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Abstract

This paper introduces a convolutional sen-
tence kernel based on word embeddings.
Our kernel overcomes the sparsity issue
that arises when classifying short docu-
ments or in case of little training data. Ex-
periments on six sentence datasets showed
statistically significant higher accuracy
over the standard linear kernel with n-
gram features and other proposed models.

1 Introduction

With the proliferation of text data available on-
line, text categorization emerged as a prominent
research topic. Traditionally, words (unigrams)
and phrases (n-grams) have been considered as
document features and subsequently fed to a clas-
sifier such as an SVM (Joachims, 1998). In the
SVM dual formulation that relies on kernels, i.e.
similarity measures between documents, a linear
kernel can be interpreted as the number of ex-
act matching n-grams between two documents.
Consequently, for short documents or when lit-
tle training data is available, sparsity issues due
to word synonymy arise, e. g., the sentences ‘John
likes hot beverages’ and ‘John loves warm drinks’
have little overlap and therefore low linear kernel
value (only 1) in the n-gram feature space, even
with dependency tree representations and down-
ward paths for n-grams as illustrated in Figure 1.
We propose to relax the exact matching between
words by capitalizing on distances in word embed-
dings. We smooth the implicit delta word kernel,
i.e. a Dirac similarity function between unigrams,
behind the traditional linear document kernel to
capture the similarity between words that are dif-
ferent, yet semantically close. We then aggregate
these word and phrase kernels into sentence and
documents kernels through convolution resulting
in higher kernel values between semantically re-
lated sentences (e.g., close to 7 compared to 1
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(a) ‘John likes hot beverages’ (b) ‘John loves warm drinks’

Figure 1: Dependency tree representations of se-
mantically related sentences yet with little overlap.

with bigram downward paths in Figure 1). Ex-
periments on six standard datasets for sentiment
analysis, subjectivity detection and topic spotting
showed statistically significant higher accuracy for
our proposed kernel over the bigram approaches.
Our main goal is to demonstrate empirically that
word distances from a given word vector space can
easily be incorporated in the standard kernel be-
tween documents for higher effectiveness and lit-
tle additional cost in efficiency.

The rest of this paper is structured as follows.
Section 2 reviews the related work. Section 3 gives
the detailed formulation of our kernel. Section 4
describes the experimental settings and the results
we obtained on several datasets. Finally, Section 5
concludes our paper and mentions future work.

2 Related work

Siolas and d’ Alché Buc (2000) pioneered the idea
of semantic kernels for text categorization, cap-
italizing on WordNet (Miller, 1995) to propose
continuous word kernels based on the inverse of
the path lengths in the tree rather than the com-
mon delta word kernel used so far, i.e. exact
matching between unigrams. Bloehdorn et al.
(2006) extended it later to other tree-based simi-
larity measures from WordNet while Mavroeidis
et al. (2005) exploited its hierarchical structure to
define a Generalized Vector Space Model kernel.
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In parallel, Collins and Duffy (2001) devel-
oped the first tree kernels to compare trees based
on their topology (e.g., shared subtrees) rather
than the similarity between their nodes. Culotta
and Sorensen (2004) used them as Dependency
Tree Kernels (DTK) to capture syntactic similar-
ities while Bloehdorn and Moschitti (2007) and
Croce et al. (2011) used them on parse trees
with respectively Semantic Syntactic Tree Ker-
nels (SSTK) and Smoothing Partial Tree Kernels
(SPTK), adding node similarity based on Word-
Net to capture semantic similarities but limiting to
comparisons between words of the same POS tag.

Similarly, Gértner et al. (2003) developed graph
kernels based on random walks and Srivastava et
al. (2013) used them on dependency trees with
Vector Tree Kernels (VTK), adding node simi-
larity based on word embeddings from SENNA
(Collobert et al., 2011) and reporting improve-
ments over SSTK. The change from WordNet to
SENNA was supported by the recent progress in
low-dimension Euclidean vector space representa-
tions of words that are better suited for computing
distances between words. Actually, in our exper-
iments, word2vec by Mikolov et al. (2013a) led
to better results than with SENNA for both VTK
and our kernels. Moreover, it possesses an addi-
tional additive compositionality property obtained
from the Skip-gram training setting (Mikolov et
al., 2013b), e. g., the closest word to ‘Germany’ +
‘capital’ in the vector space is found to be ‘Berlin’.

