Dual Decomposition Inference for Graphical Models over Strings*

Nanyun Peng and Ryan Cotterell and Jason Eisner
Department of Computer Science, Johns Hopkins University
{npengl, ryan.cotterell,eisner}@jhu.edu

Abstract

We investigate dual decomposition for
joint MAP inference of many strings.
Given an arbitrary graphical model, we de-
compose it into small acyclic sub-models,
whose MAP configurations can be found
by finite-state composition and dynamic
programming. We force the solutions of
these subproblems to agree on overlap-
ping variables, by tuning Lagrange multi-
pliers for an adaptively expanding set of
variable-length n-gram count features.

This is the first inference method for ar-
bitrary graphical models over strings that
does not require approximations such as
random sampling, message simplification,
or a bound on string length. Provided that
the inference method terminates, it gives
a certificate of global optimality (though
MAP inference in our setting is undecid-
able in general). On our global phonolog-
ical inference problems, it always termi-
nates, and achieves more accurate results
than max-product and sum-product loopy
belief propagation.

1 Introduction

Graphical models allow expert modeling of com-
plex relations and interactions between random
variables. Since a graphical model with given pa-
rameters defines a probability distribution, it can
be used to reconstruct values for unobserved vari-
ables. The marginal inference problem is to com-
pute the posterior marginal distributions of these
variables. The MAP inference (or MPE) prob-
lem is to compute the single highest-probability
joint assignment to all the unobserved variables.
Inference in general graphical models is NP-
hard even when the variables’ values are finite dis-
crete values such as categories, tags or domains. In
this paper, we address the more challenging setting

*This material is based upon work supported by the Na-
tional Science Foundation under Grant No. 1423276.

917

where the variables in the graphical models range
over strings. Thus, the domain of the variables is
an infinite space of discrete structures.

In NLP, such graphical models can deal with
large, incompletely observed lexicons. They could
be used to model diverse relationships among
strings that represent spellings or pronunciations;
morphemes, words, phrases (such as named enti-
ties and URLS), or utterances; standard or variant
forms; clean or noisy forms; contemporary or his-
torical forms; underlying or surface forms; source
or target language forms. Such relationships arise
in domains such as morphology, phonology, his-
torical linguistics, translation between related lan-
guages, and social media text analysis.

In this paper, we assume a given graphical
model, whose factors evaluate the relationships
among observed and unobserved strings.! We
present a dual decomposition algorithm for MAP
inference, which returns a certifiably optimal so-
Iution when it converges. We demonstrate our
method on a graphical model for phonology pro-
posed by Cotterell et al. (2015). We show that the
method generally converges and that it achieves
better results than alternatives.

The rest of the paper is arranged as follows: We
will review graphical models over strings in sec-
tion 2, and briefly introduce our sample problem
in section 3. Section 4 develops dual decompo-
sition inference for graphical models over strings.
Then our experimental setup and results are pre-
sented in sections 5 and 6, with some discussion.

2 Graphical Models Over Strings
2.1 Factor Graphs and MAP Inference

To perform inference on a graphical model (di-
rected or undirected), one first converts the model
to a factor graph representation (Kschischang et
al.,, 2001). A factor graph is a finite bipartite

'Tn some task settings, it is also necessary to discover the
model topology along with the model parameters. In this pa-
per we do not treat that structure learning problem. However,
both structure learning and parameter learning need to call
inference—such as the method presented here—in order to
evaluate proposed topologies or improve their parameters.

Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pages 917-927,
Lisbon, Portugal, 17-21 September 2015. (©2015 Association for Computational Linguistics.

1) Underlying morphemes

Concatenation
2) Underlying words

Phonology

3) Surface words

resignation

resigns damns damnation

Figure 1: A fragment of the factor graph for the directed graphical model of Cotterell et al. (2015), displaying a possible
assignment to the variables (ellipses). The model explains each observed surface word as the result of applying phonology
to a concatenation of underlying morphemes. Shaded variables show the observed surface forms for four words: resignation,
resigns, damns, and damnation. The underlying pronunciations of these words are assumed to be more similar than their surface
pronunciations, because the words are known to share latent morphemes. The factor graph encodes what is shared. Each
observed word at layer 3 has a latent underlying form at layer 2, which is a deterministic concatenation of latent morphemes at
layer 1. The binary factors between layers 2 and 3 score each (underlying,surface) pair for its phonological plausibility. The
unary factors at layer 1 score each morpheme for its lexical plausibility. See Cotterell et al. (2015) for discussion of alternatives.

graph over a set X = {X, Xy,...} of variables
and a set F of factors. An assignment to the vari-
ables is a vector of values x = (z1,x2,...). Each
factor F' € F is a real-valued function of x, but it
depends on a given z; only if F' is connected to X;
in the graph. Thus, a degree d-factor scores some
length-d subtuple of x. The score of the whole
joint assignment simply sums over all factors:

score(x) = Z F(x).

