled user should be rather small, but we will
provide TERppg results for the full range [0, 1].

3.3 Experimental results

To validate our approach, we initially used a sim-
ulated post-editing paradigm (Carl et al., 2011;
Denkowski et al., 2014) in which non-post-edited
reference translations are used in lieu of human
post-editions. Results on TER (Snover et al.,
2006) and BLEU (Papineni et al., 2002), tuning
on both metrics, are provided in Tables 2 (news)
and 3 (medical).

First, we observe that whatever the metric and
the task, the first iteration of PPE always yields
a significant improvement over the Moses initial
system (e.g. up to +9.8 BLEU and -8.2 TER for
news fr—en). Unsurprisingly, tuning on a met-
ric yields better results for the same metric for
the first iteration; however, we note that this is
not always true for the TER metric at later itera-
tions (cf. news en—fr). More generally, tuning
on the TER metric results in lower improvements
for news, which are mostly concentrated on the
first iterations; as systems tuned on BLEU have
been found to produce better translations than sys-
tems tuned on TER (Cer et al., 2010), only BLEU
tuning was used for medical.’

Improvements follow an interesting pattern
over PPE iterations: for instance, on news
fr—en, BLEU scores steadily increase after each
new touch-based iteration and reach a gain
of +21.1 BLEU and -12.3 TER over the initial
Moses translation after 5 PPE iterations. Re-
sults are very comparable on both language pairs
and both domains, e.g. gains of +12.1 BLEU
and -9.7 TER are obtained on fr—en medical.
The lesser amplitude of the gains obtained after
5 iterations may be attributed to the higher ini-

"We have observed a tendency of the TER tuning to shrink
the size of hypotheses, resulting in higher brevity penalty val-
ues for BLEU and a higher number of insertions for TER.
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fr—en en—fr
Iteration tuned with TER  tuned with BLEU  tuned with TER  tuned with BLEU
TER BLEU TER BLEU TER BLEU TER BLEU
Moses 51.1 282 527 28.6 523 297 518 31.1
PPEiteration 1 429 354  46.7 38.4 44 350 473 39.6
PPEiteration2 40.8 373 437 434 430 363 446 439
PPE iteration3 40.8  37.8 422 46.2 425 364 435 46.6
PPEiteration4 39.9  37.9 409 483 23 365 423 482
PPEiteration5 39.9 379 404 49.7 422 366 410 495
Table 2: PPE results on the news task.
tial quality of the translations in the medical
task (e.g. 37.1 BLEU vs 28.6 BLEU in fr—en for . T
Moses with BLEU tuning). 5 e .
54 . "
g 52
fr—en en—fr 550
Iteration tuned with BLEU  tuned with BLEU == Moses Lbest
TER BLEU TER  BLEU “ e PPE iteration 1
»—x PPE iteration 2
Moses 422 371 440 388 * v PP eraon 3
PPEiteration 1 369 449 372 483 “ e FPE Iteration s
PPE iteration 2 34.8 475 353 51.1 ¥ 53 . . = s
PPE iteration 3  34.1 48.5 33.5 52.9
PPE iteration4  32.9 492 324 54.0 .
PPEiteration 5 32.5 492 321 548 (a) Tuned with TER

Table 3: PPE results on the medical task.

Figures 4 and 5 show how our TERppg metric
varies for different values of our o parameter (re-
call that o = 0 corresponds to TER). Essentially,
whatever the value of o, we observe that any it-
eration of PPE dominates PE (Moses 1-best),
but with a tendency to become as costly as PE for
high, but probably unrealistic values of «.. Tuning
with BLEU allows us to bring regular improve-
ments as the number of iteration increases, while
tuning with TER makes the amplitude of the gains
decrease faster.

Furthermore, results shown in Table 4 point
out the complementarity between negative
models (negative—-1m and negative-pt)
and positive models (positive-1m and
positive-pt), with a drop of almost 10 BLEU
points compared to the corresponding config-
uration using all models when removing one
type of models on both translation directions.
The language models (negative-1m and
positive-1m) seem to play a more impor-
tant role during PPE than the phrase tables
(negative-pt and positive-pt), with
a drop of 9.6 BLEU points on news fr—en
when removing the language models against a
significantly lower drop of 4.4 BLEU points when
removing the phrase tables.

55

TERppe
m
g

Moses 1-best
e—e PPE iteration 1
»—x PPE iteration 2
v—v PPE iteration 3
+—+ PPE iteration 4
& ¢ PPE iteration 5

0.0 0.2 04 0.6 0.8 1.0

(b) Tuned with BLEU

Figure 4: PPE results on the en—fr news task.

4 Discussion and future work

We have introduced pre-post-editing, a minimalist
interactive machine translation paradigm where a
user is only asked to spot text fragments that may
be used in the final translation. Our approach is
quite comparable to the two-pass procedure de-
scribed by Luong et al. (2014) using word-level
confidence estimation (e.g. (Bach et al., 2011)) to
update the cost of the search graph hypotheses.
However, contrarily to Luong et al.’s work, our
PPE framework is efficiently multi-pass, updates
the models over iterations and relies on more in-
formative annotations made at n-gram-level. Our
evaluation based on simulated post-editing has re-
vealed a large potential for translation improve-
ment. Interestingly, the type of interaction defined
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fr—en en—fr
Configuration tuned with BLEU  tuned with BLEU
TER BLEU TER BLEU

Moses 52.7 28.6 51.8 31.1

PPE w/ all models 40.4 49.7 41.0 49.5

PPE w/o negative-pt and negative-1m 45.2 39.4 47.1 39.0
PPE w/o positive-pt and positive-1m 46.7 39.8 48.3 39.8
PPE w/o negative-pt and positive-pt 45.0 453 46.5 449
PPE w/o negative-1lmand positive-1m 42.7 40.1 43.2 42.0

Table 4: PPE results for the news task after 5 iterations using various configurations.

=@ Moses 1-best

e—e PPE jteration 1
»—x PPE iteration 2
v—v PPE iteration 3
+—+ PPE iteration 4

40|

0.0 0.2 0.4 0.6 0.8 1.0

(a) Tuned with TER

60

=@ Moses 1-best
e—e PPE iteration 1
»—x PPE iteration 2
v—v PPE iteration 3
+—+ PPE iteration 4
©-¢ PPE iteration 5

45|

40
0.0 0.2 0.4 0.6 0.8 1.0

(b) Tuned with BLEU

Figure 5: PPE results on the fr—en news task.

is very different from that expected of a post-editor
or in existing interactive translation modes, and
lends itself nicely to touch-based interaction. Fur-
thermore, our proposal may in fact define a new
role in Computer-Assisted Translation, with PPE
being performed on-the-go on mobile devices by
more people than available human translators, and
even possibly by monolinguals of the target lan-
guage whose contribution may be more efficiently
exploited than that of monolinguals of the source
language (e.g. (Resnik et al., 2010)).

In terms of usability, our future work will fo-
cus on two important questions: (a) study the
actual use of PPE in an interactive setting and
tune the o parameter for our TERppg metric on
HTER (Snover et al., 2006) traces, and (b) study

whether PPE alters in any positive way the work
of the human translator performing the resid-
ual post-editing, hoping that PE could become
a less tedious task by nature. We further an-
ticipate that some additions would improve our
approach, including dealing early with out-of-
vocabulary phrases, proposing local drop-down
options (e.g. (Koehn and Haddow, 2009)), possi-
bly clustered by senses, allowing the user to eas-
ily fix reordering issues, and adapting PPE to be
discourse-aware (e.g. (Ture et al., 2012)).
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