Predicting the Structure of Cooking Recipes

Jermsak Jermsurawong and Nizar Habash
Computational Approaches to Modeling Language Lab
Computer Science
New York University Abu Dhabi
United Arab Emirates

{jermsak.jermsurawong, nizar.habash}@nyu.edu

Abstract

Cooking recipes exist in abundance; but
due to their unstructured text format, they
are hard to study quantitatively beyond
treating them as simple bags of words.
In this paper, we propose an ingredient-
instruction dependency tree data structure
to represent recipes. The proposed rep-
resentation allows for more refined com-
parison of recipes and recipe-parts, and is
a step towards semantic representation of
recipes. Furthermore, we build a parser
that maps recipes into the proposed rep-
resentation. The parser’s edge prediction
accuracy of 93.5% improves over a strong
baseline of 85.7% (54.5% error reduction).

1 Introduction

Cooking recipes are a specific genre of how-to in-
structions which have been gaining interest in re-
cent years as they may allow us to discover in-
sights into culinary and cultural preferences. Most
of the work studying recipes relies on simple in-
gredient bag-of-word representations. While such
representations may suffice for many purposes,
they fail to capture much of the recipes’ internal
structure. A smaller number of efforts focus on se-
mantic representations of cooking recipes with an
eye toward more complex and deep understand-
ing. Natural language processing (NLP) tech-
niques have been used to interpret cooking instruc-
tions; however, the results have not been as suc-
cessful as other language genres due to the unique
aspects of cooking recipes.

This paper makes two contributions. First, we
propose an ingredient-instruction dependency tree
representation of recipe structure. This represen-
tation abstracts textual recipes more expressively
than bag-of-word representations; and it allows for
more nuanced comparisons of recipes. Second,
we present a cooking recipe parser that maps text
recipes into our proposed ingredient-instruction

781

tree structures. The overall accuracy of predicting
edges of our ingredient-instruction trees is 93.5%,
beating a strong baseline of 85.7%, and achieving
a relative error reduction of 54.5%.

We present next some related work (Section 2)
followed by a discussion of the structure of recipes
and our representation (Section 3). Section 4 de-
tails the recipe parser design, implementation and
evaluation.

2 Related Work

There have been many efforts on the processing of
cooking recipes using models that range from bags
of words to complex semantic representations.

Among the approaches to studying recipes as
ingredient bags of words, Ahn et al. (2011) con-
structed a data-driven flavor network relating in-
gredients together. Jain et al. (2015) adopted Ahn
et al. (2011)’s framework to further analyze culi-
nary practices of specific cultures. Nedovic (2013)
examined underlying ingredient groupings from
their recipe co-occurrences, using topic modeling
techniques (latent Dirichlet allocation), and fur-
ther improvised novel ingredient combinations us-
ing deep belief networks.

Among the structured representation ap-
proaches, Tasse and Smith (2008) proposed
MILK (Minimal Instruction Language for the
Kitchen), a formal language to describe actions
required in directive cooking instructions. They
used MILK in developing CURD (Carnegie
Mellon University Recipe Database), a corpus of
manually annotated recipes. Mori et al. (2014)
also manually annotated the procedural flow of
Japanese cooking recipes using directed acyclic
graphs (DAGs) where graph nodes correspond
to food ingredients, cooking instruments, and
actions. Tasse and Smith (2008) had limited
success in parsing into MILK; and Mori et al.
(2014) did not report on parsing experiments.

Other studies explored different machine learn-
ing and NLP techniques to processing recipes.

Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pages 781-786,
Lisbon, Portugal, 17-21 September 2015. (©2015 Association for Computational Linguistics.



Text Recipe

SIMMR

ingredients
6 (2 inch thick) slices French bread
1/4 cup ricotta cheese
1/4 cup cottage cheese, whipped
2 tablespoons lowfat cream cheese
2 teaspoons white sugar
2 teaspoons vanilla extract
3 cups egg substitute
1/4 cup evaporated milk
instructions
Cut a pocket in each slice of bread.
Open carefully
In a large bowl, combine the ricotta,
cottage cheese and cream cheese.
Add the sugar and flavoring extract
and beat until smooth.
Spread the mixture evenly into each
bread pocket.
Beat together the egg substitutes and milk.
Dip the slices of bread in the egg mixture.
Heat a nonstick pan over medium-high heat.
Coat with cooking spray.
Cook the toast on each side for about 3
to 4 minutes per side until golden brown.

