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Abstract

In this paper we present the first ever,
to the best of our knowledge, dis-
course parser for multi-party chat dia-
logues. Discourse in multi-party dia-
logues dramatically differs from mono-
logues since threaded conversations are
commonplace rendering prediction of the
discourse structure compelling. Moreover,
the fact that our data come from chats ren-
ders the use of syntactic and lexical in-
formation useless since people take great
liberties in expressing themselves lexically
and syntactically. We use the dependency
parsing paradigm as has been done in
the past (Muller et al., 2012; Li et al.,
2014). We learn local probability distri-
butions and then use MST for decoding.
We achieve 0.680 F1 on unlabelled struc-
tures and 0.516 F1 on fully labeled struc-
tures which is better than many state of the
art systems for monologues, despite the in-
herent difficulties that multi-party chat di-
alogues have.

1 Introduction

Discourse parsing is a difficult, multifaceted prob-
lem involving the understanding and modeling
of various semantic and pragmatic phenomena as
well as understanding the structural properties that
a discourse graph can have. Unsurprisingly, most
extant theories and computational approaches pos-
tulate an extremely simplified version of discourse
structure. One of the most widely cited theories,
Rhetorical Structure Theory (RST) (Mann and
Thompson, 1987; Mann and Thompson, 1988;
Taboada and Mann, 2006), requires that only adja-
cent discourse units be connected together with a
discourse relation. Another widely cited approach,
the Penn Discourse Treebank (PDTB) (Prasad et

al., 2008), focuses on decisions about the dis-
course connectives that label the attachment of po-
tentially arbitrary text spans but does not make
any claims as to what the overall discourse struc-
ture of the resulting annotation looks like. Further,
all computational work on the PDTB takes the at-
tachments as given in discourse parsing tasks. In
both cases, the attachment problem, finding which
discourse units are attached to which, is vastly
simplified, though this has enabled researchers to
explore various approaches for discourse parsing
(Marcu, 2000; Sagae, 2009; Hernault et al., 2010;
Joty et al., 2012).

Our paper’s main contribution is to provide a
discourse parsing model for multi-party chat di-
alogue (i.e. typed online dialogue), trained on a
large corpus we have developed annotated with
full discourse structures. We study attachment
problem in detail for this genre, without using the
simplifying hypotheses mentioned above that we
know to be inadequate. In the following section,
we describe the Settlers of Catan game and our
corpus in more detail and discuss some problem-
atic structures for discourse parsing from our cor-
pus. We motivate our choice of a particular dis-
course theory, the Segmented Discourse Repre-
sentation Theory (SDRT), as the underlying the-
oretical model for our annotations. In section 4
we present our parsing approach, which consists
of building a local probability distribution model
which serves as input to a series of decoder mech-
anisms. We present and discuss the results we
obtain in section 5, while related work and con-
clusions are presented in sections 6 and 7 respec-
tively.

2 What’s so special about multi party
dialogue?

Multi-party dialogue or multi-party chat involves
multiple interlocutors that may address one or
more interlocutors during their turn. For example,
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a person might pose a question that concerns all
the participants; and once everybody has replied,
that same person might reply to all of them with a
single comment (e.g. thanking them) or with a sin-
gle acknowledgment. Figure 1 provides an exam-
ple from our corpus. In turn 234, gotwood4sheep
asks a question and makes an underspecified of-
fer to all the players. He then gets back nega-
tive responses to his question from inca, Cheshire-
CatGrin and dmm; and then he broadcasts in 239
an acknowledgment of all the negative responses.
That is, we have 235, 236 & 238 all attached to
234 as answers to the question in 234; and we have
239 that is attached to 235, 236 & 238 as an ac-
knowledgment of the contents of those turns. A
graphical representation is shown on the right of
the same picture.

The presence of such structures makes a pow-
erful case that the general framework guiding the
annotation of multi-party dialogues should take
non-tree-like graphs as the basic form of discourse
structures. This will require then rethinking the
task of discourse parsing when attempting to learn
such structures. In particular, the following ques-
tions present themselves: 1) how many non-tree-
like structures are there? 2) what are the con-
straints on discourse graphs, if they are not trees?
3) how far can traditional tree-based decoding
mechanisms get us in dealing with such data?

Another complicated phenomenon in multi-
party chat dialogues is the presence of crossing de-
pendencies. Many theories of discourse structure
like RST, given that they allow attachment only of
adjacent spans will perforce not allow structures
with crossing dependencies. Also theories that
postulate a simple right frontier constraint, ac-
cording to which only elements on the right fron-
tier of a discourse structure (whether graph or tree)
will in general not generate structures with cross-
ing dependencies. However, crossing dependen-
cies are commonplace in multi-party chat. Several
subgroups of interlocutors can and do momentar-
ily form and carry on a discussion amongst them-
selves, forming thus multiple concurrent discus-
sion threads. Since, though, what is being written
is publicly available to all involved parties, it can
be the case that participants of one thread might
reply or comment to something said to another
thread. Figure 2 contains an example from our
corpus.