FeF

(1)

We seek the x of maximum score that is con-
sistent with our partial observation of x. This
is a generic constraint satisfaction problem with
soft constraints. While our algorithm does not de-
pend on a probabilistic interpretation of the fac-
tor graph,? it can be regarded as peforming max-
imum a posteriori (MAP) inference of the unob-
served variables, under the probability distribution

p(x) = (1/Z) exp score(x).
2.2 The String Case

Graphical models over strings have enjoyed some
attention in the NLP community. Tree-shaped
graphical models naturally model the evolution-
ary tree of word forms (Bouchard-Coté et al.,
2007; Bouchard-Coté et al., 2008; Hall and Klein,
2010; Hall and Klein, 2011). Cyclic graphical

2E.g., it could be used for exactly computing the separa-
tion oracle when training a structural SVM (Tsochantaridis et
al., 2005; Finley and Joachims, 2007). Another use is mini-
mum Bayes risk decoding—computing the joint assignment
having minimum expected loss—if the loss function does not
decompose over the variables, but a factor graph can be con-
structed that evaluates the expected loss of any assignment.

918

models have been used to model morphological
paradigms (Dreyer and Eisner, 2009; Dreyer and
Eisner, 2011) and to reconstruct phonological un-
derlying forms of words (Cotterell et al., 2015).

The variables in such a model are strings of un-
bounded length: each variable X; is permitted to
range over %* where X is some fixed, finite al-
phabet. As in previous work, we assume that a
degree-d factor is a d-way rational relation, i.e.,
a function of d strings that can be computed by
a d-tape weighted finite-state machine (WFSM)
(Mohri et al., 2002; Kempe et al., 2004). Such a
machine is called an acceptor (WFSA) if d = 1
or a transducer (WFST) if d = 2.3

Past work has shown how to approximately
sample from the distribution over x defined by
such a model (Bouchard-Coté et al., 2007), or ap-
proximately compute the distribution’s marginals
using variants of sum-product belief propaga-
tion (BP) (Dreyer and Eisner, 2009) and expecta-
tion propagation (EP) (Cotterell and Eisner, 2015).

2.3 Finite-State Belief Propagation

BP iteratively updates messages between factors
and variables. Each message is a vector whose el-
ements score the possible values of a variable.
Murphy et al. (1999) discusses BP on cyclic
(“loopy”) graphs. For pedagogical reasons, sup-
pose momentarily that all factors have degree < 2
(this loses no power). Then BP manipulates only
vectors and matrices—whose dimensionality de-
pends on the number of possible values of the vari-
3Finite-state software libraries often support only these

cases. Accordingly, Cotterell and Eisner (2015, Appendix
B.10) explain how to eliminate factors of degree d > 2.

ables. In the string case, they have infinitely many
rows and columns, indexed by possible strings.

Dreyer and Eisner (2009) represented these in-
finite vectors and matrices by WFSAs and WF-
STs, respectively. They observed that the simple
linear-algebra operations used by BP can be im-
plemented by finite-state constructions. The point-
wise product of two vectors is the intersection of
their WFSAs; the marginalization of a matrix is
the projection of its WFST; a vector-matrix prod-
uct is computed by composing the WFSA with the
WEST and then projecting onto the output tape.
For degree > 2, BP’s rank-d tensors become d-
tape WFSMs, and these constructions generalize.

Unfortunately, except in small acyclic models,
the BP messages—which are WEFSAs—usually
become impractically large. Each intersection
or composition involves a cross-product construc-
tion. For example, when finding the marginal
distribution at a degree-d variable, intersecting d
WESA messages having m states each may yield
a WFSA with up to m? states. (Our models in
section 6 include variables with d up to 156.)
Combining many cross products, as BP iteratively
passes messages along a path in the factor graph,
leads to blowup that is exponential in the length of
the path—which in turn is unbounded if the graph
has cycles (Dreyer and Eisner, 2009), as ours do.

The usual solution is to prune or otherwise ap-
proximate the messages at each step. In particu-
lar, Cotterell and Eisner (2015) gave a principled
way to approximate the messages using variable-
length n-gram models, using an adaptive variant
of Expectation Propagation (Minka, 2001).

2.4 Dual Decomposition Inference

In section 4, we will present a dual decomposition
(DD) method that decomposes the original com-
plex problem into many small subproblems that
are free of cycles and high degree nodes. BP can
solve each subproblem without approximation.*
The subproblems “communicate” through La-
grange multipliers that guide them towards agree-
ment on a single global solution. This information
is encoded in WFSAs that score possible values
of a string variable. DD incrementally adjusts the
WESAS so as to encourage values that agree with

*Such small BP problems commonly arise in NLP. In par-
ticular, using finite-state methods to decode a composition of
several finite-state noisy channels (Pereira and Riley, 1997,
Knight and Graehl, 1998) can be regarded as BP on a graph-
ical model over strings that has a linear-chain topology.

919

the variable’s average value across subproblems.
Unlike BP messages, the WFSAs in our DD
method will be restricted to be variable-length
n-gram models, similar to Cotterell and Eisner
(2015). They may still grow over time; but DD of-
ten halts while the WFSAs are still small. It halts
when its strings agree exactly, rather than when it
has converged up to a numerical tolerance, like BP.

2.5 Switching Between Semirings

Our factors may be nondeterministic WESMs. So
when F' € F scores a given d-tuple of string val-
ues, it may accept that d-tuple along multiple dif-
ferent WFESM paths with different scores, corre-
sponding to different alignments of the strings.

For purposes of MAP inference, we define F' to
return the maximum of these path scores. That is,
we take the WFSMs to be defined with weights
in the (max,+) semiring (Mohri et al., 2002).
Equivalently, we are seeking the “best global solu-
tion” in the sense of choosing not only the strings
x; but also the alignments of the d-tuples.’