NN R W= O

[\l

instl

o
inst0

~

o
ing0
french
bread

O 0 3 O\ W

ingl
ricotta cotiage

inst9
inst8
o

inst7

inst6

inst4 inst5

ingb ing7
€88 milk

inst3

inst2 ing4

sugar

ing5
vanilla
ing2 ing3
cream
cheese

Figure 1: Example of a text recipe for Surprise-ins
ing<index> and inst<index> refer to specific ingred

Mori et al. (2012) applied word segmentation,
named entity recognition, and syntactic analy-
sis to extract predicate-argument structures from
Japanese recipe instructions as part of an effort
to develop complete recipe flow representations.
Malmaud et al. (2014) proposed a Markov Deci-
sion Process, in which the context of ingredients
and tools is propagated along the temporal order
of cooking instructions.

Most recently, Abend et al. (2015) proposed an
edge-factored model to determine the likely tem-
poral order of events based solely on the identity
of their predicates and arguments. They demon-
strated their approach on recipe text, under the
simplifying assumption that such text is also tem-
porally ordered.

In this paper, we present an ingredient-
instruction dependency tree representation of
recipe structure, which we call SIMMR (Simpli-
fied Ingredient Merging Map in Recipes). The
SIMMR representation captures the high-level
flow of ingredients but without modeling the se-
mantics in each individual instruction unlike other
efforts (Tasse and Smith, 2008; Mori et al., 2012;
Mori et al., 2014). We create a corpus in our rep-
resentation by converting the recipes in the CURD
corpus (Tasse and Smith, 2008) from MILK to
SIMMR. We also develop a parser to generate
SIMMR trees from input recipes.

782

ide French Toast and its SIMMR representation.
ients and instructions, respectively.

3 Recipe Representation

3.1 Text Recipes

The prototypical text recipe consists of two parts:
an ingredient list that declares the food items to
process, and a set of instructions that mostly de-
scribe the transformations of the ingredients or the
actions using the kitchen tools. The instructions
relocate, process, combine, and separate ingredi-
ents, as well as heat or cool utensils in the recipes.
For the most part, the output produced from one
instruction feeds as input into another instruction.
The list of ingredients can be generalized as spe-
cial fetch instructions whose output feeds as input
to one of the cooking instructions.

3.2 SIMMR

Our proposed representation is SIMMR: Simpli-
fied Ingredient Merging Map in Recipes. SIMMR
represents a recipe as a dependency tree whose
leaves (terminal nodes) are the recipe ingredients,
and whose internal nodes are the recipe instruc-
tions. Figure 1 exemplifies the SIMMR tree of a
recipe for Surprise-inside French Toast. Indices
for all ingredients and instructions are provided
here to illustrate mapping between the different
parts of the text recipe and its SIMMR tree. The
subtree headed by inst2 indicates that ingredients
#1, #2 and #3 (three cheeses) are inputs to instruc-
tion #2, whose output is then an input to instruc-



tion #3, together with ingredients #4 and #5 (sugar
and vanilla). The SIMMR tree provides additional
insights into the structure of recipes, suggesting
in the case of this example, that multiple actions
can take place in different orders without changing
the recipe so long as the order of combinations is
not changed. Some instructions simply transforms
their input to produce their output, e.g. instruc-
tions #1, #7, #8 and #9.

3.3 From MILK to SIMMR

We use MILK commands from the CMU CURD
database (Tasse and Smith, 2008) to construct
a database of SIMMR trees. The MILK lan-
guage is a lot more expressive that SIMMR. For
example, instruction #2 in Figure 1 translates
into create_tool(t0, “large bowl); combine(ingl,
ing2, ing3, ing9, “cheeses”, “’); and put(ing9,
t0). These details of ingredient processing are ab-
stracted away in SIMMR. To accomplish SIMMR
instruction and ingredient linking, we process
MILK instructions in order, tracing with MILK id
numbers when each ingredient or its transformed
or combined form at one instruction node is called
for by a subsequent instruction node. The MILK
intermediate names for instruction outputs (e.g.,
“cheeses” above) are not adopted in SIMMR. Ad-
ditionally, food items that appear in instructions
but are not part of the recipe ingredient list text are
not included in SIMMR although MILK assigns
ingredient ids to them. For example, instruction
#8 mentions cooking spray, which is not on the in-
gredient list. As a result inst8 looks like it has no
ingredients coming into it other than the output of
inst7.

