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Abstract

Open domain targeted sentiment is the
joint information extraction task that finds
target mentions together with the senti-
ment towards each mention from a text
corpus. The task is typically modeled as a
sequence labeling problem, and solved us-
ing state-of-the-art labelers such as CRF.
We empirically study the effect of word
embeddings and automatic feature combi-
nations on the task by extending a CRF
baseline using neural networks, which
have demonstrated large potentials for
sentiment analysis. Results show that the
neural model can give better results by
significantly increasing the recall. In ad-
dition, we propose a novel integration of
neural and discrete features, which com-
bines their relative advantages, leading to
significantly higher results compared to
both baselines.

1 Introduction

Targeted sentiment analysis has drawn growing re-
search interests over the past few years. Compared
with traditional sentiment analysis tasks, which
extract the overall sentiment of a document, a sen-
tence or a tweet, targeted sentiment analysis ex-
tracts the sentiment over given targeted entities
from a text, and therefore is practically more infor-
mative. An example is shown in Figure 1. There
are at least two practical scenarios:

(1) Certain entities of concern are specified, and
the requirement is to extract the sentiment to-
wards their mentions in a text. For exam-
ple, one can be interested in the sentiment
towards Google Inc., Microsoft and Face-
book in financial news texts, or the sentiment
towards Manchester United, Liverpool and
Chelsea in tweets.

So excited to meet my [baby Farah]+ !!!
[Baseball Warehouse]+ : easy to under-
stand information.
The [#Afghan #Parlaiment Speaker]−
should Resign .
Saw [Erykah Badu]− last night , vile
venue unfortunately .
[AW service]0 will be back at work .

Figure 1: Targeted sentiment analysis.

(2) No specified target is given, and the require-
ment is to find sentiments towards entities in
the open domain. For example, one might be
interested extracting the mentions to all per-
sons and organizations, together with the sen-
timents towards each mention, from a news
archive or a collection of novels.

There are two sub tasks in targeted sentiment
analysis, namely entity recognition and sentiment
classification for each entity mention which ap-
ply to both scenarios above. In scenario (1), en-
tity recognition is relatively trivial, and can typ-
ically be achieved by pattern matching. Partly
due to this reason, most previous work has ad-
dressed targeted sentiment analysis as a pure clas-
sification task, assuming that target mentions have
been given (Jiang et al., 2011; Chen et al., 2012;
Dong et al., 2014; Vo and Zhang, 2015). For
scenario (2), a named entity recognition (NER)
system can be used to extract targets, before the
same targeted sentiment classification algorithms
are applied. There has also been work that con-
centrates on extracting opinion targets (Jin et al.,
2009; Jakob and Gurevych, 2010). In both cases,
the data in Figure 1 can be used for training senti-
ment classifiers.

Mitchell et al. (2013) took a different ap-
proach, extracting named entities and their senti-
ment classes jointly. They model the joint task
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sentence: So excited to meet my baby Farah !!!

entity:
sentiment:

O O O O O B I O

Φ Φ Φ Φ Φ + + Φ

(a) pipeline or joint

sentence: So excited to meet my baby Farah !!!

collapsed: O O O O O B+ I+ O

(b) collapsed

Figure 2: Pipeline, joint and collapsed models for
open targeted sentiment analysis.

as an extension to the NER task, where an extra
sentiment label is assigned to each named entity,
in addition to the entity label. As a result, the
task can be solved using sequence labeling meth-
ods. As claimed by Mitchell et al. (2013), the
joint task is particularly suitable when no extra re-
sources are available for training separate syntac-
tic analyzers or name entity recognizers. Such sit-
uations can include tweets and low-resource lan-
guages/domains. Interestingly, because of con-
taining entity information, the annotation in Fig-
ure 1 suffices for training joint entity and senti-
ment labels even if it is the only resource available.

