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Abstract

Improving the search and browsing ex-
perience in PubMedr is a key compo-
nent in helping users detect information
of interest. In particular, when explor-
ing a novel field, it is important to pro-
vide a comprehensive view for a specific
subject. One solution for providing this
panoramic picture is to find sub-topics
from a set of documents. We propose a
method that finds sub-topics that we refer
to as themes and computes representative
titles based on a set of documents in each
theme. The method combines a thematic
clustering algorithm and the Pool Adja-
cent Violators algorithm to induce signifi-
cant themes. Then, for each theme, a title
is computed using PubMed document ti-
tles and theme-dependent term scores. We
tested our system on five disease sets from
OMIMr and evaluated the results based
on normalized point-wise mutual informa-
tion and MeSHr terms. For both perfor-
mance measures, the proposed approach
outperformed LDA. The quality of theme
titles were also evaluated by comparing
them with manually created titles.

1 Introduction

PubMed1, currently a collection of about 25 mil-
lion bibliographic records, has grown exponen-
tially in size. With the abundance and diversity
of information in PubMed many queries retrieve
thousands of documents making it difficult for
users to browse the results and identify the infor-
mation most relevant to their topic of interest. The
query ‘cystic fibrosis’, for example, retrieves pa-
pers that discuss different aspects of the disease,
including its clinical features, treatment options,

1http://pubmed.gov

diagnosis, etc. A possible solution to this problem
is to automatically group the retrieved documents
into meaningful thematic clusters or themes (these
terms are used interchangeably). However, clus-
tering alone does not solve the problem entirely,
as a significant amount of human post-processing
is required to infer the topic of the cluster.

There exists a vast collection of probabilistic
clustering methods. One common problem among
most of them is that different results are obtained
depending on the cluster initialization, suggesting
that some clusters are unstable or weak. How-
ever, there is no obvious way to effectively and
efficiently evaluate the quality of clusters. In this
paper, we combine EM-based thematic cluster-
ing (Kim and Wilbur, 2012) with the Pool Adja-
cent Violators (PAV) algorithm (Ayer et al., 1955;
Wilbur et al., 2005). PAV is an isotonic regression
algorithm which we use as a method for convert-
ing a score into a probability. Here, we show how
PAV can be applied to evaluate the quality of clus-
ters.

Another issue that motivated this research is that
most existing algorithms produce clusters that are
not self-descriptive. Presenting meaningful titles
can significantly improve the user perception of
clustering results. To that end, we utilize PubMed
document titles and cluster-related term scores to
automatically obtain a title for each theme. The
method results in thematic clusters of documents
with cluster titles.

Studies similar to our approach are ASI (Adap-
tive Subspace Iteration) (Li et al., 2004) and
SKWIC (Simultaneous Keyword Identification
and Clustering of text documents) (Frigui and
Nasraoui, 2004). Both perform document clus-
tering and cluster-dependent keyword identifica-
tion simultaneously. SKWIC can only produce
hard clustering, while ASI is computationally very
expensive as it heavily depends on matrix opera-
tions. A study by Hammouda et al. (2005) sug-
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gests automatic keyphrase extraction from a clus-
ter of documents as a surrogate to providing a clus-
ter title, but they treat document clustering and
cluster-dependent keyword extraction as separate
problems.

Topic modeling (Hofmann, 1999; Blei et al.,
2003; Blei and Lafferty, 2005) is the most pop-
ular and an alternative approach that has a simi-
lar underlying goal of discovering hidden thematic
structure of a document collection and organizing
the collection according to the discovered topics.
Topic models are based upon the idea that docu-
ments are mixtures of topics, where a topic is a
probability distribution over words (Steyvers and
Griffiths, 2007). However, topic modeling is not a
document clustering scheme in nature. Although a
list of keywords that represent a topic is available,
the title of the cluster may not be evident.

2 Methods

We here describe the EM-based clustering algo-
rithm, and show how PAV is incorporated with
it to yield the PAV-EM thematic clustering tech-
nique. We further present a cluster summarization
method to induce theme titles.