We assume in SIMMR that at most one output is
produced from each instruction. One MILK com-
mand, separate, violates this assumption. For ex-
ample, the instruction drain off the fat, and place
the mixture into a slow cooker is MILK-tagged
with a separate command to dispose fat, and re-
tain the mixture. We ignore the separate command
which occurs in 3% of all recipes (and 1.3% of the
time involves disposing of a separated ingredient,
such as draining off fat).

Instructions that do not interact with food, such
as those calling for preheating the oven or lining
the baking sheets, are considered to take the ingre-
dient mixture of the cooking instruction immedi-
ately prior and produce the same output.

783

4 Recipe Parser

In this section, we present our SIMMR tree recipe
parser. The input and output of the parser cor-
respond to the left hand and right hand sides of
Figure 1. We split the parsing process into two
phases: first we link ingredients to instructions
where the ingredients are first used; then we link
instructions to other instructions, where the tar-
get instruction uses the source instruction’s output.
We present the different challenges and solutions
employed in each phase below and present evalu-
ation results.

4.1 Experimental Setup
4.1.1 Data

We use a total of 260 recipes downloaded from
CMU Recipe Database. MILK tags are used to
construct the SIMMR trees as mentioned above.
The dataset is randomly split (along recipe bound-
aries) into training, development, and test sets with
ratios of 50%, 20%, and 30%, respectively. The
development set is used for tuning parameters. We
report here on the test set only. We preprocess
the data using standard NLP packages to tokenize,
stem, and POS tag the words (De Marneffe et al.,
2006; Bird et al., 2009; De Smedt and Daelemans,
2012). We further remove stop words and quantity
measures.'

4.1.2 Metrics

The evaluation metric is the accuracy of predict-
ing edges in the SIMMR tree. This is compara-
ble to the attachment score in dependency pars-
ing. The overall accuracy of the task is computed
at the edge level (counting all edges in the data
set), and at the recipe level (average accuracy over
all recipes).

4.2 Ingredient-Instruction Linking
4.2.1 Challenges

There are several characteristics of recipe text that
do not reveal explicit linking of ingredients to in-
structions that first use them. The ingredients are
sometimes referred to by their qualifiers or onto-
logical classes. For example, the ingredient / (15
0z) can sliced peaches, drained may be referred
to in the instruction as canned fruit. In addition,

!Since we start from the MILK representations, the set
of ingredients and instructions are clearly identified in each
recipe. However, we do not expect this to be the case when
starting from raw text recipes, which need to be processed to
segment the different ingredients and instructions. We do not
attempt this step in this paper and leave it as future work.



Edge-level | Recipe-level

Accuracy Accuracy
Baseline 84.3 84.8
SVMrank 95.3 95.8

Table 1: Performance of different learning models
for ingredient-instruction linking

a number of ingredients are sometimes referred to
as a group entity without specific mentions, e.g.,
Add the remaining ingredients, or mix together the
dry ingredients.

4.2.2 Baseline

For each instruction, in order, we compute all the
maximum stemmed n-gram chunk matches against
all ingredients. For each matching token chunk of
the instruction, if it matches only one ingredient,
we link the ingredient to the instruction and mark
the ingredient as used. Otherwise, we compute the
Levenshtein distance between the unstemmed sur-
face text of both the ingredient candidate matches
and the instruction token chunk, and take the high-
est matching ingredient. Once an ingredient is
used, it is no longer available for linking with sub-
sequent instructions.

4.2.3 Features and Linking

For each ingredient-instruction edge, we provide
1,136 features to classify whether the edge exists
or not. The following are some of the most impor-
tant features we use:

e The baseline decision for the ingredient-
instruction edge.

e The number of distinct unigram matches.

e The largest match size.

e The sum of the relative frequency (in the list
of instructions) of every word in the largest
match (henceforth SRFM).

e The degree of similarity between SRFM and
the instruction relative position (InstRP) in
the instruction list. The intuition for this fea-
ture is that if an ingredient is mentioned more
often in the recipe, its first mention is likely
to be in an earlier instruction. This feature is
computed as (1 — [SRFM — InstRP)).

e The degree of similarity between the ingredi-
ent relative position (IngRP) in the ingredient
list and the InstRP. This feature captures an
observation that earlier listed ingredients are
used by earlier instructions. We compute the
feature as (1 — |[IngRP — InstRP]).