To do so, we must solve each DD subprob-
lem in the same sense. We use max-product BP.
This still applies the Dreyer-Eisner method of sec-
tion 2.3. Since these WFSMs are defined in the
(max, +) semiring, the method’s finite-state oper-
ations will combine weights using max and +.

MAP inference in our setting is in general com-
putationally undecidable.® However, if DD con-
verges (as in our experiments), then its solution is
guaranteed to be the true MAP assignment.

In section 6, we will compare DD with (loopy)
max-product BP and (loopy) sum-product BP.
These respectively approximate MAP inference
and marginal inference over the entire factor
graph. Marginal inference computes marginal
string probabilities that sum (rather than maxi-
mize) over the choices of other strings and the
choices of paths. Thus, for sum-product BP, we
re-interpret the factor WFSMs as defined over the
(logadd, +) semiring. This means that the expo-
nentiated score assigned by a WFSM is the sum of
the exponentiated scores of the accepting paths.

5This problem is more specifically called MPE inference.

®The trouble is that we cannot bound the length of the la-
tent strings. If we could, then we could encode them using a
finite set of boolean variables, and solve as an ILP problem.
But that would allow us to determine whether there exists a
MAP assignment with score > 0. That is impossible in gen-
eral, because it would solve Post’s Correspondence Problem
as a simple special case (see Dreyer and Eisner (2009)).

) C d?‘i’f" D (exfon Ldaevrfn) z

(Crezzign) (exfon) (rizajn) (z)
C #z
d’a@mz

Subproblem 4

[€ fzzxgn#el[ar} > (Vrizajn#z) C

fon >

“rezignerfn @ d,zmn’erfn

Subproblem 1 Subproblem 2 Subproblem 3

Figure 2: To apply dual decomposition, we choose to decom-
pose 1 into one subproblem per surface word. Dashed lines
connect two or more variables from different subproblems
that correspond to the same variable in the original graph.
The method of Lagrange multipliers is used to force these
variables to have identical values. An additional unary factor
attached to each subproblem variable (not shown) is used to
incorporate its Lagrangian term.

3 A Sample Task: Generative Phonology

Before giving the formal details of our DD
method, we give a motivating example: a recently
proposed graphical model for morphophonology.
Cotterell et al. (2015) defined a Bayesian network
to describe the generative process of phonological
words. Our Figure 1 shows a conversion of their
model to a factor graph and explains what the vari-
ables and factors mean.

Inference on this graph performs unsupervised
discovery of latent strings. Given observed surface
representations of words (SRs), inference aims to
recover the underlying representations (URs) of
the words and their shared constituent morphemes.
The latter can then be used to predict held-out SRs.

Notice that the 8 edges in the first layer of Fig-
ure 1 form a cycle; such cycles make BP inexact.
Moreover, the figure shows only a schematic frag-
ment of the graphical model. In the actual exper-
iments, the graphical models have up to 829 vari-
ables, and the variables representing morpheme
URs are connected to up to 156 factors (because
many words share the same affix).

To handle the above challenges without ap-
proximation, we want to decompose the original
problem into subproblems where each subproblem
can be solved efficiently. In particular, we want
the subproblems to be free of cycles and high-
degree nodes. In our phonology example, each
observed word along with its correspondent latent
URs forms an ideal subproblem. This decomposi-
tion is shown in Figure 2.

While the subproblems can be solved efficiently
in isolation, they may share variables, as shown
by the dashed lines in Figure 2. DD repeatedly
modifies and re-solves the subproblems until they
agree on their shared variables.

4 Dual Decomposition

Dual decomposition is a general technique for
solving constrained optimization problems. It has
been widely used for MAP inference in graphi-
cal models (Komodakis et al., 2007; Komodakis
and Paragios, 2009; Koo et al., 2010; Martins et
al., 2011; Sontag et al., 2011; Rush and Collins,
2014). However, previous work has focused on
variables X; whose values are in R or a small fi-
nite set; we will consider the infinite set 3*.

4.1 Review of Dual Decomposition

To apply dual decomposition, we must partition
the original problem into a union of K subprob-
lems, each of which can be solved exactly and ef-
ficiently (and in parallel). For example, our exper-
iments partition Figure 1 as shown in Figure 2.
Specifically, we partition the factors into K sets
F', ..., FK. Each factor F € F appears in ex-
actly one of these sets. This lets us rewrite the
score (1) as) ;. > perw F(x). Instead of simply
seeking its maximizer x, we equivalently seek

aggmaxi (Z F(xk)> st.xt =...=xK

- = Ferk (2)

If we dropped the equality constraint, (2)
could be solved by separately maximizing
> pesr F(xF) for each k. This “subproblem” is
itself a MAP problem which considers only the
factors F* and the variables X'* adjacent to them
in the original factor graph. The subproblem ob-
jective does not depend on the other variables.

We now attempt to enforce the equality con-
straint indirectly, by adding Lagrange multipli-
ers that encourage agreement among the subprob-
lems. Assume for the moment that the variables in
the factor graph are real-valued (each :Uf is in R).
Then consider the Lagrangian relaxation of (2),

3 (X Fed+ XM at) @

k=1 FeFk

max
x1,... xK

This can still be solved by separate maximizations.
For any choices of \¥ € R having (Vi) >, A\F =
0, it upper-bounds the objective of (2). Why? The
solution to (2) achieves the same value in (3), yet
(3) may do even better by considering solutions
that do not satisfy the constraint. Our goal is to
find /\éC values that tighten this upper bound as
much as possible. If we can find)\f values so that

920

the optimum of (3) satisfies the equality constraint,
then we have a tight bound and a solution to (2).
To improve the method, recall that subproblem
k considers only variables X'*. Tt is indifferent to
the value of X; if X; ¢ X k sowe just leave xf un-
defined in the subproblem’s solution. We treat that
as automatically satisfying the equality constraint;
thus we do not need any Lagrange multiplier)\f to
force equality. Our final solution x ignores unde-
fined values, and sets x; to the value agreed on by

the subproblems that did consider X;.’