The annotations in Figure 1 can be transformed
into label sequences, as shown in Figure 2. Fig-
ure 2 consists of two types of labels, where the
B/I/O labels indicate span boundaries, and the +/-
/0 labels indicate sentiment classes. The two types
of labels can be assigned in a span→sentiment
pipeline, or jointly as a multi-label task. Alterna-
tively, as shown in Figure 2(b), the two types of la-
bels can be collapsed into a joint label, such as B+
and I-, indicating the beginning of a positive entity
and the middle of a negative entity, respectively.
The collapsed labels allow joint entity recognition
and sentiment classification to be achieved using a
standard sequence labeler.

Mitchell et al. (2013) compare a pipeline model,
a joint model and a collapsed model under the
same conditional random field (CRF) framework,
finding that the pipeline method outperforms the
joint model on a tweet dataset. Intuitively, the in-
teraction between entity boundaries and sentiment
classes might not be as strong as that between
more closely-coupled sources of information, such
as word boundaries and POS (Zhang and Clark,
2008), or named entities and constituents (Finkel
and Manning, 2009), for which joint models sig-
nificantly outperform pipeline models. On the

other hand, there do exist cases where entity
boundaries and sentiment classes reinforce each
other. For example, in a tweet such as ‘I like X.’,
the contextual pattern indicate both a positive sen-
timent and an entity in the place of X.

Recently, neural network models have been in-
creasingly used for sentiment analysis (Socher et
al., 2013; Kalchbrenner et al., 2014; dos San-
tos and Gatti, 2014), achieving highly competi-
tive results, which show large potentials of neu-
ral network models for this task. The main ad-
vantages of neural networks are two-fold. First,
neural models use real-valued hidden layers to au-
tomatically learn feature combinations, which can
capture complex semantic information that are dif-
ficult to express using traditional discrete man-
ual features. Second, neural networks take dis-
tributed word embeddings as inputs, which can be
trained from large-scale raw text, thus alleviating
the scarcity of annotated data to some extent. In
this paper, we exploit structured neural models for
open targeted sentiment.

We take the CRF model of Mitchell et al. (2013)
as the baseline, and explore two research ques-
tions. First, we make an empirical comparison be-
tween discrete and neural CRF models, and fur-
ther combine the strengths of each model via fea-
ture integration. Second, we compare the effects
of the pipeline, joint and collapsed models for
open targeted sentiment analysis under the neu-
ral model settings. Our experiments show that the
neural model gives competitive results compared
with the discrete baseline, with relatively higher
recalls. In addition, the integrated model signifi-
cantly improves over both the discrete and the neu-
ral models.

2 Related Work

Targeted sentiment analysis is closely related prior
work on aspect-oriented (Hu and Liu, 2004),
feature-oriented (Popescu and Etzioni, 2007) and
topic-oriented (Yi et al., 2003) sentiment analysis.
These related tasks are typically concentrated on
product review settings. In contrast, targeted sen-
timent analysis has a more general setting.

Recently, Wang et al. (2011) proposed a topic-
oriented model, which extracts sentiments towards
certain topics from tweets. Topics in their model
resemble targets in our work, although topics are
represented by hashtags, which exists in 14.6%
tweets and 27.5% subjective tweets (Wang et al.,
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2011). In contrast, targeted sentiment analysis
can identify all the mentions to target entities in
tweets, thereby having a larger coverage. The
drawback is that the identification of mentions is
subject to errors, and thus suffers a lower preci-
sion compared to hashtag matching.

Sequence labeling models have been used for
extracting opinions and target entities as a joint
task. Jin et al. (2009) use HMM to extract opinion-
baring expressions and opinion targets. Li et al.
(2010) improve the results by using CRF to iden-
tify the opinion expressions and targets jointly.
The task is sometimes referred to as fine-grained
sentiment analysis (Wiebe et al., 2005). It is differ-
ent from our setting in that the predicate-argument
relation between opinion-baring expressions and
target entities are not explicitly modeled.