784

e To model the first word of each instruction
(i.e., the directive verb such as heat or mix),
we use a binary term vector whose vocab-
ulary is constructed from all the instruction
first words in the training data.

e We model the maximum ingredient-
instruction word match using a binary
term vector whose vocabulary covers
non-directive recipe words (NDRW). We
construct the NDRW vocabulary by taking
the union of the set of words from the
compiled food item list of Ahn et al. (2011)
and the non-first words of the instructions in
the training data.

o If there is a match, we model its surround-
ing words using a similar binary term vector
(NDRW vocabulary). If there is no match,
the vector will be empty.

e We use a binary term vector (NDRW vocabu-
lary also) to model the non-first words in the
instruction.

We train using Linear SVMrank (Joachims,
2006).2 The test set results are shown in Table 1.
Ranking edges using SVMrank and then picking
the best one significantly outperforms the baseline.

4.2.4 Linking Errors

Among the linking errors, three patterns appear.
First, stemming reduces the specificity of some of
the terms, e.g., one prediction links baking powder
to an action bake for 30 minutes. Second, our ap-
proach does not handle negated mentions, e.g. the
instruction mix together the dry ingredients, ex-
cept the candies is incorrectly linked to ingredi-
ent candy. Finally, the ingredients flour and butter
are specifically part of many erroneous links be-
cause they are often used in small quantities to fa-
cilitate the cooking process such as board flouring
and pan greasing. MILK does not always account
for this trivial use of these ingredients and neither
does SIMMR.

4.3 Instruction-Instruction Linking
4.3.1 Challenges

Although cooking instructions are written with an
implied temporal order, they are not linked in a
linear chain. Rather, the instructions describe dif-
ferent cooking stages, where the output of apply-

2We also experimented Linear SVM and Gaussian Kernel
SVM (Pedregosa et al., 2011). We used the distance from
the hyperplane to select the best edge among the set of edges
connecting an ingredient. However, these techniques under-
performed compared to SVMrank.



ing a number of instructions waits until other in-
structions are finished to be used again, e.g., the
output of instruction #1 in Figure 1 waits until in-
structions #2 and #3 are done. Sometimes stage
switching is explicitly stated as in Set aside the
Sflour mixture, and combine eggs and oil together,;
however, this is not the common case. Further-
more, the waiting output of an earlier stage may
be referred to collectively or using the main ingre-
dient which makes linking harder, e.g., referring
to the output of an instruction combining chicken,
salt and pepper as chicken.

4.3.2 Baseline

We link the instructions in a linear chain. In
the training set, 89% of the instruction-instruction
links are to the immediate neighbor.

4.3.3 Features and Linking

For each possible instruction-instruction edge, we
provide 1,573 features to classify if the edge exists
or not. The features group into three categories.

First are words that suggest cooking stage
switching, e.g., ingredient mixture words such as
mixture, dough, and batter, or the simple men-
tion of new containers and utensils. They are
represented as binary features indicating whether
the words appear in either or both instructions
along the considered edge, as well as in imme-
diate neighboring instructions. Logic operations
(and, or) are further applied to all pairs of these
features. Another feature in this group is a binary
verb conjugation feature that marks the presence
of a past participle verb in the target instruction
and a non-past-participle form of the same verb in
the source instruction. The intuition here is that an
instruction that asks to chop an ingredient would
be followed later by an instruction containing the
word chopped when referring to the ingredient.

The second group consists of features that en-
code whether the n previous or future instructions
has m linked ingredients, where n ranges from 1
to 3 and m ranges from O to 4.

Finally, the third group deals with term vec-
tors describing the source and target instructions,
as well as, the instructions’ first words (the direc-
tives). The term vector vocabularies used are the
same as those discussed above in the ingredient-
instruction linking section.