There are at least three threads in this excerpt,

and we have given them different fonts to aid
the reader. The intuitive attachments in this ex-
cerpt involve the following crossing dependen-
cies: (165, 168), (167,170), (176, 178), (177,
179), (175, 181), (177,182), and (180,183). We
note also the lack of standard discourse markers
such as those found in the PDTB or RST manu-
als, “personalized” orthography, the lack of elabo-
rate syntactic structure and the frequent presence
of sentence fragments, all of which means we
cannot rely on sentential syntax to aid with dis-
course parsing (syntax is very useful in monologue
discourse parsing, as witnessed by the dramati-
cally higher scores for intra-sentential discourse
parsing (Joty et al., 2015)). Multi-party dialogue
presents a discourse parsing problem free of syn-
tactic crutches.

The phenomena we have just described are just
some of the complications that appear in the dis-
course representation of multi-party dialogues, un-
fortunately rendering discourse theories based on
attaching only adjacent units unsuitable for the
representation of multi-party dialogues. In order
to be able to capture the discourse phenomena
present in our chat corpus, we have decided to
use the Segmented Discourse Representation The-
ory (SDRT) (Asher and Lascarides, 2003). This
theory not only allows long distance attachments,
which (Ginzburg, 2012) finds attested in multi-
logue, but also has semantics capable of deal-
ing with fragments or non sentential utterances
(Schlangen, 2003), which are frequent in our cor-
pus. Also, it can model non-tree like structures,
like that shown in Figure 1, which account for at
least 9% of the links in our corpus. Such struc-
tures make theories that model discourse struc-
tures with rooted trees, like Rhetorical Structure
Theory (RST) (Mann and Thompson, 1987) or
simple dialogue models where attachments are al-
ways made to Last—cf. (Schegloff, 2007; Poesio
and Traum, 1997)—unsuitable.

A final feature of discourse annotations that
multi-party dialogue and monologue share is the
presence of complex discourse units or CDUs.
CDUs are in fact subgraphs of the discourse graph
that have a rhetorical function or bear some dis-
course relation to another constituent. Examples
are easy to come by. Consider the following ex-
ample:

(1) gw: Do you have a sheep?
th: I do, if you give me an ore
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234 18:55:02:745 gotwood4sheep anyone got wheat for a sheep?
235 18:55:10:047 inca sorry, not me
236 18:55:18:787 CheshireCatGrin nope. you seem to have lots of sheep!
237 18:55:23:428 gotwood4sheep yup baaa
238 18:55:32:308 dmm i think i’d rather hang on to my wheat i’m afraid
239 18:55:47:845 gotwood4sheep kk I’ll take my chances then...

234

235 236 238

239

QAP QAP QAP

ACK ACK ACK

Figure 1: Dialogue excerpt showing the need for general graphs instead of trees.

165 lj anyone want sheep for clay?
166 gw got none, sorry :(
167 gw so how do people know about the league?
168 wm no
170 lj i did the trials
174 tk i know about it from my gf
175 gw [yeah me too,]a

[are you an Informatics student then, lj?]b
176 tk did not do the trials
177 wm has anyone got wood for me?
178 gw [I did them]a [because a friend did]b
179 gw lol william, you cad
180 gw afraid not :(
181 lj no, I’m about to start math
182 tk sry no
183 gw my single wood is precious
184 wm what’s a cad?

Figure 2: Example of interleaved threads

th: or a wood.

Clearly, th’s two turns combine to form a CDU that
is then related by a conditional discourse relation
to I do. That is you give me an ore and or a wood
form together the antecedent to the conditional
that he expresses. In order to reflect this semantic
dependency, SDRT creates collections of Elemen-
tary Discourse Units (EDUs) forming a coherent
discourse unit (called Complex Discourse Unit,
CDU) and link it to any other discourse unit. The
end result of this process is the creation of a hyper-
graph or, equivalently, a graph with two types of
edges. Thus, our general conception of a discourse
structure for a discourse D = {e1, . . . , en}, where
ei are the EDUs of D, is a tuple (V,E1, E2, `),
where V is a set of nodes or discourse units in-
cluding {e1, . . . , en}, E1 ⊆ V × V a set of edges
representing discourse relations and E2 ⊆ V × V
a set of edges that represents parthood in the sense
that if (x, y) ∈ E2, then x is a discourse unit that
is an element of the CDU y. ` : E1 → Relations
is a function that assigns each arc a discourse rela-
tion type. Our corpus contains many instances of
CDUs, some of which are quite large, encompass-
ing an entire question answering session like that

seen in Figure 1.