More recently, for short text similarity, Song
and Roth (2015) and Kenter and de Rijke (2015)
proposed additional semantic meta-features based
on word embeddings to enhance classification.

3 Formulation
We denote the embedding of a word w by w.

3.1 Word Kernel (WK)

We define a kernel between two words as a poly-
nomial kernel over a cosine similarity in the word

embedding space:
[0
> } )

where « is a scaling factor. We also tried Gaus-
sian, Laplacian and sigmoid kernels but they led
to poorer results in our experiments. Note that a
delta word kernel, i. e. the Dirac function 1, =,
leads to a document kernel corresponding to the
standard linear kernel over n-grams.

(w1, wa)

1
WK = =1
(wr, wz) [2( T lwal
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3.2 Phrase Kernel (PhK)

Next we define a kernel between phrases consist-
ing of several words. In our work, we considered
two types of phrases: (1) co-occurrence phrases
defined as contiguous sequences of words in the
text; and (2) syntactic phrases defined as down-
ward paths in the dependency tree representation,
e. g., respectively ‘hot beverages’ and ‘beverages
hot’ in Figure 1. With this dependency tree in-
volved, we expect to have phrases that are syntac-
tically more meaningful. Note that VTK consid-
ers random walks in dependency trees instead of
downward paths, i.e. potentially taking into ac-
count same nodes multiple times for phrase length
greater than two, phenomenon known as tottering.

Once we have phrases to compare, we may con-
struct a kernel between them as the product of
word kernels if they are of the same length /. That
is, we define the Product Kernel (PK) as:

l
PK(p1,p2) = [ [ WK(w/, w}) )
=1

where fwg is the i-th word in phrase p; of length [.
Alternatively, in particular for phrases of different
lengths, we may embed phrases into the embed-
ding space by taking a composition operation on
the constituent word embeddings. We considered
two common forms of composition (Blacoe and
Lapata, 2012): vector addition (4) and element-
wise multiplication (®). Then we define the Com-
position Kernel (CK) between phrases as:

CK(p1,p2) = WK(p1,p2) 3)

where p;, the embedding of the phrase p;, can be
obtained either by addition (p;=3"!_,
element-wise multiplication (p; = @i-:l w) of its
word embeddings. For CK, we do not require the
two phrases to be of the same length so the kernel
has a desirable property of being able to compare

‘Berlin’ with ‘capital of Germany’ for instance.

wg) or by

3.3 Sentence Kernel (SK)

We can then formulate a sentence kernel in a sim-
ilar way to Zelenko et al. (2003). It is defined
through convolution as the sum of all local phrasal
similarities, i.e. kernel values between phrases
contained in the sentences:

SK(s1,52) = Y M X\"PhK(p1,p2) (4)

p1 €¢(81 )7
P2€9(s2)



where ¢(sy) is the set of either statistical or syn-
tactic phrases (or set of random walks for VTK)
in sentence si, A; is a decaying factor penaliz-
ing longer phrases, € =max{|p1|, |p2|} is the max-
imum length of the two phrases, A is a distortion
parameter controlling the length difference 1 be-
tween the two phrases (n=||p1| — |p2||) and PhK
is a phrase kernel, either PK, CK* or CK®.

Since the composition methods we consider are
associative, we employed a dynamic programming
approach in a similar fashion to Zelenko et al.
(2003) to avoid duplicate computations.

3.4 Document Kernel

Finally, we sum sentence kernel values for all pairs
of sentences between two documents to get the
document kernel. Once we have obtained all doc-
ument kernel values K;; between documents 7 and
J, we may normalize them by /K;;K;; as the
length of input documents might not be uniform.

4 Experiments

We evaluated our kernel with co-occurrence and
syntactic phrases on several standard text catego-
rization tasks.