We additionally consider decoupling the fea-
tures for the case of immediate neighboring in-
structions from the further apart instructions. In
the decoupled mode, we effectively double the
number of features for each edge with nils used

785

Edge-level | Recipe-level
Accuracy | Accuracy
Baseline 87.6 89.5
SVMrank 90.5 92.0
SVMrank - decoupled 91.3 92.4

Table 2: Performance of different learning models
for instruction-instruction linking

to fill in the gaps. This allows us to learn different
models for adjacent and apart instructions. The re-
sults are in Table 2 and show that decoupling fea-
tures in SVMrank is our best setting.

Examining the weights learned for adjacent and
long-distance edge features gives some interesting
insights. One example is that the verb conjuga-
tion feature has a higher weight for long-distance
edges compared to adjacent edges. This is un-
derstandable as most adjacent pairs of instructions
would not exhibit this feature to express cooking
progress: it is redundant to state, cook the pasta,
and immediately refer to that pasta as the cooked
pasta.

4.3.4 Linking Errors

As the distance between linked instructions in-
creases, the likelihood of error also increases:
while long-distance (i.e., non-adjacent) links con-
stitute 12.3% of the reference, they are 91.7% of
the errors. We expect that more training examples
of long-distance linking can help address this is-
sue.

4.4 Overall Accuracy

The overall edge-level accuracy of constructing
the full SIMMR tree is 93.5%, outperforming a
baseline of 85.7%, and achieving error reduction
of 54.5%.

5 Conclusions and Future Work

We proposed a new ingredient-instruction depen-
dency tree representation to capture the internal
structure of cooking recipes, and built a parser for
it. Our overall parsing accuracy is 93.5%, outper-
forming a strong baseline of 85.7%.

We will make our SIMMR database, and our
SIMMR parser publicly available. Further, we
plan to build on SIMMR to get closer to the MILK
representation. We also plan on parsing a large
corpus of text recipes to provide structural features
on a large scale that will allow us to discover new
patterns of similarity across and within cuisines,
as well as generate new recipes.



References

Omri Abend, Shay B Cohen, and Mark Steedman.
2015. Lexical event ordering with an edge-factored
model. In Proceedings of NAACL.

Yong-Yeol Ahn, Sebastian E Ahnert, James P Bagrow,
and Albert-Laszl6 Barabasi. 2011. Flavor network
and the principles of food pairing. Scientific reports,
1.

Steven Bird, Ewan Klein, and Edward Loper.
2009. Natural language processing with Python.
”O’Reilly Media, Inc.”.

Marie-Catherine De Marneffe, Bill MacCartney,
Christopher D Manning, et al. 2006. Generat-
ing typed dependency parses from phrase structure
parses. In Proceedings of LREC, volume 6, pages
449-454.

Tom De Smedt and Walter Daelemans. 2012. Pattern
for python. The Journal of Machine Learning Re-
search, 13(1):2063-2067.

Anupam Jain, Ganesh Bagler, et al. 2015. Spices form
the basis of food pairing in indian cuisine. arXiv
preprint arXiv:1502.03815.

Thorsten Joachims. 2006. Training linear svms in lin-
ear time. In Proceedings of the 12th ACM SIGKDD
international conference on Knowledge discovery

and data mining, pages 217-226. ACM.

Jon Malmaud, Earl J] Wagner, Nancy Chang, and Kevin
Murphy. 2014. Cooking with semantics. ACL 2014,
page 33.

Shinsuke Mori, Tetsuro Sasada, Yoko Yamakata, and
Koichiro Yoshino. 2012. A machine learning ap-
proach to recipe text processing. In Proc. of the 1st
Cooking with Computer Workshop, pages 29-34.

Shinsuke Mori, Hirokuni Maeta, Yoko Yamakata, and
Tetsuro Sasada. 2014. Flow graph corpus from
recipe texts. In Proceedings of the Nineth Interna-
tional Conference on Language Resources and Eval-
uation, pages 2370-2377.

V Nedovic. 2013. Learning recipe ingredient space
using generative probabilistic models. In Proceed-
ings of Cooking with Computers Workshop (CwC),
volume 1, pages 13-18.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. 2011. Scikit-learn: Machine learn-
ing in Python. Journal of Machine Learning Re-
search, 12:2825-2830.

Dan Tasse and Noah A Smith. 2008. Sour cream: To-
ward semantic processing of recipes. Technical re-
port, Technical Report CMU-LTI-08-005, Carnegie
Mellon University, Pittsburgh, PA.

786