3 The STAC corpus

The corpus that we use was collected from an on-
line version of the game The Settlers of Catan.
Settlers is a multi-party, win-lose game in which
players use resources such as wood and sheep to
build roads and settlements. In the standard on-
line version, players interact solely through the
game interface, making trades and building roads,
etc., without saying a word. In our online version,
players were asked to discuss and negotiate their
trades via a chat interface before finalizing them
non-linguistically via the game interface. As a re-
sult, players frequently chatted not only to nego-
tiate trades, but to discuss numerous topics, some
unrelated to the task at hand.

The Settlers corpus is ideal for studying mul-
tilogue. First, while the chats maintain the ad-
vantage of written text (no need for transcrip-
tion), they approximate spoken communication.
We have to deal with many sentence fragments,
non-standard orthography and sometimes lack of
syntax. Second, they manifest phenomena partic-
ular to multilogue, such as multiple conversation
threads and non-tree-like structures.

The corpus consists of 59 games out of which
36 games have so far been annotated for discourse
structure in the style of SDRT. Each game consists
of several dialogues representing a single turn of
the game. Each dialogue is treated as a separate
document. About 10% of our corpus was held out
for evaluation purposes while the rest was kept for
training. Detailed statistics on the number of dia-
logues, EDUs and relations contained in each sub-
corpus can be found in table 1.

The dialogues in our corpus have an average
size of 10 EDUs with 8 speaker turns, though the
longest has 156 EDUs and 119 turns. The vast
majority of our discourse connections thus lie be-
tween turns. All dialogues also have a dialogue act
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Total Training Testing

Dialogues 1091 968 123
EDUs 10677 9545 1132
Relations 11348 10158 1190

Table 1: Dataset overview

style annotation in which each EDU is assigned a
particular type (it can be an offer or counter-offer,
an acceptance or refusal, or other) (Sidner, 1994a;
Sidner, 1994b). The dialogue act annotations have
been used to train an automatic classifier for EDUs
(Cadilhac et al., 2013). This large annotation ef-
fort was carried out by 4 annotators who had no
special knowledge of linguistics, but who received
training over 22 negotiation dialogues with 560
turns. Because annotating full discourse structures
is a very complex task (using an exact match cri-
terion of success, the inter annotator agreement
score was a Kappa of 0.72 attachment on struc-
tures, 0.58 on labelling (Afantenos et al., 2012a)),
experts made several passes over the annotations
from the naive annotators, improving the data and
debugging it.

The discourse graphs in our development cor-
pus exhibited several interesting properties. First
of all they are DAGs with a unique root, one unit
that has no incoming edges. Secondly, the graphs
are weakly connected in almost all cases: i.e., ev-
ery discourse unit in it is connected to some other
discourse unit. Thirdly, our graphs are reactive in
the sense that speakers’ contributions are reactions
and attach anaphorically to prior contributions of
other speakers. This means that edges between the
contributions of different speakers are always ori-
ented in one direction. This is a general feature of
dialogue, as we explain in the next section.

4 Model

4.1 Dependency Structures

For a given discourse graph for SDRT of the form
(V,E1, E2, `), we have as yet no general and re-
liable method to calculate edges in E2; and no
such method has been presented in the literature.
In order to perform constrained decoding over lo-
cal probability distributions, we have opted for a
strategy first presented in Muller et al. (2012) for
SDRT. The strategy involves transforming hyper-
graphs into dependency graphs. We transform our
full graphs (V,E1, E2, `) into dependency struc-

tures (V ′, E1, `), with V ′ ⊂ V the set of EDUs
in V by replacing any attachment to a CDU with
an attachment to the CDU’s head—the textually
first EDU within the CDU which has no incoming
links. Our transformation in effect sets E2 in our
general definition of a graph to ∅. In the case that
we have a discourse relation between two EDUs,
this relation is kept intact since it already repre-
sents a dependency arc. In case a discourse rela-
tion has one or two CDUs as arguments, the CDUs
need to be replaced with their recursive head. In
order to calculate the recursive head we identify
all the DUs with no incoming links; if they are
CDUs we recursively apply the algorithm until we
get an EDU. If there is more than one EDU with
no incoming links we pick the leftmost, i.e. the
one firstly introduced in the text.

Hirao et al. (2013) and Li et al. (2014) later fol-
lowed a similar strategy for the creation of depen-
dency structures for RST. Every single nucleus-
satellite relation was transformed into a depen-
dency relation with the governor being the EDU
representing the nucleus and the dependent be-
ing the satellite. For relations between non-EDU
higher spans, the recursive head was used. It is un-
clear how Li et al. (2014) deal with binary multi-
nucleus relations like CONTRAST for example; it
is not clear how to calculate the recursive head of
the span.1 In such cases an arbitrary decision—
like always taking as the nucleus the leftmost or
the rightmost span—has to be taken. In the SDRT
annotations, however, every edge in the graph is
already directed and so such arbitrary decisions
can be avoided.

