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Abstract
This paper presents a new algorithm to
automatically solve algebra word prob-
lems. Our algorithm solves a word prob-
lem via analyzing a hypothesis space con-
taining all possible equation systems gen-
erated by assigning the numbers in the
word problem into a set of equation sys-
tem templates extracted from the training
data. To obtain a robust decision surface,
we train a log-linear model to make the
margin between the correct assignments
and the false ones as large as possible.
This results in a quadratic programming
(QP) problem which can be efficiently
solved. Experimental results show that our
algorithm achieves 79.7% accuracy, about
10% higher than the state-of-the-art base-
line (Kushman et al., 2014).

1 Introduction

An algebra word problem describes a mathemat-
ical problem which can be typically modeled by
an equation system, as demonstrated in Figure 1.
Seeking to automatically solve word problems is
a classical AI problem (Bobrow, 1964). The word
problem solver is traditionally created by the rule-
based approach (Lev et al., 2004; Mukherjee and
Garain, 2008; Matsuzaki et al., 2013). Recently,
using machine learning techniques to construct the
solver has become a new trend (Kushman et al.,
2014; Hosseini et al., 2014; Amnueypornsakul
and Bhat, 2014; Roy et al., 2015). This is based
on the fact that word problems derived from the
same mathematical problem share some common
semantic and syntactic features due to the same
underlying logic. Our method follows this trend.1

To solve a word problem, our algorithm ana-
lyzes all the possible ways to assign the numbers

1Our code is available at http://pan.baidu.com/
s/1dD336Sx
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An amusement park sells 2 kinds of tickets. Tickets for 
children cost $ 1.50. Adult tickets cost $ 4. On a certain day, 
278 people entered the park. On that same day the admission 
fees collected totaled $ 792. How many children were admitted 
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Figure 1: Comparison between our algorithm and
(Kushman et al., 2014). Nouns are boldfaced.

in the word problem to a set of equation system
templates. Kushman et al. (2014) also consider
filling the equation system templates to generate
the candidate equations. But Kushman’s template
contains number slots (e.g. n1, n2, n3, n4 in Fig-
ure 1) and unknown slots (e.g. u1

1, u2
1, u1

2, u2
2

in Figure 1). They separately consider assigning
nouns into the unknown slots and numbers into
the number slots, as demonstrated in Figure 1. As
filling the unknown slots is closely related to the
number slots assignment, we only consider assign-
ing the number slots, and design effective features
to describe the relationship between numbers and
unknowns. This scheme significantly reduces the
hypothesis space, as illustrated in Figure 1, which
benefits the learning and inference processes.

We use a log-linear model to describe the tem-
plate selection and number assignment. To learn
the model parameters of such problem, maxi-
mizing the log-likelihood objective is generally
adopted (Kwiatkowski et al., 2010; Kushman et
al., 2014). The key difficulty of this method is
that calculating the gradient of the objective func-
tion needs to sum over exponentially many sam-
ples. Thus, it is essential to approximate the gra-
dient. For instance, Kushman et al. (2014) use
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beam search to approximately calculate the gra-
dient. This method can not exploit all the training
samples. Thus the resulting model may be sub-
optimal. Motivated by the work (Taskar et al.,
2005; Li, 2014), we adopt the max-margin objec-
tive. This results in a QP problem and opens the
way toward an efficient learning algorithm (Koller
and Friedman, 2009).

We evaluate our algorithm on the benchmark
dataset provided by (Kushman et al., 2014). The
experimental results show that our algorithm sig-
nificantly outperforms the state-of-the-art base-
line (Kushman et al., 2014).

2 Problem Formulation

Our word problem solver is constructed by train-
ing a log-linear model to find the correct mapping
from a word problem to an equation.
Notations: Let X denote the set of training word
problems, and T denote the set of equation sys-
tem templates abstracted from X as (Kushman et
al., 2014). xi is the i-th word problem in X .
Assume Tj is the j-th equation system template

in T , and NTj =
{
n1
Tj
, n2

Tj
, · · · , nmTj

}
is the

set of number slots of Tj , where m represents
the size of NTj . Denote the numbers in xi by
Nxi =