2.1 Theme definition
Let D be a document set and let T be the set of
terms in D. Let R denote the relation between el-
ements of T andD. tRdmeans t ∈ d. We define a
theme as a subject that is described by non-empty
sets U ⊆ T and V ⊆ D, where all the elements
of U have a high probability of occurring in all the
element of V . An EM framework is used to ex-
tract subject terms for a theme (Wilbur, 2002). In
addition to the observed dataR, a theme is defined
by the latent indicator variables zd, {zd}d∈D. The
parameters are

Θ = U(‖U‖ = nU ), {pt, qt}t∈U , {rt}t∈T , (1)

where nU is the size of the set U . For any t ∈ U ,
pt is the probability that for any d ∈ V , tRd. qt
is the probability that for any d ∈ D − V , tRd.
For any t ∈ T , rt is the probability that for any
d ∈ D, tRd. Assuming all relations tRd are in-
dependent of each other, the goal is to obtain the
highest probabilities

p(R, {zd}|Θ) = p(R|{zd},Θ)p({zd}|Θ). (2)

E-step (expectation step) evaluates the expectation
of the logarithm of Eqn. 2. M-step (maximization

Algorithm 1 PAV-EM algorithm
Let D be the dataset, where d ∈ D.
Give a value for the parameter q.

Set X = ∅.
for i← 1, n do

Create q random clusters.
Run the theme clustering algorithm.
For each cluster C and d with pzCd ,
X ← X ∪ {< pzCd , 1, 1 >}2 if d ∈ C,
X ← X ∪ {< pzCd , 1, 0 >} if d /∈ C.

Obtain the PAV function, PAV (pzCd ), over X .

Set S = ∅, where S is the output cluster set.
repeat

Create q random clusters for {d|d /∈ ∪S}.
Run the theme clustering algorithm.
Select any cluster C, where
C ′ = {d|d ∈ C,PAV (pzCd ) > 0.9}
satisfies |C ′| > 10.
S ← S ∪ {C ′}.

until no more changes in S.

step) maximizes this expectation over the parame-
ters Θ. For each term, t, we define a quantity αt
which is the difference between the contribution
coming from t depending on whether ut = 1 or
ut = 0. The maximization is completed by choos-
ing the nU largest αt’s and setting ut = 1 for each
of them and ut = 0 for all others. Details of this
theme extraction scheme can be found in Wilbur
(2002).

2.2 PAV-EM thematic clustering

In thematic clustering, a document is assigned to
a theme that has the highest probability to the
document (Kim and Wilbur, 2012). Although
this approach shows a reasonable performance for
theme-based document clustering, the dynamic
nature of random initialization and multiple sub-
jects described in a document may create many
weak themes. Moreover, there is no clear guide-
line to distinguish strong and weak themes. Thus,
we here propose a method that extracts strong
themes more effectively. In the EM-based theme
extraction scheme, the log odds score pzCd indi-
cates the extent to which a document d is cou-
pled with a specific theme C. If a cluster in-

2The second and the third arguments in the bracket are the
weight and the probability estimate of the data, respectively.
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cludes a reasonable number of documents that
have high pzCd s, it indicates that the cluster rep-
resents a strong theme. Therefore, we can obtain
strong themes by collecting these clusters.

Let the probability p(score) be a monoton-
ically non-decreasing function of score. The
PAV algorithm (Ayer et al., 1955; Wilbur et al.,
2005) is a regression method to derive from the
data that monotonically non-decreasing estimate
of p(score) which assigns maximal likelihood to
the data. For our approach, score = pzCd .

Algorithm 1 shows the theme clustering process
using the PAV algorithm. For the given dateset D
and the initial number of clusters q, theme cluster-
ing is performed n times, and an isotonic regres-
sion function is learned by applying the PAV algo-
rithm. Note that q is an initial guess for the number
of clusters and it is not guaranteed to remain the
same in the output set. For our experiments, we
set q = 50 and n = 100. After the PAV algorithm
is applied, theme clustering is performed. At each
iteration, we select any cluster in which there are
more than 10 documents with PAV scores higher
than 0.9. Unselected documents are re-used for
clustering in the next iteration. This procedure is
repeated until there are no more changes in the se-
lected cluster set S.