Recently, Yang and Cardie (2013) use CRF to
extract opinion-baring expressions, opinion hold-
ers and opinion targets simultaneously. Their
method is also centralized on opinion-baring ex-
pressions and therefore in line with Jin et al.
(2009) and Li et al. (2010). In contrast, targeted
sentiment analysis directly studies entity mentions
and the sentiment on each mention, without ex-
plicitly modeling the way in which the opinion is
expressed. As a result, our task is more useful for
applications such as broad-stroke reputation man-
agement, but offer less fine-grained operational in-
sight. It requires less fine-grained manual annota-
tion.

As discussed in the introduction, targeted sen-
timent analysis falls into two main settings. The
first is targeted sentiment classification, assum-
ing that entity mentions are given. Most previous
work fall under this category (Jiang et al., 2011;
Chen et al., 2012; Dong et al., 2014). The sec-
ond is open domain targeted sentiment, which has
been discussed by Mitchell et al. (2013). The task
jointly extracts entities and sentiment classes, and
is analogous to joint entity and relation extraction
(Li and Ji, 2014) in that both are information ex-
traction tasks with multi-label outputs.

Our work is related to the line of work on us-
ing neural networks for sentiment analysis. Socher
et al. (2011) use recursive auto-encoders for senti-
ment analysis on the sentence level. They further
extend the method to a syntactic treebank anno-
tated with sentiment labels (Socher et al., 2013).
More recently, Kalchbrenner et al. (2014) use a
dynamic pooling network to include the structure
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Figure 3: Discrete CRF models for pipeline, joint
and collapsed targeted sentiment labeling.

of a sentence automatically, before classifying its
sentiment. Zhou et al. (2014) apply deep belief
networks for semi-supervised sentiment classifica-
tion. dos Santos and Gatti (2014) use deep convo-
lution neural networks with rich features to clas-
sify sentiments over tweets and movie reviews.
These methods use different models to represent
sentence structures, performing sentiment analysis
on the sentence level, without modeling targets.

Dong et al. (2014) perform targeted sentiment
classification by using a recursive neural network
to model the transmission of sentiment signal from
opinion baring expressions to a target. They as-
sume that the target mention is given, and perform
three-way sentiment classification. In contrast, we
apply a structural neural model for open domain
targeted sentiment analysis, identifying and clas-
sifying all targets in a sentence simultaneously.

3 Discrete CRF Baselines

As shown in Figure 2, the input ~x to our tasks is a
word sequence. Assuming no external resources,
there is no POS given to each input word xi. For
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the pipeline and collapsed tasks, there is a single
output label sequence ~y. For the joint task, there
are two label sequences ~y and ~z, for entity and sen-
timent labels, respectively. We take the models of
Mitchell et al. (2013) as our baseline, which are
standard CRFs with discrete manual features. To
facilitate comparison between the discrete base-
line and our neural models, we give a unified for-
mulation to all the models in this paper, introduc-
ing the neural and integrated models as extensions
to the discrete models.

The baseline CRF structures for pipeline, joint
and collapsed targeted sentiment analysis are
shown in Figure 3(a), 3(b) and 3(c), respectively.
In the figures, the input features are represented as
black and white circles, indicating that they take
0/1 binary values. The labels O, B and I indi-
cate a non-target, the beginning of a target, and
part of a target, respectively. The labels +, −,
0 and Φ indicate positive, negative, neutral and
NULL sentiments, respectively. The NULL sen-
timent is assigned to O entities automatically, and
modeled as a hidden variable in the pipeline and
joint CRFs.1 The collapsed labels take combined
meanings from their components.

The links between labels and inputs represent
output clique potentials:

Ψ(~x, yi) = exp
{
~θ · ~f(~x, yi)

}
,

where ~f(~x, yi), is a discrete manual feature vector,
and ~θ is the model parameter vector.

The links between labels represent edge clique
potentials:

Φ(~x, yi, yi−1) = exp
{
τ(yi, yi−1)

}
,

where τ(yi, yi−1) is the transition weight, which
is also a model parameter.