Ideally, what one then wants is to learn a func-
tion

h : XEn 7→ YG
where XEn is the domain of instances represent-
ing a collection of EDUs for each dialogue and YG
is the set of all possible SDRT graphs. However,
given the complexity of this task and the fact that
it would require an amount of training data that
we currently lack in the community, we aim at the
more modest goal of learning a function

h : XE2 7→ YR

where the domain of instancesXE2 represents fea-
tures for a pair of EDUs and YR represents the

1Although Li et al. (2014) do explain how to treat n-
ary multinuclear relations, following others (Hernault et al.,
2010, for example).
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set of SDRT relations. The upshot of this is that
we are building a local sort of model that learns
relations between individual EDUs with a certain
probability but that it does not learn a local or even
global structure.

One of the drawbacks of this approach, how-
ever, is that it does not guarantee an object that is
well formed. Learning a probability distribution
over EDUs and then choosing the most probable
relation or attachment for each pair of EDUs po-
tentially leads to structures that contain cycles. To
avoid this, we can’t blindly choose the most prob-
able relation or attachment decision for each pair
of EDUs. Instead, we should use this probability
distribution as an input to a decoding mechanism.

4.2 Local probability distributions

We used a regularized maximum entropy (short-
ened as MaxEnt) model (Berger et al., 1996). In
MaxEnt, we estimate the parameters of an expo-
nential model of the following form:

P (r|p) =
1

Z(c)
exp

(
m∑

i=1

wifi(p, r)

)

where p represents the current pair of EDUs and
r the learnt label (i.e. the type of relation, or a
binary attachment value between the two EDUs).
Each pair of EDUs p is encoded as a vector of m
indicator features fi (see table 2 for more details).
There is one weight/parameter wi for each feature
fi that predicts its classification behavior. Finally,
Z(c) is a normalization factor over the different
class labels, which guarantees that the model out-
puts probabilities. In MaxEnt, the values for the
different parameters ŵ are obtained by maximiz-
ing the log-likelihood of the training data T with
respect to the model (Berger et al., 1996):

ŵ = argmax
w

T∑
i

log P (r(i)|p(i))

4.3 The turn constraint

Given our observations about the structure of di-
alogues in our corpus, we hypothesize that a di-
alogue is fundamentally sequential: first one per-
son talks and then others react to them or ignore
them, but the discourse links that do occur be-
tween speaker turns are reactive. In other words,
a turn can’t be anaphorically and rhetorically de-
pendent on a turn that comes after it. Thus, the

nature of dialogue imposes an essential and im-
portant constraint on the attachment process that is
not present for monologue or single-authored text,
where an EDU may be dependent upon any EDU,
later in the ordering or not: in dialogue there are
no “backwards” rhetorical links such that an EDU

in turn n by speaker a is rhetorically and anaphor-
ically dependent upon an EDU in turn n + m of
speaker b with a 6= b. We call this the Turn Con-
straint. Within a turn, however, just as in mono-
logue (as is evident from a study of most styles of
discourse annotations of text), backwards links are
allowed.

Given this observation, we decided to split our
local model into two different ones. The first one
concerns the learning of a model for intra-turn ut-
terances,2 while the second models inter-turn ut-
terances. The intra-turn model considers as in-
put during learning all pairs of EDUs (i, j) with
i 6= j. The inter-turn model on the other hand
does not contain any backward links during learn-
ing. In other words it takes as input all pairs of
EDUs (i, j) with i < j. We apply the turn con-
straint not only during learning of the local mod-
els, but also during decoding. This practice is also
followed—at the sentence level—for monologues
(Wellner and Pustejovsky, 2007; Joty et al., 2012;
Joty et al., 2013), though our turn constraint, we
believe, is firmly supported not only by our data
but also by a good theoretical model of dialogue.

4.4 Decoders

The local probability distributions obtained are
used as decoder inputs. We have experimented
with several decoders. As a baseline measure
we have included what we call a LOCAL decoder
which creates a simple classifier out of the raw lo-
cal probability distribution. In the case of MaxEnt,
for example, this decoder selects

r̂ = argmax
r

(
1

Z(c)
exp

(
m∑

i=1

wifi(p, r)

))

with r representing a relation type or a binary at-
tachment value. We also used the baseline LAST,
where each EDU is attached to the immediately
preceding EDU in the linear, textual order.

2EDUs are considered as belonging to the same turn if
they are by the same speaker without any interjection from
an other speaker. In other words any consecutive EDU by the
same speaker is considered as belonging to the same turn.
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Maximum Spanning Trees To answer our
questions, “how many non-tree-like structures are
there?" and "how far can tree decoding algorithms
get us in multi-party dialogue?", our first decoder
is the classic Maximum Spanning Trees (MST)
algorithm— used by McDonald et al. (2005) for
syntactic dependency parsing as well as by Muller
et al. (2012) and Li et al. (2014) for discourse
parsing—tweaking it in order to produce struc-
tures that are closer to the ones specific to multi-
party dialogue. We are looking for:

T ∗ = argmax
T a spanning tree of G

∑
e∈E(T )

w(e)

w(e) = log
(

p(e)
1− p(e)

)
G being the complete graph of possible edges

returned by the classifiers ; E(D) representing the
edges of D. The weight function w computes the
log-odds of the probability returned by the model.