4.2 Substring Count Features

But what do we do if the variables are strings? The
Lagrangian term A¥ - 2% in (3) is now ill-typed. We
replace it with A¥ - y(2¥), where ~(-) extracts a
real-valued feature vector from a string, and)\f’
is a vector of Lagrange multipliers.

This corresponds to changing the constraint in
(2). Instead of requiring mll - = acZK for each
i, we are now requiring v(z}) = -+ = ~v(zk),
i.e., these strings must agree in their features.

We want each possible string to have a unique
feature vector, so that matching features forces the
actual strings to match. We follow Paul and Eisner
(2012) and use a substring count feature for each
w € ¥*. In other words, «(z) is an infinitely long
vector, which maps each w to the number of times
that w appears in z as a substring.®

Computing A¥ - v(2¥) in (3) remains possi-
ble because in practice, A¥ will have only finitely
many nonzeros. This is so because our feature
vector «y(x) has only finitely many nonzeros for
any string x, and the subgradient algorithm in sec-
tion 4.3 below always updates)\f’ by adding mul-
tiples of such () vectors.

We will use a further trick below to prevent
rapid growth of this finite set of nonzeros. Each
variable X; maintains an active set of features,
W;. Only these features may have nonzero La-
grange multipliers. While the active set can grow
over time, it will be finite at any given step.

Given the Lagrange multipliers, subproblem k&
of (3) is simply MAP inference on the factor graph
consisting of the variables X* and factors F* as
well as an extra unary factor Gf ateach X, € xX*k:

"Without this optimization, the Lagrangian term A\¥ - z%
would have driven ¥ to match that value anyway.

8More precisely, the number of times that w appears in
BOS x EOS, where BOS, EOS are distinguished boundary sym-
bols. We allow w to start with BOS and/or end with EOS,

which yields prefix and suffix indicator features.

921

GF(xF) E N -y (af) (4)

These unary factors penalize strings according to
the Lagrange multipliers. They can be encoded
as WFSAs (Allauzen et al., 2003; Cotterell and
Eisner, 2015, Appendices B.1-B.5), allowing us to
solve the subproblem by max-product BP as usual.
The topology of the WESA for Gf depends only
on W;, while its weights come from A¥.

4.3 Projected Subgradient Method

We aim to adjust the collection A of Lagrange
multipliers to minimize the upper bound (3). Fol-
lowing Komodakis et al. (2007), we solve this con-
vex dual problem using a projected subgradient
method. We initialize A = 0 and compute (3) by
solving the K subproblems. Then we take a step
to adjust A, and repeat in hopes of eventually sat-
isfying the equality condition.
The projected subgradient step is

A= A (= y(at

h)
where 17 > 0 is the current step size, and p; is the
mean of (z¥") over all subproblems &’ that con-
sider X;. This update modifies (3) to encourage
solutions x* such that y(z¥) comes closer to ;.

For each i, we update all /\i’-C at once to preserve
the property that (Vi) >, \¥ = 0. However, we
are only allowed to update components of the)\f
that correspond to features in the active set W;. To
ensure that we continue to make progress even af-
ter we agree on these features, we first expand W;
by adding the minimal strings (if any) on which the
xf do not yet all agree. For example, we will add
the abc feature only when the ¥ already agree on
their counts of its substrings ab and bc.”

Algorithm 1 summarizes the whole method. Ta-
ble 1 illustrates how one active set W; (section 4.3)
evolves, in our experiments, as it tries to enforce
agreement on a particular string x;.

(&)

4.4 Past Work: Implicit Intersection

Our DD algorithm is an extension of one that Paul
and Eisner (2012) developed for the simpler im-
plicit intersection problem. Given many WFSAs
Fi, ..., Fg, they were able to find the string =
with maximum total score Y5, Fj,(x). (They ap-
plied this to solve instances of the NP-hard Steiner

In principle, we should check that they also (still) agree

on a, b, and c, but we skip this check. Our active set heuristic
is almost identical to that of Paul and Eisner (2012).

Algorithm 1 DD for graphical models over strings

1: initialize the active set WV, for each variable X; € X
2: initialize)\f = 0 for each X; and each subproblem k
3: fort=1to 7T do > max number of iterations
for k=1to K do > solve all primal subproblems
if any of the A¥ have changed then
run max-product BP on the acyclic graph de-

fined by variables X'* and factors * and G¥

4
5:
6.