For both the pipeline and collapsed models, the
conditional probability of a label sequence given
an input sequence is:

P (~y|~x) =

|x|∏
i=1

Ψ(~x, yi)
|x|∏
j=1

Φ(~x, yi, yi−1)

Z(~x)
,

1Note the difference between neural and NULL senti-
ments. The former indicates that a target does not bare any
sentiment, and the latter simply means that the term is not a
part of a target.

surface features
word identity; word length; message length;
punctuation characters; has digit; has dash; is lower case;
is 3 or 4 letters; first letter capitalized; sentence position;
more than one letter capitalized; Jerboa features;

linguistic features
function words; can syllabify; curse words;
laugh words; words for good, bad, no, my;
intensifiers; slang words; abbreviations;
common verb endings; common noun endings;
subjective suffixes and prefixes;

cluster features
Brown cluster at length 3; Brown cluster at length 5;

sentiment features
is sentiment-bearing word; prior sentiment polarity;

Table 1: Discrete features.

where Z(~x) is the partition function:

Z(~x) =
∑
~y′

( |x|∏
i=1

Ψ(~x, y′i)
|x|∏
j=1

Φ(~x, y′i, y
′
i−1)

)
,

For the joint model, we apply a multi-label CRF
structure, where there are two separate sets of
output clique potentials Ψ1(~x, yi) and Ψ2(~x, zi)
and two separate sets of edge clique potentials
Φ1(~x, yi, yi−1) and Φ2(~x, zi, zi−1) for the label
sets {B, I,O} and {+,−, 0}, respectively. In
the Figure 3(b), there are also links between the
span label yi and the sentiment label zi for each
word xi. These links indicate label dependencies,
which are constraints for decoding. For example,
if yi = O, then zi must be φ.

We apply Viterbi decoding for all tasks, and
training is performed using a max-margin objec-
tive, which is discussed in Section 6. Our training
algorithm is different from that of Mitchell et al.
(2013), but gives similar discrete CRF accuracies
in our experiments. Wang and Mori (2009) also
applied a max-margin trainig strategy to train CRF
models. The set of features is taken from Mitchell
et al. (2013) without changes, as shown in Table
1. Here the cluster features refer to Brown word
clusters (Brown et al., 1992).

4 Neural Models

We extend the discrete baseline system with two
salient changes, which are illustrated in Figure 4.
First, the input discrete features are replaced with
continuous word embeddings. Each node in the
input takes a real value between 0 and 1, as repre-
sented by grey nodes in Figure 4. Second, a hidden
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Figure 4: Neural networks for pipeline, joint and
collapsed targeted sentiment labeling.

neural layer ~h is added between the input nodes ~x
and the label nodes yi.

Formally, the links between the input nodes ~x
and the hidden nodes ~hi for the node yi in Figure
4 represent a feature combination function:

~hi =tanh
(

W.(e(~xi−2)⊕ e(~xi−1)⊕ e(~xi)

⊕ e(~xi+1)⊕ e(~xi+2)) +~b
)

where e is the embedding lookup function, ⊕ is
the vector concatenation function, the matrix W
and vector ~b are model parameters and tanh is the
activation function.

The output clique potential of yi becomes:

Ψ(~x, yi) = exp
{
~σ · ~hi

}
where ~σ is a model parameter, and the edge clique
potentials remain the same as the baseline. By
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Figure 5: Integrated models for pipeline, joint and
collapsed targeted sentiment labeling.

using a hidden layer for automatic feature com-
binations, the neural model is free of manual fea-
tures, and can benefit from unsupervised embed-
dings. Decoding and training are performed using
the same algorithms as the baseline.

The major neural architectures in Figure 4 have
been explored as conditional neural fields by Peng
et al. (2009) and neural conditional random fields
by Do et al. (2010), and is connected to the
sentence-level likelihood neural networks of Col-
lobert et al. (2011), as pointed out by Wang and
Manning (2013b). The main differences between
our model and the prior work are in the multi-label
settings and training details.