4.1 Datasets

We considered four tasks: (1) binary sentiment
analysis with a movie review dataset of 10,662
sentences (PL05) (Pang and Lee, 2005) and a
product review dataset (Amazon) of 2,000 multi-
line documents for 4 different product groups
(Blitzer et al., 2007) (we will report the average ef-
fectiveness over the 4 sub-collections); (2) ternary
sentiment analysis with the SemEval 2013 Task
B dataset (Twitter) containing 12,348 tweets clas-
sified as positive, neutral or negative (Nakov et
al., 2013); (3) binary subjectivity detection with a
dataset of 10,000 sentences (PL04) (Pang and Lee,
2004) and another of 11,640 sentences (MPQA)
(Wiebe et al., 2005); and (4) seven-class topic
spotting with a news dataset (News) of 32,602
one-line news summaries (Vitale et al., 2012).

4.2 Experimental settings

In all our experiments, we used the FANSE parser
(Tratz and Hovy, 2011) to generate dependency
trees and the pre-trained version of word2vec!, a
300 dimensional representation of 3 million En-
glish words trained over a Google News dataset

'https://code.google.com/p/word2vec
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of 100 billion words using the Skip-gram model
and a context size of 5. While fine-tuning the em-
beddings to a specific task or on a given dataset
may improve the result for that particular task or
dataset (Levy et al., 2015), it makes the expected
results less generalizable and the method harder
to use as an off-the-shelf solution — re-training the
neural network to obtain task-specific embeddings
requires a certain amount of training data, admit-
tedly unlabeled, but still not optimal under our sce-
nario with short documents and little task-specific
training data available. Moreover, tuning the hy-
perparameters to maximize the classification accu-
racy needs to be carried out on a validation set and
therefore requires additional labeled data. Here,
we are more interested in showing that distances
in a given word vector space can enhance classi-
fication in general. As for the dependency-based
word embeddings proposed by Levy and Goldberg
(2014), we do not think they are better suited for
the problem we are tackling. As we will see in the
results, we do benefit from the dependency tree
structure in the phrase kernel but we still want the
word kernel to be based on topical similarity rather
than functional similarity.

To train and test the SVM classifier, we used
the LibSVM library (Chang and Lin, 2011) and
employed the one-vs-one strategy for multi-class
tasks. To prevent overfitting, we tuned the pa-
rameters using cross-validation on 80% of PLOS
dataset (o« = 5, Ay = 1 for PK since there is no
need for distortion as the phrases are of the same
length by definition, and A\; = A2 = 0.5 for CK)
and used the same set of parameters on the remain-
ing datasets. We performed normalization for our
kernel and baselines only when it led to perfor-
mance improvements on the training set (PLOS,
News, PL04 and MPQA).

We report accuracy on the remaining 20% for
PLOS, on the standard test split for Twitter (25%)
and News (50%) and from 5-fold cross-validation
for the other datasets (Amazon, PL04 and MPQA).
We only report accuracy as the macro-average F1-
scores led to similar conclusions (and except for
Twitter and News, the class label distributions
are balanced). Results for phrase lengths longer
than two were omitted since they were marginally
different at best. Statistical significance of im-
provement over the bigram baseline with the same
phrase definition was assessed using the micro
sign test (p < 0.01) (Yang and Liu, 1999).



Table 1: Accuracy results on the test set for PL0O5 (20%), standard test split for Twitter (25%) and News
(50%) and from 5-fold CV for the other datasets (Amazon, PL0O4 and MPQA). Bold font marks the best
performance in the column. " indicates statistical significance at p < 0.01 using micro sign test against
the bigram baseline (delta word kernel) of the same column and with the same phrase definition.