7: extract MAP strings: Vi with X; € X%, zF
is the label of the max-scoring accepting path
in the WESA that represents the belief at X;
8: for each X; € X do > improve dual bound
9: if the defined strings ¥ are not all equal then
10: Expand active feature set WW; 1> section 4.3
11: Update each A¥ > equation (5)
12: Update each G¥ from ©;, AF > see (4)
13: if none of the X; required updates then
14: return any defined 2% (all are equal) for each ¢
15: return {x},...,zX} foreachi o failed to converge

string problem, i.e., finding the string x of mini-
mum total edit distance to a collection of K ~ 100
given strings.) The naive solution to this problem
would be to find the highest-weighted path in the
intersection F; N --- N Fg. Unfortunately, the in-
tersection of WFSAs takes the Cartesian product
of their state sets. Thus materializing this inter-
section would have taken time exponential in K.
To put this another way, inference is NP-hard
even on a “trivial” factor graph: a single variable
X attached to K factors. Recall from section 2.3
that BP would solve this via the expensive inter-
section above. Paul and Eisner (2012) instead ap-
plied DD with one subproblem per factor. We
generalize their method to handle arbitrary factor
graphs, with multiple latent variables and cycles.

4.5 Block Coordinate Update

We also explored a possible speedup for our algo-
rithm. We used a block coordinate update vari-
ant of the algorithm when performing inference on
the phonology problem and observed an empiri-
cal speedup. Block coordinate updates are widely
used in Lagrangian relaxation and have also been
explored specifically for dual decomposition.

In general, block algorithms minimize the ob-
jective by holding some variables fixed while up-
dating others. Sontag et al. (2011) proposed a so-
phisticated block method called MPLP that con-
siders all values of variable X; instead of the ones
obtained from the best assignments for the sub-
problems. However, it is not clear how to apply
their technique to string-valued variables. Instead,
the algorithm we propose here is much simpler—it

922

Iter# | =i =2 23 AW;

1| e€ € € € 1)
3|19 g g g 0
4 gris griz griz griz {s, z,1s,1iz,s$ z$ }
5 gris grizo griz griz {o, z0, 0$ }

14 griz grizo griz griz (Z)

17 griz griz griz griz @

18 griz griz grize griz { e, ze, e$ }

19 gris griz griz griz @

31 griz griz griz griz (Z)

Table 1: One variable’s active set as DD runs. This variable is
the unobserved stem morpheme shared by the Catalan words
gris, grizos, grize, grizes. The second column shows
the current set of solutions from the 4 subproblems having
copies of this variable. The third column shows the new sub-
strings that are then added to the active set, to try to enforce
agreement via their Lagrange multipliers. The table does not
show iterations in which these columns have not changed.
However, those iterations still update the Lagrange multipli-
ers to more strongly encourage agreement (if needed). Al-
though agreement is achieved at iterations 1, 3, and 17, it
is then disrupted—the subproblems’ solutions change be-
cause of Lagrange-multiplier pressures on their other vari-
ables (suffixes that do not agree yet). At iteration 31, the vari-
able returns to agreement on griz, and never changes again.

divides the primal variables into groups and up-
dates each group’s associated dual variables in
turn, using a single subgradient step (5). Note that
this way of partitioning the dual variables has the
nice property that we can still use the projected
subgradient update we gave in (5) and preserve the
property that (Vi) ", AF = 0.

In the graphical model for generative phonol-
ogy, there are two types of underlying morphemes
in the first layer: word stems and word affixes. Our
block coordinate update algorithm thus alternates
between subgradient updates to the dual variables
for the stems and the dual variables for the affixes.
Note that when performing block coordinate up-
date on the dual variables, the primal variables are
not held constant, but rather are chosen by opti-
mizing the corresponding subproblem.

5 Experimental Setup

5.1 Datasets

We compare DD to belief propagation, using the
graphical model for generative phonology dis-
cussed in section 3. Inference in this model aims to
reconstruct underlying morphemes. Since our fo-
cus is inference, we will evaluate these reconstruc-
tions directly (whereas Cotterell et al. (2015) eval-
uated their ability to predict novel surface forms
using the reconstructions).

Our factor graphs have a similar topology to the
pedagogical fragment shown in Figure 1. How-

ever, they are actually derived from datasets con-
structed by Cotterell et al. (2015), which are avail-
able with full descriptions at http://hubal.cs.
jhu.edu/tac12015/. Briefly:

EXERCISE Small datasets of Catalan, English,
Maori, and Tangale, drawn from phonology
textbooks. Each dataset contains 55 to 106
surface words, formed from a collection of
16 to 55 morphemes.

CELEX Larger datasets of German, English, and
Dutch, drawn from the CELEX database
(Baayen et al., 1995). Each dataset contains
1000 surface words, formed from 341 to 381
underlying morphemes.

5.2 Evaluation Scheme

We compared three types of inference:

DD Use DD to perform exact MAP inference.

SP Perform approximate marginal inference by
sum-product loopy BP with pruning (Cot-
terell et al., 2015).

MP Perform approximate MAP inference by
max-product loopy BP with pruning. DD and
SP improve this baseline in different ways.

DD predicts a string value for each variable. For
SP and MP, we deem the prediction at a variable
to be the string that is scored most highly by the
belief at that variable.

We report the fraction of predicted morpheme
URs that exactly match the gold-standard URs
proposed by a human (Cotterell et al., 2015). We
also compare these predicted URs to one another,
to see how well the methods agree.

5.3 Parameterization

The model of Cotterell et al. (2015) has two fac-
tor types whose parameters must be chosen.'?
The first is a unary factor M. Each underlying-
morpheme variable (layer 1 of Figure 1) is con-
nected to a copy of M, which gives the prior dis-
tribution over its values. The second is a binary
factor Syp. For each surface word (layer 3), a copy
of Sy gives its conditional distribution given the
corresponding underlying word (layer 2). My and
Sy respectively model the lexicon and the phonol-
ogy of the specific language; both are encoded as
WESMs.