5 Integrated Models

Gleaning different sources of information, neu-
ral features and discrete linear features comple-
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ments each other. As a result, a model that in-
tegrates both features can potentially achieve per-
formance improvements. Most work attempts to
add neural word embeddings into a discrete linear
model (Turian et al., 2010; Yu et al., 2013; Guo et
al., 2014), or add discreted features into a neural
model (Ma et al., 2014). We make a novel combi-
nation of the discrete models and the neural mod-
els by integrating both types of inputs into a same
CRF framework.2

The architectures of the integrated models are
shown in Figure 5. The main difference between
Figure 5 and Figure 3 is the input layer. The inte-
grated model takes both continuous word embed-
dings, which are shown in grey nodes, and dis-
crete manual features, which are shown in black
or white nodes, as the input.

A separate hidden layer is given to each type of
input nodes, with the hidden layer for the embed-
dings being the same as the neural baseline:

~hi =tanh
(

W · (e(~xi−2)⊕ e(~xi−1)⊕ e(~xi)

⊕ e(~xi+1)⊕ e(~xi+2)) +~b
)

The hidden nodes ~gi between the discrete features
and the node yi are:

~gi = tanh
(
~θ · ~f(~x, yi)

)
Finally, the output clique potential of yi becomes:

~Ψ(~x, yi) = exp
{
~σ · (~hi ⊕ ~gi)

}
The edge clique potentials remain the same as the
baseline models; the same training and decoding
algorithms are used.

6 Training

We use a max-margin objective to train our model
parameters Θ, which consist of ~θ, τ , W, ~b and ~σ
for each model. The objective function is defined
as:

L(Θ) =
1
N

N∑
n=1

l(~xn, ~yn,Θ) +
λ

2
‖ Θ ‖2,

2Wang and Manning (2013a) also investigated the inte-
gration of discrete and neural features in CRF models. They
compared the effect of integration without hidden layers (i.e.
Turian et al. (2010)) and with hidden layers (i.e. our meth-
ods) for NER and chunking, finding that the formal outper-
forms the latter. Our results are different from theirs, and a
hidden layer gives significant improvements to the targeted
sentiment analysis task.

where (~xn, ~yn)|Nn=1 are the set of training ex-
amples, λ is a regularization parameter, and
l(~xn, ~yn,Θ) is the loss function towards one ex-
ample (~xn, ~yn).

The loss function is defined as:

l(~xn, ~yn,Θ) = max
~y

(s(~xn, ~y,Θ) + δ(~y, ~yn))

− s(~xn, ~yn,Θ),

where s(~x, ~y,Θ) = logP (~y|~x) is the log proba-
bility of ~y, and δ(~y, ~yn) is the Hamming distance
between ~y and ~yn.

We use online learning to train model parame-
ters, updating the parameters using the AdaGrad
algorithm (Duchi et al., 2011). One thing to note
is that, our objective function is not differentiable
because of the loss function l(~xn, ~yn,Θ). Thus we
use sub-gradients for l(~xn, ~yn,Θ) instead, which
can be computed by the formula:

∂l(~xn, ~yn,Θ)
∂Θ

=
∂s(~xn, ~̂y,Θ)

∂Θ
− ∂s(~xn, ~yn,Θ)

∂Θ
,

where ~̂y is the predicted label sequence which cor-
responds to l(~xn, ~yn,Θ).

Maximum-likelihood training is a commonly
used alternative to max-margin training for neu-
ral networks. It has been applied to the models
of Do et al. (2010) and Collobert et al. (2011),
for example. However, our experiments show that
maximum-likelihood training cannot be applied to
open-domain targeted sentiment tasks. Although
giving comparable overall accuracies in both en-
tity and sentiment labels, it suffers from unbal-
anced sentiment labels, assigning the neutral sen-
timent to most entities. This problem can be ad-
dressed by imposing a polarity-sensitive cost to
the training, such as the sentence-level averaged
F1-score between positive, negative and neutral la-
bels. We skip these results due to space limita-
tions. In contrast, max-margin training does not
suffer from the label skew issue, thanks to the use
of Hamming loss in the objective function.