{
n1
xi
, n2

xi
, · · · , nlxi

}
, where l represents

the size of Nxi . Assuming l ≥ m, we further de-
fine πijk a sequence of m numbers chosen from
Nxi without repetition. Given πijk, we can map
Tj to an equation system eijk by filling the num-
ber slots NTj of Tj sequently with the numbers in
πijk. Solving eijk, we can obtain the correspond-
ing solution sijk. To simplify the notation, we de-
fine yijk = (Tj , πijk, eijk, sijk) the k-th derivation
give xi and Tj , and let Yi denote the set of all pos-
sible yijk given xi and T . Therefore, to correctly
solve xi is to find the correct yijk ∈ Yi.
Probabilistic Model: As (Kushman et al., 2014),
we use the log-linear model to define the probabil-
ity of yijk ∈ Yi given xi:

p(yijk|xi; θ) =
eθ·φ(xi,yijk)∑

y′
ijk∈Yi

eθ·φ(xi,y′
ijk)

(1)

where θ is the parameter vector of the model, and
φ (xi, yijk) denotes the feature function. We adopt
the max-margin objective (Vapnik, 2013) to di-
rectly learn the decision boundary for the correct
derivations and the false ones.

3 Learning and Inference

3.1 Learning
Using (1), we obtain the difference between the
log-probability of a correct derivation ycijk ∈ Yi
and a false one yfijl ∈ Yi as:

lnP
(
ycijk|xi; θ

)− lnP
(
yfijl|xi; θ

)
=θ ·

(
φ
(
xi, y

c
ijk

)− φ(xi, yfijl)) (2)

Note that the subtraction in (2) cancels the denom-
inator of (1) which contains extensive computa-
tion. To decrease the generalization error of the
learned model, we would like the minimal gap be-
tween the correct derivations and the false ones as
large as possible. In practice, we may not find a
decision hyperplane to perfectly separate the cor-
rect and the false derivations. Generally, this can
be solved by introducing a slack variable ξijkl ≥
0 (Bishop, 2006) for each constraint derived from
(2). Define ϕ

(
xi, y

c
ijk, y

f
ijl

)
= φ

(
xi, y

c
ijk

)
−

φ
(
xi, y

f
ijl

)
. For ∀ xi ∈ X , the resulting optimiza-

tion problem is:

arg min
1
2
‖θ‖2 + C

∑
i,j,k,l

ξijkl (3)

s.t. θ · ϕ
(
xi, y

c
ijk, y

f
ijl

)
≥ 1− ξijkl, ξijkl ≥ 0

The parameter C is used to balance the slack vari-
able penalty and the margin. This is a QP problem
and has been well studied (Platt, 1999; Fan et al.,
2008).

According to the Karush-Kuhn-Tucker (KKT)
condition, only a part of the constraints is active
for the solution of (3) (Bishop, 2006). This leads
to an efficient learning algorithm called constraint
generation (Koller and Friedman, 2009; Felzen-
szwalb et al., 2010). Specifically, an initial model
is trained by a randomly selected subset of the
constraints. Next this model is used to check the
constraints and at most N false deviations that are
erroneously classified by this model are collected
for each word problem. These constraints are then
added to train a new model. This process repeats
until converges. Our experimental results show
that this process converges fast.

3.2 Inference
When we obtain the model parameter θ, the infer-
ence can be performed by finding the maximum
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Single slot features
Relation between numbers and the question
sentence.
Position of a number w.r.t a comparative word.
Context of a number.
Is one or two?
Is a multiplier?
Is between 0 and 1?
Slot pair features
Relation between two numbers.
Context similarity between two numbers.
Does there exist coreference relationship?
Are two numbers both multipliers?
Are two numbers in the same sentence or con-
tinuous sentences?
Information of raw path and dependency path
between two numbers
One number is larger than another.
Solution features
Is integer solution?
Is positive solution?
Is between 0 and 1?

Table 1: Features used in our algorithm.

value of (1). This can be simplified by computing

arg max
yijk∈Yi

θ · φ(xi, yijk) (4)

As we only consider assigning the number slots of
the templates in T , generally, the size of the possi-
ble assignments per word problem is bearable, as
shown in the Table 2. Thus we simply evaluate all
the yijk ∈ Yi. The one with the largest score is
considered as the solution of xi.

4 Features

A feature vector φ (xi, yijk) is calculated for each
word problem xi and derivation yijk pair. As
Kushman (2014), a feature is associated with a sig-
nature related to the template of yijk. We extract
three kinds of features, i.e., single slot features,
slot pair features and solution features. Unless
otherwise stated, single slot and slot pair features
are associated with the slot and slot pair signature
of the equation system template, respectively, and
solution features are generated for the signature of
the equation system template. Table 1 lists the fea-
tures used in our algorithm. The detailed descrip-
tion is as follows.