19The model also has a three-way factor, connecting layers

1 and 2 of Figure 1. This represents deterministic concatena-
tion (appropriate for these languages) and has no parameters.

923

My is a O-gram generative model: at each step
it emits a character chosen uniformly from the al-
phabet 3 with probability ¢, or halts with proba-
bility 1 — ¢. It favors shorter strings in general, but
¢ determines how weak this preference is.

Sp is a sequential edit model that produces a
word’s SR by stochastically copying, inserting,
substituting, and deleting the phonemes of its UR.
We explore two ways of parameterizing it.

Model 1 is a simple model in which 6 is a scalar,
specifying the probability of copying the next
character of the underlying word as it is transduced
to the surface word. The remaining probability
mass 1 —6 is apportioned equally among insertion,
substitution and deletion operations.!! This mod-
els phonology as “noisy concatenation”—the min-
imum necessary to account for the fact that surface
words cannot quite be obtained as simple concate-
nations of their shared underlying morphemes.

Model 2 is a replication of the much more
complicated parametric model of Cotterell et al.
(2015), which can handle linguistic phonology.
Here the factor Sy is a contextual edit FST (Cot-
terell et al., 2014). The probabilities of competing
edits in a given context are determined by a log-
linear model with weight vector 6 and features that
are meant to pick up on phonological phenomena.

5.4 Training

When evaluating an inference method from sec-
tion 5.2, we use the same inference method both
for prediction and within training.

We train Model 1 by grid search. Specifically,
we choose ¢ € [0.65,1) and § € [0.25,1) such
that the predicted forms maximize the joint score
(1) (always using the (max, +) semiring).

For Model 2, we compared two methods for
training the ¢ and 6 parameters (6 is a vector):

Model 2S Supervised training, which observes
the “true” (hand-constructed) values of the
URs. This idealized setting uses the best pos-
sible parameters (trained on the test data).

Model 2E Expectation maximization (EM),
whose E step imputes the unobserved URs.

EM’s E step calls for exact marginal inference,
which is intractable for our model. So we substi-
tute the same inference method that we are test-

""That is, probability mass of (1 —) /3 is divided equally
among the |X| possible insertions; another (1 — 6)/3 is di-

vided equally among the |X|—1 possible substitutions; and
the final (1 — 6)/3 is allocated to deletion.

ing. This gives us three approximations to EM,
based on DD, SP and MP. Note that DD specif-
ically gives the Viterbi approximation to EM—
which sometimes gets better results than true EM
(Spitkovsky et al., 2010). For MP (but not SP), we
extract only the 1-best predictions for the E step,
since we study MP as an approximation to DD.
As initialization, our first E step uses the trained
version of Model 1 for the same inference method.

5.5 Inference Details

We run SP and MP for 20 iterations (usually the
predictions converge within 10 iterations). We run
DD to convergence (usually < 600 iterations). DD
iterations are much faster since each variable con-
siders d strings, not d distributions over strings.
Hence DD does not intersect distributions, and
many parts of the graph settle down early because
discrete values can converge in finite time.!?

We follow Paul and Eisner (2012, section 5.1)
fairly closely. In particular: Our stepsize in (5) is
n = a/(t + 500), where ¢ is the iteration num-
ber; o« = 1 for Model 2S and o« = 10 otherwise.
We proactively include all 1-gram and 2-gram sub-
string features in the active sets W; at initializa-
tion, rather than adding them only as needed. Atit-
erations 200, 400, and 600, we proactively add all
3-, 4-, and 5-gram features (respectively) on which
the counts still disagree; this accelerates conver-
gence on the few variables that have not already
converged. We handle negative-weight cycles as
Paul and Eisner do. If we had ever failed to con-
verge within 2000 iterations, we would have used
their heuristic to extract a prediction anyway.

Model 1 suffers from a symmetry-breaking
problem. Many edits have identical probability,
and when we run inference, many assignments
will tie for highest scoring configuration. This
can prevent DD from converging and makes per-
formance hard to measure. To break these ties,
we add “jitter” separately to each copy of M,
in Figure 1. Specifically, if F; is the unary fac-
tor attached to X;, we expand our 0-gram model
Fi(z) = log((p/|X])*l - (1 = p)) to become
Fi(z) = log(IL.espt) - (1 = p)), where |z
denotes the count of character c in string x, and
Pei X (p/|X]) - expec; where e.; ~ N(0,0.01)
and we preserve) | s, Pei = P

12 A variable need not update X if its strings agree; a sub-
problem is not re-solved if none of its variables updated .

924

Objective Function Value

"0 =0 @0 40 S0 60 w80
(sec)

a
Time (sec)

(a) Tangale

jective Function Value

Obi

(¢) Maori (d) English

Figure 3: The primal-dual curve of NVDD v.s. BCDD on 4
EXERCISE languages. BCDD always converges faster.

6 Experimental Results

6.1 Convergence and Speed of DD

As linguists know, reconstructing an underlying
stem or suffix can be difficult. We may face insuf-
ficient evidence or linguistic irregularity—or reg-
ularity that goes unrecognized because the phono-
logical model is impoverished (Model 1) or poorly
trained (early EM iterations on Model 2). DD
may then require extensive negotiation to resolve
disagreements among subproblems. Furthermore,
DD must renegotiate as conditions change else-
where in the factor graph (Table 1).