We used Chu-Liu-Edmonds version of the MST
algorithm (Chu and Liu, 1965; Edmonds, 1967),
which requires a specific node to be the root, i.e.
a node without any incoming edges, of the initial
complete graph. For each dialogue, we made an
artificial node as the root with special dummy fea-
tures. At the end of the procedure, this node points
the real root of the discourse graph.

Combining intra- and inter-turn models with
the turn constraint As described above, we
learn a separate local model for intra- and inter-
turn EDUs. We also use the turn constraint during
decoding. For the intra-turn decoding, we have
experimented with various options. One concerns
the creation of a classifier out of the local prob-
ability distribution. Another intra-turn decoder is
Last, which always takes the last EDU for attach-
ment. Finally we also used MST.

We used the exact same decoding approaches
for inter-turn decoding. With the structure for the
inter-turn EDUs produced separately, we replace
those structures with their heads. The detection of
a structure’s head, be it intra- or inter-turn, uses the
same trick as McDonald et al. (2005) did for syn-
tactic parsing: inserting a dummy node as a fake
head which contains only outgoing links enabling
us essentially to learn the real head of our struc-
tures. Our best overall model used Last to link
EDUs inside the turn together with MST and the
turn constraint for predicting the global structure.

Category Description

Positional Speaker initiated the dialogue
- First utterance of the speaker

in the dialogue
- Position in dialogue
- Distance between EDUs
- EDUs have the same speaker

Lexical Ends with exclamation mark
- Ends with interrogation mark
- Contains possessive pronouns
- Contains modal modifiers
- Contains words in lexicons
- Contains question words
- Contains a player’s name
- Contains emoticons
- First and last words

Parsing Subject lemmas given by syntactic
dependency parsing

- Dialogue act according
to predicting model

Table 2: Feature set description. Pair features are
italicized.

5 Experiments and Results

To train our local models, we extracted features for
every pair of EDUs in a given dialogue. Our fea-
tures concern the pair of EDUs as well as features
related to each EDU specifically. The feature set,
detailed in Table 2, can be summarized as follows:

• Positional features: (related to) the non-
linguistic context of the pair;

• Lexical features: single words3 and punctua-
tion present in the EDUs;

• Parsing features: dependency4 and dialogue
act5 tagging.

Table 3 shows our results on our unseen test
corpus, which contains a randomly selected 10%
of dialogues in our corpus. The best configura-
tion was selected after performing ten-fold cross
validation on the training corpus. The reported re-
sults implement the turn-constraint during training

3We use a number of lexicons (opinion markers, quanti-
fiers, etc.), each corresponding to a feature

4Provided by the Stanford CoreNLP pipeline (Manning et
al., 2014).

5The prediction model of Cadilhac et al. (2013) generates
EDU tags such as Offer, Refusal, etc.
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for the local models. In other words, training in-
stances for the local models include only forward
links.

We used two baselines. The first one, Last, sim-
ply attaches every EDU to its previous one. This is
a very strong baseline in discourse parsing (Muller
et al., 2012, for example). The second baseline
is essentially the local classifier without any fur-
ther decoding; in other words, we simply select
the class with the highest probability both for at-
tachment and labeling. Attaching to last gives us
an F-score of 0.584 for attachment and 0.391 when
we add the relations as well. Using only classifica-
tion from the local probability distribution without
decoding gives 0.541 for attachment and 0.446 for
attachments and relations.

The best results for the global parsing problem
exploited the turn constraint both during learn-
ing the local model and during decoding. Within
a turn, our discourse structures are simple and
largely linear; the best intra-turn results came from
using Last. Most of our interlocutors did not create
elaborate discourse structures with long-distance
attachments within the same turn. The inter-turn
level was a different story, as the figures show.
For inter-turn and the global problem, MST us-
ing the heads of the intra-turn substructures com-
puted with Last, produced the best results. The
F1 score for unlabeled structures is at 0.671 while
for labelled structures we have 0.516. To enable
a comparison with RST style parsing where ex-
act arguments for discourse relations are not com-
puted, the undirected attachment F1 score = 0.68
for the global parsing problem.