4.1 Single Slot Features

To reduce the search space, we only consider the
assignment of the number slots of the template. It
seems that our algorithm will lose the information
about the unknown. But such information can be
recovered by the features that include the infor-
mation of the question sentence. Specifically, we
associate a number with all the nouns in the same
sentence sorted by the length of the dependence
path between them. For instance, [$, tickets, chil-
dren] is the sorted noun list for 1.5 in Figure 1.
Assume the n-th noun of the nouns associated to a
given number is the first noun that appears in the
question sentence. We quantify the relationship
between a number and a queried entity by the re-
ciprocal of n. For instance, in Figure 1, “children”
appears in the question sentence, and it is the third
noun associated to 1.5. So the value of this feature
is 1/3. A larger value of this feature means a num-
ber more likely relates to the queried entity. The
maximum value of this feature is 1. Thus we intro-
duce a feature to indicate whether this special case
occurs. We also use a feature to indicate whether
a number appears in the question sentence.

The comparative meaning is sensitive to both
the comparative words and the position of a num-
ber relative to them. For example, “one number
is 3 less than twice another” is different to “one
number is 3 more than twice another”, but equal to
“twice a number is 3 more than another”. To ac-
count for this, we use the comparative words cou-
pled with the position of a number relative to them
as features.

On the other hand, we use the lemma, part of
speech (POS) tag and the dependence type related
to the word within a widow [-5, +5] around a num-
ber as features. Besides, if the POS tag or the
named entity tag of a number is not labeled as a
general number, we also import these tags together
with the first noun and the dependence type related
to the number as features.

Additionally, the numbers 1 and 2 are usually
used to indicate the number of variables, such as
“the sum of two numbers”. To capture such usage,
we use a feature to denote whether a number is
one or two as (Kushman et al., 2014). Since such
usage appears in various kinds of word problems,
this feature does not contain the slot signature. We
also generate features to indicate whether a num-
ber belongs to (0, 1), and whether it is a multiplier,
such as twice, triple.
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4.2 Slot Pair Features
Assume n1 and n2 are two numbers in a word
problem. Suppose NP1 and NP2 are the lists of
nouns associated to n1 and n2 (described in sec-
tion 4.1), respectively. We evaluate the relation-
ship r (n1, n2) between n1 and n2 by:

max
nouni

1∈NP1,

nounj
2∈NP2

s.t. nouni
1=nounj

2

 2

ord
(
nouni1

)
+ ord

(
nounj2

)


where ord(·) denotes the index of a noun
in NPi (i = 1, 2), starting from 1. A larger
r (n1, n2) means n1 and n2 are more related. The
maximum value of r (n1, n2) is 1, which occurs
when the first nouns of NP1 and NP2 are equal.
We use a feature to indicate whether r (n1, n2) is
1. This feature helps to import some basic rules
of the arithmetic operation, e.g., the units of sum-
mands should be the same.

If two slots are symmetric in a template (e.g.,
n2 and n3 in Figure 1), the contexts around both
numbers are generally similar. Assume CT1 and
CT2 are two sets of certain tags within a window
around n1 and n2, respectively. Then we calculate
the contextual similarity between n1 and n2 by:

sim (ST1, ST2) =
|ST1 ∩ ST2|
|ST1 ∪ ST2|

In this paper, the tags include the lemma, POS tag
and dependence type, and the window size is 5.

Besides, we exploit features to denote whether
there exists coreference relationship between any
elements of the sentences where n1 and n2 locate,
and whether two numbers are both multipliers. Fi-
nally, according to (Kushman et al., 2014), we
generate features related to the raw path and de-
pendence path between two numbers, and use the
numeric relation between them as a feature to im-
port some basic arithmetic rules, such as the posi-
tive summands are smaller than their sum. We also
include features to indicate whether two numbers
are in the same sentence or continuous sentences.

4.3 Solution Features
Many word problems are math problems about the
real life. This background leads the solutions of
many word problems have some special numerical
properties, such as the positive and integer prop-
erties used by (Kushman et al., 2014). To capture
such fact, we introduce a set of features to describe
the solution properties.