2.3 Theme summarization
After obtaining themes (document clusters and
their subject terms), we summarize each theme by
choosing a text segment from PubMed document
titles. A title should cover as many subject terms
as possible, but also it should be well-formed, i.e.
be descriptive enough and humanly understand-
able. To achieve this goal, we first extract all pos-
sible candidates from document titles as follows:

(i) Extract all possible candidates as n-grams,
where n = 1, ..., 20. Noun phrases are
treated as units and must be totally inside or
outside a candidate.

(ii) Check POS tags for starting and ending
words in a candidate. Starting with a con-
junction, verb, preposition and symbol is not
allowed. Ending with a conjunction, verb,
preposition, symbol, determiner, adjective or
certain pronouns is not allowed.

(iii) Discard any candidates that start or end with
‘-’ or ‘.’. The candidates including certain
characters such as ‘/’, ‘;’, ‘:’ are also re-
moved.

(iv) Check grammatical dependency relations.
We discard candidates for which the head
word of a preposition does not appear in the
same candidate as the proposition. Also, we
validate the case, ‘between A and B’, so that
A and B are not separated.

Next, for each candidate, a score is calculated
by

score(candi) = log
∏
t∈U (tftαt)∏
t/∈U tft

, (3)

where tft is the term frequency of the term t.
However, an ideal title should have enough words
to be descriptive, hence we subtract (len(candi)−
5)2 from score(candi), where len(candi) is the
number of words in candi, and choose the top
score as a title.

3 Experimental Results

We applied our method to the five disease
sets, “cystic fibrosis”, “deafness”, “DiGeorge
syndrome”, “autism” and “hypertrophic car-
diomyopathy” from OMIM3. These sets con-
sist of 3000, 3000, 956, 2917 and 1997
PubMed documents, respectively, and are avail-
able at http://www.ncbi.nlm.nih.gov/
CBBresearch/Wilbur/IRET/PAVEM.

For evaluating PAV-EM and comparing with the
topic modeling method, latent Dirichlet allocation
(LDA) (Blei et al., 2003), both approaches were
performed 10 times for each disease set and scores
were averaged over all runs. Mallet4 was used to
run LDA. The same tokenization was applied to
LDA and PAV-EM. The number of topics given for
LDA was 50 and the recommended optimization
parameter was used for producing LDA topics.

Table 1 presents average runtimes5 for LDA
and PAV-EM. LDA and PAV-EM spent 15.2 and
13.3 seconds on average for processing the small-
est set, “DiGeorge syndrome”. However, in larger
sets, e.g. “autism”, it took 46.9 and 31.3 seconds
for LDA and PAV-EM, respectively. We also ran
another implementation6 of LDA, which was 30
times slower than Mallet. While PAV-EM and

3http://www.ncbi.nlm.nih.gov/omim
4http://mallet.cs.umass.edu
5Both methods were tested on a single linux server. The

processing times reported do not include the preprocessing
stages done by Mallet and our implementation.

6http://www.cs.princeton.edu/˜blei/
lda-c
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Dataset LDA PAV-EM
Set 1 25.7 18.4
Set 2 36.5 24.7
Set 3 15.2 13.3
Set 4 46.9 31.3
Set 5 30.3 19.2

Table 1: Average runtimes for LDA and PAV-EM
in seconds. Sets 1, 2, 3, 4 and 5 are “cystic fibro-
sis”, “deafness”, “DiGeorge syndrome”, “autism”
and “hypertrophic cardiomyopathy”, respectively.

Method
Topic terms

Top 5 Top 10
LDA 2.8906 10.9760

PAV-EM 4.0322 14.6213

Table 2: NMPI scores for LDA and PAV-EM.

LDA can be implemented in parallel computa-
tion7, this indicates that PAV-EM may be more ef-
ficient to obtain themes for a larger set of PubMed
documents.