Despite the inherent difficulty of discourse pars-
ing on multi-party chat dialogues (simultaneous,
multiple discussion threads, lack of syntax) our re-
sults are close to or better than the current state of
the art for discourse parsing on monologue. There
are two approaches currently that use dependency
parsing strategies for discourse, thoroughly de-
scribed in the next section. Li et al. (2014) report
an accuracy of 0.7506 for unlabelled structures
and 0.4309 for the full labelled structures. Muller
et al. (2012) report 0.662 for unlabelled structure
and 0.361 for labelled structures. We outperform
both systems for full labelled structures, and de-
spite our non-tree-like structures beat or are close
to these on unlabelled attachments. Though com-
parisons across different corpora are difficult, the
numbers suggest that our results are more than

competitive. Our results also suggest that one can
get quite far with tree-based decoding algorithms,
though we know that in principle MST cannot do
better than 91% even with a perfect local model (a
model in which an arc is giving probability 1 just
in case it occurs in the gold standard annotation).

6 Related Work

To date, discourse parsing has almost exclu-
sively been applied to monologue. Multi-party
chat dialogues have never been considered be-
fore. Baldridge and Lascarides (2005) predicted
tree discourse structures for 2 party “directed” di-
alogues from the Verbmobil corpus by training a
PCFG that exploited the structure of the under-
lying task. Elsner and Charniak (2010), Elsner
and Charniak (2011) are presenting a combination
of local coherence models initially provided for
monologues showing that those models can satis-
factorily model local coherence in chat dialogues.
Nonetheless they do not present a full-fledged dis-
course parsing model. Our data required a more
open domain approach and a more sophisticated
approach to structure.

Our use of dependency parsing for learning dis-
course structure has a few antecedents in the litera-
ture on monologue. One of the first papers to intro-
duce this technique is Muller et al. (2012), work-
ing with a small French language corpus, ANN-
ODIS (Afantenos et al., 2012a). They use a simi-
lar approach to us, including the classic version of
the MST decoder. They also used an A∗ search as
another decoding mechanism but it gave the same
results as MST. As we have said, our results better
theirs both on attachment and full labeled struc-
tures. In the context of RST, Hirao et al. (2013)
and Li et al. (2014) transform RST trees into de-
pendency structures; we have discussed their in
section 4.1. Li et al. (2014) use both the Eisner
algorithm (Eisner, 1996) as well as the MST algo-
rithm from McDonald et al. (2005). As we men-
tioned, our labelled scores are higher than theirs,
though we are cautious of making comparisons
across such different corpora.

Most work on discourse parsing focuses on the
task of discourse relation labeling between pairs of
discourse units—e.g., Marcu and Echihabi (2002)
Sporleder and Lascarides (2005) and Lin et al.
(2009). This corresponds to our local model. As
we have shown in this paper, this setting makes
an unwarranted assumption, as it assumes inde-
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Method Undirected Attachment Directed Attachment Full Labelled Structure
prec rec F1 prec rec F1 prec rec F1

LAST 0.602 0.566 0.584 0.602 0.566 0.584 0.403 0.379 0.391
LOCAL 0.698 0.488 0.574 0.623 0.478 0.541 0.513 0.394 0.446

INTRA-TURN 0.837 0.955 0.892 0.808 0.922 0.861 0.489 0.558 0.521
INTER-TURN 0.617 0.516 0.562 0.616 0.514 0.561 0.492 0.411 0.448

GLOBAL 0.697 0.663 0.680 0.688 0.655 0.671 0.529 0.503 0.516

Table 3: Evaluation results.

pendence of local attachment decisions. There is
also work on discourse structure within a single
sentence; e.g., Soricut and Marcu (2003) makes
use of dynamic programming along with a stan-
dard bottom-up chart parsing, while Sagae (2009)
uses shift-reduce algorithm for intra-sentential dis-
course analysis. Such approaches do not apply to
our data, as most of the structure in our dialogues
lies beyond the sentence level.

As for document-level discourse parsers, Subba
and Di Eugenio (2009) use a transition-based ap-
proach, following the paradigm of Sagae (2009).
duVerle and Prendinger (2009) and Hernault et
al. (2010) both rely on locally greedy methods.
Like us, they treat attachment prediction and re-
lation label prediction as independent problems.
Feng and Hirst (2012) extend this approach by
additional feature engineering but is restricted to
sentence-level parsing. Finally, Joty et al. (2012)
present a sentence-level discourse parser that uses
Conditional Random Fields to capture label inter-
dependencies and chart parsing for decoding. Joty
et al. (2013) and Joty et al. (2015) extend this ap-
proach on the level of documents and have the best
results non-dependency based discourse parsing,
with an F1 of 0.689 on unlabelled structures and
0.5587 on labelled structures. Our scores are very
close to Joty et al.’s, however, and achieved with
much simpler methods than theirs.