5 Experiments

Dataset: The dataset used in our experiment is
provided by (Kushman et al., 2014). Equiva-
lent equation systme templates are automatically
merged. The word problems are parsed by (Man-
ning et al., 2014). The version of the parser is the
same as (Kushman et al., 2014). The performance
of our algorithm is evaluated by comparing each
number of the correct answer with the calculated
one, regardless of the ordering. We report the av-
erage accuracy of 5-fold cross-validation.
Learning: We use liblinear (Fan et al., 2008) to
solve the QP problem. The parameter C in (3)
is set to 0.01 in all the following experiments. We
randomly select 300 false derivations of each word
problem to form the initial training set. We add at
most 300 false derivations for each word problem
during the constraint generation step, and use 5-
fold cross-validation to avoid overfitting. We stop
iterating when the cross-validation error becomes
worse or the training error converges or none new
constraints are generated.
Supervision Level: We consider the learning with
two different levels of supervision. In the first
case, the learning is conducted by providing the
equation and the correct answer of every training
sample. In the second case, the correct answer is
available for every training sample but without the
equation. Instead, all the templates are given, but
the correspondence between the template and the
training sample is not available. During learning,
the algorithm should evaluate every derivation of
each template to find the true one.
Results: Table 2 lists the learning statistics for our
algorithm and (Kushman et al., 2014). We can ob-
serve that the number of possible alignments per
word problem of our algorithm is much smaller
than (Kushman et al., 2014). However, the num-
ber of all the false alignments is still 80K. Us-
ing the constraint generation algorithm (Koller and
Friedman, 2009), only 9K false alignments are
used in the quadratic programming. We trained
our model on a Intel i5-3210M CUP and 4G RAM
laptop. Kushman’s algorithm (2014) needs much
more memory than our algorithm and can not run
on a general laptop. Therefore, we tested their al-
gorithm on a workstation with Intel E5-2620 CPU
and 128G memory. As shown in Table 2, their al-
gorithm takes more time than our algorithm.

Table 3 lists the accuracy of our algorithm and
Kushman’s algorithm (2014). It is clear that our
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Mean negative samples 80K
Mean negative samples used in learning 9K
Mean time for feature extraction 22m
Mean training time 7.3m
Mean feature extraction and training
time of (Kushman et al., 2014)

83m

# Alignments per problem of (Kushman
et al., 2014)

4M

# Alignments per problem of our algo-
rithm

1.9K

Table 2: Learning statistics.

Algorithm Accuracy
Our algorithm fully supervised 79.7%
Our algorithm weakly supervised 72.3%
Kushman’s algorithm (2014) fully
supervised

68.7%

Table 3: Algorithm comparison.

Feature Ablation Accuracy
Without single slot features 70.4%
Without slot pair features 69.3%
Without solution features 71.8%

Table 4: Ablation study for fully supervised data.

algorithm obtains better result. The result of the
weakly supervised data is worse than the fully su-
pervised one. But this result is still higher than
Kushman’s fully supervised result.

Table 4 gives the results of our algorithm with
different feature ablations. We can find that all the
features are helpful to get the correct solution and
none of them dramatically surpasses the others.
Discuss: Although our algorithm gives a better re-
sult than (Kushman et al., 2014), there still exist
two main problems that need to be further investi-
gated, as demonstrated in Table 5. The first prob-
lem is caused by our feature for semantic repre-
sentation. Our current lexicalized feature can not
generalize well for the unseen words. For exam-
ple, it is hard for our algorithm to relate the word
“forfeits” to “minus”, if it does not appear in the
training corpus. The second problem is caused by
the fact that our algorithm only considers the sin-
gle noun as the entity of a word problem. Thus
when the entity is a complicated noun phrase, our
algorithm may fail.

Problem Example
Lexicalized
features can
not gener-
alize well
for unseen
words.

A woman is paid 20 dollars for
each day she works and forfeits
a 5 dollars for each day she is
idle. At the end of 25 days she
nets 450 dollars. How many
days did she work?

Can not deal
with compli-
cated noun
phrases.

The probability that San
Francisco plays in the next
super bowl is nine times the
probability that they do not
play in the next super bowl.
The probability that San
Francisco plays in the next
super bowl plus the probabil-
ity that they do not play is 1.
What is the probability that
San Francisco plays in the
next super bowl?

Table 5: The problems of our algorithm.

6 Conclusion and Future work

In this paper, we present a new algorithm to learn
to solve algebra word problems. To reduce the
possible derivations, we only consider filling the
number slots of the equation system templates,
and design effective features to describe the rela-
tionship between numbers and unknowns. Addi-
tionally, we use the max-margin objective to train
the log-linear model. This results in a QP prob-
lem that can be efficiently solved via the constraint
generation algorithm. Experimental results show
that our algorithm significantly outperforms the
state-of-the-art baseline (Kushman et al., 2014).

Our future work will focus on studying the per-
formance of applying nonlinear kernel function to
the QP problem (3), and using the word embed-
ding vector (Bengio et al., 2003; Mikolov et al.,
2013) to replace current lexicalized features. Be-
sides, we would like to compare our algorithm
with the algorithms designed for specific word
problems, such as (Hosseini et al., 2014).
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