The PAV-EM algorithm automatically learns
themes from unlabeled PubMed documents, hence
the performance measures that are used in super-
vised learning cannot be applied to our setup. Re-
cent studies have shown more interest in topic co-
herence measures (Chang et al., 2009; Newman et
al., 2010; Mimno et al., 2011), which capture the
semantic interpretability of topics based on subject
terms. Table 2 shows the topic coherence scores
measured by normalized point-wise mutual infor-
mation (NPMI). For both top 5 and top 10 sub-
ject terms, PAV-EM achieves better NMPI scores
than LDA. NPMI is known to be strongly corre-
lated with human ratings (Aletras and Stevenson,
2013; Röder et al., 2015) and is defined by

NPMI =
N∑
i=2

i−1∑
j=1

log p(ti,tj)+ε
p(ti)p(tj)

− log (p(ti, tj) + ε)
, (4)

where p(ti, tj) is the fraction of documents con-
taining both terms ti and tj , and N indicates the
number of top subject terms. ε = 1

D is the smooth-
ing factor, where D is the size of the dataset.

MeSH (Medical Subject Headings) is a con-
trolled vocabulary for indexing and searching
biomedical literature (Lowe and Barnett, 1994).

7A parallel implementation of LDA appears in Wang et
al. (2009)

MeSH Method Prec. Recall F1

Top 1
LDA 0.4529 0.3827 0.4125

PAV-EM 0.3842 0.5303 0.4427

Top 3
LDA 0.3935 0.3931 0.3925

PAV-EM 0.3388 0.5239 0.4086

Table 3: Classification performance based on top
significant MeSH terms appearing in themes.

MeSH terms assigned to an article are often used
to indicate the topics of the article, thus these
terms can be used to identify how well documents
are grouped by topics. In each cluster, p-values
of MeSH terms are calculated using the hypergeo-
metric distribution (Kim and Wilbur, 2001), and
the top N significant MeSH terms are used to
calculate precision, recall and F1. Table 3 com-
pares PAV-EM with LDA8 for the MeSH term-
based performance. In the table, PAV-EM pro-
vides higher recall and F1 for top 1 and top 3
MeSH terms. Higher recall has an advantage in
our task because the theme summarization pro-
cess uses a consensus among PubMed documents
to reach a theme title.

The next experiment was performed to compare
machine generated titles with manually labeled ti-
tles. Although human judgements are subjective,
it is not uncommon to collect human judgements
for evaluating topic modeling methods (Mei et al.,
2007; Chang et al., 2009; Xie and Xing, 2013). To
validate the performance of the theme summariza-
tion approach, we first chose 500 documents from
each disease set, and produced themes and titles.
For each topic, five strongest themes were chosen,
and they were shown to three human annotators
with extracted subject terms. Table 4 shows an
example of the proposed approach and the man-
ual annotation for the “hypertrophic cardiomyopa-
thy” set. Among 25 themes, our approach cor-
rectly identified 21 theme titles. We assumed that
a machine-generated title was correct if it included
any of manually annotated titles.

4 Conclusion

This study was inspired by an EM-based thematic
clustering approach. In this probabilistic frame-
work, theme terms are iteratively selected and
documents are assigned to a most likely theme.
The number of themes is dynamically adjusted

8For LDA, each document was assigned to the highest
scoring topic.
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Proposed approach Annotator 1 Annotator 2 Annotator 3
cardiac myosin binding pro-
tein c

myosin binding protein c cardiac myosin binding pro-
tein c

cardiac myosin binding pro-
tein c

ptpn11 mutations in leopard
syndrome

ptpn11 mutations in leopard
syndrome

ptpn11 mutations in leopard
syndrome

ptpn11 mutations in leopard
syndrome

cytochrome c oxidase cytochrome c oxidase mitochondrial cytochrome-
c-oxidase deficiency

mitochondrial cytochrome
c oxidase deficiency

friedreich ataxia and dia-
betes mellitus

friedreich ataxia friedreich ataxia friedreich ataxia

hepatitis c virus infection hepatitis c virus role of hepatitis c virus in
cardiomyopathies

hepatitis c virus infection

Table 4: Comparison of the titles generated from the proposed approach and manual annotation for the
“hypertrophic cardiomyopathy” set.

by probabilistic evidence from documents. The
PAV algorithm is utilized to measure the quality of
themes. After themes are identified, subject term
weights and PubMed document titles are used to
form humanly understandable titles. The experi-
mental results show that our approach provides a
useful overview of a set of documents. In addition,
the method may allow for a new way of brows-
ing by semantically clustered documents as well as
searching with context-based query suggestions.
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