7 Conclusions

As far as we know, this is the first paper to deal
with discourse parsing in multi-party chat dia-
logues. We believe that such data will be useful for
other discourse parsing tasks like analyzing fora
with multi-threads. We have used the STAC cor-
pus (Afantenos et al., 2012b) for our data. To sim-
plify the parsing task, we transformed our SDRT
structures into dependency ones. We used two
different local probability distribution models as
input to several decoding mechanisms, including
one based on the Maximum Spanning Tree al-

gorithm, and an enhanced version of it in order
to produce structures closer to the ones we ob-
serve. We obtain the best results using the en-
hanced version of the MST algorithm. In future
work, we plan to investigate ILP constraints in
greater depth to develop a plausible alternative to
MST on DAGs.
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Mehmet Uğur Doğan, Bente Maegaard, Joseph Mar-
iani, Jan Odijk, and Stelios Piperidis, editors, Pro-
ceedings of the Eight International Conference on
Language Resources and Evaluation (LREC’12), Is-
tanbul, Turkey, may. European Language Resources
Association (ELRA).

Stergos Afantenos, Nicholas Asher, Farah Benamara,
Anaïs Cadilhac, Cédric Degremont, Pascal De-
nis, Markus Guhe, Simon Keizer, Alex Lascarides,
Oliver Lemon, Philippe Muller, Soumya Paul, Ver-
ena Rieser, and Laure Vieu. 2012b. Develop-
ing a corpus of strategic conversation in the settlers
of catan. In Noriko Tomuro and Jose Zagal, edi-
tors, Workshop on Games and NLP (GAMNLP-12),
Kanazawa, Japan.

N. Asher and A. Lascarides. 2003. Logics of Conver-
sation. Cambridge University Press.

Jason Baldridge and Alex Lascarides. 2005. Proba-
bilistic head-driven parsing for discourse structure.
In Proceedings of the Ninth Conference on Compu-
tational Natural Language Learning (CoNLL).

A. Berger, S. Della Pietra, and V. Della Pietra. 1996. A
maximum entropy approach to natural language pro-
cessing. Computational Linguistics, 22(1):39–71.

Anais Cadilhac, Nicholas Asher, Farah Benamara, and
Alex Lascarides. 2013. Grounding strategic con-
versation: Using negotiation dialogues to predict

935



trades in a win-lose game. In Proceedings of the
2013 Conference on Empirical Methods in Natu-
ral Language Processing, pages 357–368, Seattle,
Washington, USA, October. Association for Com-
putational Linguistics.

Y. J. Chu and T. H. Liu. 1965. On the shortest arbores-
cence of a directed graph. Science Sinica, 14:1396–
1400.

David duVerle and Helmut Prendinger. 2009. A novel
discourse parser based on support vector machine
classification. In Proceedings of the Joint Confer-
ence of the 47th Annual Meeting of the ACL and the
4th International Joint Conference on Natural Lan-
guage Processing of the AFNLP, pages 665–673,
Suntec, Singapore, August. Association for Compu-
tational Linguistics.

Jack Edmonds. 1967. Optimum branchings. Jour-
nal of Research of the National Bureau of Standards,
71B(233–240).

Jason M. Eisner. 1996. Three new probabilistic mod-
els for dependency parsing: An exploration. In Pro-
ceedings of the 16th International Conference on
Computational Linguistics (COLING-96), volume 1,
pages 340–345, Copenhagen, Denmark.

Micha Elsner and Eugene Charniak. 2010. Disentan-
gling chat. Computational Linguistics, 36(3):389–
409.

Micha Elsner and Eugene Charniak. 2011. Disentan-
gling chat with local coherence models. In Proceed-
ings of the 49th Annual Meeting of the Association
for Computational Linguistics: Human Language
Technologies, pages 1179–1189, Portland, Oregon,
USA, June. Association for Computational Linguis-
tics.

Vanessa Wei Feng and Graeme Hirst. 2012. Text-level
discourse parsing with rich linguistic features. In
Proceedings of the 50th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 60–68, Jeju Island, Korea, July.
Association for Computational Linguistics.

Jonathan Ginzburg. 2012. The interactive stance. Ox-
ford University Press.

Hugo Hernault, Helmut Prendinger, David A. duVerle,
and Mitsuru Ishizuka. 2010. HILDA: A Discourse
Parser Using Support Vector Machine Classification.
Dialogue and Discourse, 1(3):1–33.

Tsutomu Hirao, Yasuhisa Yoshida, Masaaki Nishino,
Norihito Yasuda, and Masaaki Nagata. 2013.
Single-document summarization as a tree knapsack
problem. In Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Process-
ing, pages 1515–1520, Seattle, Washington, USA,
October. Association for Computational Linguistics.

Shafiq Joty, Giuseppe Carenini, and Raymond Ng.
2012. A Novel Discriminative Framework for
Sentence-Level Discourse Analysis. In EMNLP-
CoNLL.

Shafiq Joty, Giuseppe Carenini, Raymond Ng, and
Yashar Mehdad. 2013. Combining intra- and multi-
sentential rhetorical parsing for document-level dis-
course analysis. In Proceedings of the 51st Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 486–496,
Sofia, Bulgaria, August. Association for Computa-
tional Linguistics.

Shafiq Joty, Giuseppe Carenini, and Raymond Ng.
2015. Codra: A novel discriminative framework for
rhetorical analysis. Computational Linguistics.