DD converged in all of our experiments. Note
that DD (section 4.3) has converged when all the
equality constraints in (2) are satisfied. In this
case, we have found the true MAP configuration.

In section 4.5, we discussed a block coordi-
nate update variation (BCDD) of our DD algo-
rithm. Figure 3 shows the convergence behavior
of BCDD against the naive projected subgradi-
ent algorithm (NVDD) on the four EXERCISE lan-
guages under Model 1. The dual objective (3) al-
ways upper-bounds the primal score (i.e., the score
(1) of an assignment derived heuristically from
the current subproblem solutions). The dual de-
creases as the algorithm progresses. When the two
objectives meet, we have found an optimal solu-
tion to the primal problem. We can see in Figure 3
that our DD algorithm converges quickly on the
four EXERCISE languages and BCDD converges
consistently faster than NVDD. We use BCDD in
the remaining experiments.

When DD runs fast, it is competitive with the

DD | SP MP Gold
DD 92.74% 90.55% 96.92%
Sp 95.22% 94.63%
MP 90.63%

(a) The 4 EXERCISE languages under Model 1

DD | SP MP Gold
DD 88.05% 85.19% 89.66%
Sp 92.64% 85.71%
MP 83.46%

(b) The 3 CELEX languages under Model 1

DD | SP MP Gold
DD 96.53% 100% 98.67%
SP 96.53% 96.05%
MP 98.67%

(c) The 3 CELEX languages under Model 2S (EXERCISE
dataset gives 100% everywhere)

DD | SP MP Gold
DD 92.43% 89.39% 98.18%
Sp 96.73% 95.42%
MP 90.74%

(d) The 4 EXERCISE languages under Model 2E

Table 2: Pairwise agreement (on morpheme URs) of DD, SP,
MP and the gold standard, for each group of inference prob-
lems. Boldface is highest accuracy (agreement with gold).

other methods. It is typically faster on the EXER-
CISE data, and a few times slower on the CELEX
data. But we stop the other methods after 20 it-
erations, whereas DD runs until it gets an exact
answer. We find that this runtime is unpredictable
and sometimes quite long. In the grid search for
training Model 1, we observed that changes in the
parameters (¢, 6) could cause the runtime of DD
inference to vary by 2 orders of magnitude. Sim-
ilarly, on the CELEX data, the runtime on Model
1 (over 10 different N = 600 subsets of English)
varied from about 1 hour to nearly 2 days.'3

6.2 Comparison of Inference

For each language, we constructed several differ-
ent unsupervised prediction problems. In each
problem, we observe some size-N subset of the
words in our dataset, and we attempt to predict the
URs of the morphemes in those words. For each
CELEX language, we took N = 600, and used
three of the size-NN training sets from (Cotterell
et al., 2015). For each EXERCISE language, we
took N to be one less than the dataset size, and
used all N + 1 subsets of size N, again similar to
(Cotterell et al., 2015). We report the unweighted
macro-average of all these accuracy numbers.

Note that our implementation is not optimized; e.g., it
uses Python (not Cython).

925

We compare DD, SP, and MP inference on
each language under different settings. Table 2
shows aggregate results, as an unweighted aver-
age over multiple languages and training sets. We
present various additional results at http://cs.
jhu.edu/~npeng/emnlp2015/, including a per-
language breakdown of the results, runtime num-
bers, and significance tests.

The results for Model 1 are shown in Tables 2a
and 2b. As we can see, in both datasets, dual
decomposition performed the best at recovering
the URs, while MP performed the worst. Both
DD and MP are doing MAP inference, so the dif-
ferences reflect the search error in MP. Interest-
ingly, DD agrees more with SP than with MP, even
though SP uses marginal inference.

Although the aggregate results on the EXER-
CISE dataset show a large improvement of DD
over both of the BP algorithms, the gain all comes
from the English language. SP actually does better
than DD on Catalan and Maori, and MP also gets
better results than DD on Maori, tying with SP.

For Model 28, all inference methods achieved
100% accuracy on the EXERCISE dataset, so we
do not show a table. The results on the CELEX
dataset are shown in Table 2c. Here both DD and
MP performed equally well, and outperformed
BP—a result like (Spitkovsky et al., 2010). This
trend is consistent over all three languages: DD
and MP always achieve similar results and both
outperform SP. Of course, one advantage of DD
in the setting is that it actually finds the true MAP
prediction of the model; the errors are known to be
due to the model, not the search procedure.

For Model 2E, we show results on the EXER-
CISE dataset in Table 2d. Here the results resemble
the pattern of Model 1.

7 Conclusion and Future Work

We presented a general dual decomposition algo-
rithm for MAP inference on graphical models over
strings, and applied it to an unsupervised learn-
ing task in phonology. The experiments show that
our DD algorithm converges and gets better results
than both max-product and sum-product BP.
Techniques should be explored to speed up the
DD method. Adapting the MPLP algorithm (Son-
tag et al., 2011) to the string-valued case would be
anontrivial extension. We could also explore other
serial update schemes, which generally speed up
message-passing algorithms over parallel update.

References

Cyril Allauzen, Mehryar Mohri, and Brian Roark.
2003. Generalized algorithms for constructing sta-
tistical language models. In Proceedings of ACL,
pages 40-47.