phr‘fls,e phrase | phrase | word PLO5S Amazon Twitter News PL04 MPQA
definition kernel | length | kernel
co-occurrence PK 1 delta || 0.742 0.768 0.623 0.769 0.904 0.754
co-occurrence PK 2 delta || 0.739 0.765 0.611 0.766  0.907 0.754
syntactic PK 2 delta || 0.748  0.791  0.646 0.767 0910 0.757
random walk PK 2 poly 0.799 0.810 0.698 0.802 0.927 0.797
co-occurrence | PK 1 poly || 0.789° 0.797  0.776° 0.806" 0.923° 0.793"
co-occurrence | PK 2 poly || 0.784° 0.798  0.762° 0.801" 0.926" 0.794"
co-occurrence | CK* 2 poly || 0.796° 0.778  0.613  0.792" 0.917° 0.796"
co-occurrence | CK® 2 poly || 0.801° 0.783  0.757° 0.793" 0.918" 0.794"
syntactic PK 2 poly || 0.796° 0.813°  0.808" 0.805" 0.927° 0.796"
syntactic CK* 2 poly || 0.794° 0.780  0.741° 0.788" 0.918" 0.794"
syntactic CK® 2 poly || 0.797° 0.774  0.744" 0.792" 0.918" 0.794"
4.3 Results 0.94
Table 1 presents results from our convolutional o 090
sentence kernel and the baseline approaches. Note § 086 !
again that a delta word kernel leads to the typi- g o2 ~= PK (poly) ||
cal unigram and bigram baseline approaches (first OB | — PK(delta)|]
0.74

three rows). The 3™ row corresponds to DTK (Cu-
lotta and Sorensen, 2004) and the 4™ one to VTK
(Srivastava et al., 2013) — the difference with our
model on the 9" row lies in the function ¢(-) that
enumerates all random walks in the dependency
tree representation following Girtner et al. (2003)
whereas we only consider the downward paths.

Overall, we obtained better results than the n-
gram baselines, DTK and VTK, especially with
syntactic phrases. VTK shows good performance
across all datasets but its computation was more
than 700% slower than with our kernel. Regarding
the phrase kernels, PK generally produced better
results than CK, implying that the semantic lin-
earity and ontological relation encoded in the em-
bedding is not sufficient enough and treating them
separately is more beneficial. However, we be-
lieve CK has more room for improvement with
the use of more accurate phrase embeddings such
as the ones from Le and Mikolov (2014), Yin and
Schiitze (2014) and Yu and Dredze (2015).

There was little contribution to the accuracy
from non-unigram features, indicating that large
part of the performance improvement is credited to
the word embedding resolving the sparsity issue.
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Figure 2: Test accuracy vs. number of training
examples for our kernel and the bigram baseline.

This can be well observed with the following ex-
periment on the number of training examples. Fig-
ure 2 shows the accuracy on the same test set (20%
of the dataset) when the learning was done on 1%
to 100% of the training set (80% of the dataset)
for the bigram baseline and our bigram PK phrase
kernel, both with dependency tree representation,
on PLO4. We see that our kernel starts to plateau
earlier in the learning curve than the baseline and
also reaches the maximum baseline accuracy with
only about 1,500 training examples.

4.4 Computational complexity

Solving the SVM in the primal for the baselines
requires O(NnL) time where N is the number
of training documents, n is the number of words
in the document and L is the maximum phrase
length considered. The computation of VTK re-
duces down to power series computation of the



adjacency matrix of the product graph, and since
we require kernel values between all documents, it
requires O(N?2(n?d 4+ n*L)) time where d is the
dimension of the word embedding space.

Our kernel is the sum of phrase kernels (PhK)
starting from every pair of nodes between two sen-
tences, for all phrase lengths (I) and distortions
(A2) under consideration. By storing intermedi-
ate values of composite vectors, a phrase kernel
can be computed in O(d) time regardless of the
phrase length, therefore the whole computation
process has O(N2n2L2d) complexity. Although
our kernel has the squared terms of the baseline’s
complexity, we are tackling the sparsity issue that
arises with short text (small n) or when little train-
ing data is available (small N). Moreover, we
were able to get better results with only bigrams
(small L). Hence, the loss in efficiency is accept-
able considering significant gains in effectiveness.

5 Conclusion

In this paper, we proposed a novel convolutional
sentence kernel based on word embeddings that
overcomes the sparsity issue, which arises when
classifying short documents or when little training
data is available. We described a general frame-
work that can encompass the standard n-gram
baseline approach as well as more relaxed ver-
sions with smoother word and phrase kernels. It
achieved significant improvements over the base-
lines across all datasets when taking into account
the additional information from the latent word
similarity (word embeddings) and the syntactic
structure (dependency tree).

Future work might involve designing new ker-
nels for syntactic parse trees with appropriate sim-
ilarity measures between non-terminal nodes as
well as exploring recently proposed phrase em-
beddings for more accurate phrase kernels.
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