Sujian Li, Liang Wang, Ziqiang Cao, and Wenjie Li.
2014. Text-level discourse dependency parsing. In
Proceedings of the 52nd Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 25–35, Baltimore, Maryland,
June. Association for Computational Linguistics.

Ziheng Lin, Min-Yen Kan, and Hwee Tou Ng. 2009.
Recognizing implicit discourse relations in the Penn
Discourse Treebank. In Proceedings of the 2009
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 343–351, Singapore, Au-
gust. Association for Computational Linguistics.

William C. Mann and Sandra A. Thompson. 1987.
Rhetorical Structure Theory: A Framework for the
Analysis of Texts. Technical Report ISI/RS-87-185,
Information Sciences Institute, Marina del Rey, Cal-
ifornia.

William C. Mann and Sandra A. Thompson. 1988.
Rhetorical Structure Theory: Towards a Functional
Theory of Text Organization. Text, 8(3):243–281.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David Mc-
Closky. 2014. The Stanford CoreNLP natural lan-
guage processing toolkit. In Proceedings of 52nd
Annual Meeting of the Association for Computa-
tional Linguistics: System Demonstrations, pages
55–60.

Daniel Marcu and Abdessamad Echihabi. 2002. An
unsupervised approach to recognizing discourse re-
lations. In Proceedings of ACL, pages 368–375.

Daniel Marcu. 2000. The Theory and Practice of Dis-
course Parsing and Summarization. The MIT Press.

Ryan T. McDonald, Fernando Pereira, Kiril Ribarov,
and Jan Hajic. 2005. Non-projective depen-
dency parsing using spanning tree algorithms. In
HLT/EMNLP.

Philippe Muller, Stergos Afantenos, Pascal Denis, and
Nicholas Asher. 2012. Constrained decoding for
text-level discourse parsing. In Proceedings of
COLING 2012, pages 1883–1900, Mumbai, India,

936



December. The COLING 2012 Organizing Commit-
tee.

Massimo Poesio and David R Traum. 1997. Conver-
sational actions and discourse situations. Computa-
tional intelligence, 13(3):309–347.

Rashmi Prasad, Nikhil Dinesh, Alan Lee, Eleni Milt-
sakaki, Livio Robaldo, Aravind Joshi, and Bonnie L.
Webber. 2008. The Penn Discourse TreeBank 2.0.
In Proceedings of LREC 2008.

Kenji Sagae. 2009. Analysis of discourse structure
with syntactic dependencies and data-driven shift-
reduce parsing. In Proceedings of the 11th Interna-
tional Conference on Parsing Technologies, IWPT
’09, pages 81–84, Stroudsburg, PA, USA. Associa-
tion for Computational Linguistics.

Emanuel A Schegloff. 2007. Sequence organization
in interaction: Volume 1: A primer in conversation
analysis, volume 1. Cambridge University Press.

David Schlangen. 2003. A coherence-based approach
to the interpretation of non-sentential utterances in
dialogue. Ph.D. thesis, University of Edinburgh.
College of Science and Engineering. School of In-
formatics.

C. Sidner. 1994a. An artificial discourse language for
collaborative negotiation. In AAAI, volume 1, pages
814–819. MIT Press, Cambridge.

C. Sidner. 1994b. Negotiation in collaborative activ-
ity: a discourse analysis. Knowledge-Based Sys-
tems, 7(4):265 – 267.

R. Soricut and D. Marcu. 2003. Sentence level
discourse parsing using syntactic and lexical infor-
mation. In Proceedings of the 2003 Conference
of the North American Chapter of the Association
for Computational Linguistics on Human Language
Technology-Volume 1, pages 149–156. Association
for Computational Linguistics.

Caroline Sporleder and Alex Lascarides. 2005. Ex-
ploiting linguistic cues to classify rhetorical rela-
tions. In Proceedings of Recent Advances in Natural
Langauge Processing (RANLP), Bulgaria.

Rajen Subba and Barbara Di Eugenio. 2009. An effec-
tive discourse parser that uses rich linguistic infor-
mation. In Proceedings of Human Language Tech-
nologies: The 2009 Annual Conference of the North
American Chapter of the Association for Compu-
tational Linguistics, pages 566–574, Boulder, Col-
orado, June. Association for Computational Linguis-
tics.

Maite Taboada and William C. Mann. 2006. Rhetor-
ical Structure Theory: Looking Back and Moving
Ahead. Discourse Studies, 8(3):423–459, June.

Ben Wellner and James Pustejovsky. 2007. Automat-
ically Identifying the Arguments of Discourse Con-
nectives. In Proceedings of the 2007 Joint Confer-
ence on Empirical Methods in Natural Language

Processing and Computational Natural Language
Learning (EMNLP-CoNLL), pages 92–101, Prague,
Czech Republic, June. Association for Computa-
tional Linguistics.

937