R. Harald Baayen, Richard Piepenbrock, and Leon Gu-
likers. 1995. The CELEX lexical database on CD-
ROM.

Alexandre Bouchard-Coté, Percy Liang, Thomas L
Griffiths, and Dan Klein. 2007. A probabilistic ap-
proach to diachronic phonology. In Proceedings of
EMNLP-CoNLL, pages 887-896.

Alexandre Bouchard-Co6té, Percy Liang, Thomas Grif-
fiths, and Dan Klein. 2008. A probabilistic ap-
proach to language change. In Proceedings of NIPS.

Ryan Cotterell and Jason Eisner. 2015. Penalized
expectation propagation for graphical models over
strings. In Proceedings of NAACL-HLT, pages 932—
942, Denver, June. Supplementary material (11
pages) also available.

Ryan Cotterell, Nanyun Peng, and Jason Eisner. 2014.
Stochastic contextual edit distance and probabilistic
FSTs. In Proceedings of ACL, Baltimore, June. 6

pages.

Ryan Cotterell, Nanyun Peng, and Jason Eisner.
2015. Modeling word forms using latent underlying
morphs and phonology. Transactions of the Associ-
ation for Computational Linguistics, 3:433—-447.

Markus Dreyer and Jason Eisner. 2009. Graphical
models over multiple strings. In Proceedings of
EMNLP, pages 101-110, Singapore, August.

Markus Dreyer and Jason Eisner. 2011. Discover-
ing morphological paradigms from plain text using
a Dirichlet process mixture model. In Proceedings
of EMNLP, pages 616—-627, Edinburgh, July.

Thomas Finley and Thorsten Joachims. 2007. Param-
eter learning for loopy markov random fields with
structural support vector machines. In ICML Work-
shop on Constrained Optimization and Structured
Output Spaces.

David Hall and Dan Klein. 2010. Finding cognate
groups using phylogenies. In Proceedings of ACL.

David Hall and Dan Klein. 2011. Large-scale cognate
recovery. In Proceedings of EMNLP.

André Kempe, Jean-Marc Champarnaud, and Jason
Eisner. 2004. A note on join and auto-intersection
of n-ary rational relations. In Loek Cleophas and
Bruce Watson, editors, Proceedings of the Eind-
hoven FASTAR Days (Computer Science Technical
Report 04-40), pages 64—78. Department of Math-
ematics and Computer Science, Technische Univer-
siteit Eindhoven, Netherlands, December.

926

Kevin Knight and Jonathan Graehl. 1998. Machine
transliteration. Computational Linguistics, 24(4).

Nikos Komodakis and Nikos Paragios. 2009. Beyond
pairwise energies: Efficient optimization for higher-
order MRFs. In Proceedings of CVPR, pages 2985—
2992. IEEE.

Nikos Komodakis, Nikos Paragios, and Georgios Tzir-
itas. 2007. MRF optimization via dual decomposi-
tion: Message-passing revisited. In Proceedings of
ICCV, pages 1-8. IEEE.

Terry Koo, Alexander M. Rush, Michael Collins,
Tommi Jaakkola, and David Sontag. 2010. Dual
decomposition for parsing with non-projective head
automata. In Proceedings of EMNLP, pages 1288—
1298.

F. R. Kschischang, B. J. Frey, and H. A. Loeliger.
2001. Factor graphs and the sum-product algo-
rithm. [EEE Transactions on Information Theory,
47(2):498-519, February.

André Martins, Mario Figueiredo, Pedro Aguiar,
Eric P. Xing, and Noah A. Smith. 2011. An aug-
mented lagrangian approach to constrained map in-
ference. In Proceedings of ICML, pages 169—176.

Thomas P. Minka. 2001. Expectation propagation for
approximate Bayesian inference. In Proceedings of
UAI, pages 362-369.

Mehryar Mohri, Fernando Pereira, and Michael Ri-
ley. 2002. Weighted finite-state transducers in
speech recognition. Computer Speech & Language,
16(1):69-88.

Kevin P. Murphy, Yair Weiss, and Michael 1. Jordan.
1999. Loopy belief propagation for approximate in-
ference: An empirical study. In Proceedings of UAI,
pages 467475.

Michael J. Paul and Jason Eisner. 2012. Implicitly in-
tersecting weighted automata using dual decompo-
sition. In Proceedings of NAACL, pages 232-242.

Fernando C. N. Pereira and Michael Riley. 1997.
Speech recognition by composition of weighted fi-
nite automata. In Emmanuel Roche and Yves
Schabes, editors, Finite-State Language Processing.
MIT Press, Cambridge, MA.

Alexander M. Rush and Michael Collins. 2014. A
tutorial on dual decomposition and Lagrangian re-
laxation for inference in natural language process-
ing. Technical report available from arXiv.org
as arXiv:1405.5208.

David Sontag, Amir Globerson, and Tommi Jaakkola.
2011. Introduction to dual decomposition for infer-
ence. Optimization for Machine Learning, 1:219—
254.

Valentin I. Spitkovsky, Hiyan Alshawi, Daniel Juraf-
sky, and Christopher D. Manning. 2010. Viterbi
training improves unsupervised dependency parsing.
In Proceedings of CoNLL, page 917, Uppsala, Swe-
den, July.

I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Al-
tun. 2005. Large margin methods for structured and
interdependent output variables. Journal of Machine
Learning Research, 6:1453—-1484, September.

927