7 Experiments

7.1 Experimental Settings
Data: We use the data of Mitchell et al. (2013)3

to conduct all the experiments, which consist of
entity and sentiment annotations on both English
and Spanish tweets. Simple normalizations are

3http://www.m-mitchell.com/code/index.html
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Domain #Sent #Entities #+ #- #0
English 2,350 3,288 707 275 2,306
Spanish 5,145 6,658 1,555 1,007 4,096

Table 2: Experimental corpus statistics.

conducted to replace all usernames and URLs into
the special tokens 〈username〉 and 〈url〉, respec-
tively. Following Mitchell et al. (2013), we report
ten-fold cross-validation results. During training,
we split 10% of the training corpus as the devel-
opment corpus to tune hyper-parameters. Table 2
shows the corpus statistics.

Parameters: For all the neural models, we set
the hidden layer size |~h| for neural features to 200,
the hidden layer size |~g| for discrete features to
30, the initial learning rate for adagrad to 0.01 and
the regularization parameter λ to 10−8. English
and Spanish word embeddings are trained using
the word2vec tool4, with respective corpora of 20
minion random tweets crawled by tweet API5. The
size of word embeddings is 100. For English, there
are 8,061 unique words, for which 25% are out of
word embedding vocabulary (OOE) words, while
for Spanish, there are 14,648 unique words, for
which 15% are OOE words.

Metrics: We take full-span metrics for evalua-
tion, which is different from Mitchell et al. (2013),
who evaluate mainly the beginning of spans. We
measure the precision, recall and F-score of entity
recognition (Entity), targeted sentiment analysis
(SA) (both entity and sentiment), and targeted sub-
jectivity detection (Subjectivity) (both entity and
subjectivity, namely merging the + and - labels as
“1” label, and performing two-way 0/1 subjectiv-
ity classification on entities). For SA, an entity is
taken as correct only when the span and the sen-
timent are both correctly recognized. Similarly,
for Subjectivity, an entity is taken as correct only
when both the span and the subjectivity are cor-
rectly recognized.

Code: We make the C++ implementations of
the discrete, neural and combined models avail-
able and GPL, at https://github.com/
SUTDNLP/OpenTargetedSentiment.

7.2 Comparing Neural and Discrete Models

The main results on both the English and Span-
ish dataset are shown in Table 3, which are mea-

4https://code.google.com/p/word2vec/
5https://dev.twitter.com/
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Figure 6: Labeling accuracy comparisons.

sured on the pipeline, the joint and the collapsed
tasks, respectively. As can be seen from the ta-
ble, the neural models give higher F-scores than
the discrete CRF models on the English dataset,
while comparable overall F-scores on the Spanish
dataset. The gains on English are mostly attributed
to improved recalls, while the precision of the neu-
ral CRF models are relatively lower. A likely rea-
son for this observation is that the neural model
takes embedding inputs, which allow semantically
similar words to be represented with similar vec-
tors. As a result, the neural model can better cap-
ture patterns that do not occur in the training data.
In contrast, the discrete model is based on man-
ually defined binary features, which do not fire if
not contained in the training data. Because dis-
crete feature instantiation is based on exact match-
ing, the discrete model gives a relatively higher
precision.

To further contrast the discrete and neural mod-
els, we draw the per-word accuracies of sentiment
labels according to both models in Figure 6. In
the figure, each dot represents the accuracy of a
sentence, measured in the pipeline task. The dots
for both English and Spanish are scattered from
the reverse diagonal, showing that the two mod-
els make very different errors, which suggests that
model integration can lead to better accuracies.

7.3 The Integrated Model

As shown in Table 3, the integrated model com-
bines the relative advantages of both pure models,
improving the recall over the discrete model and
the precision over the neural model. In most cases,
it gives the best results in terms of both precision
and recall. For the English pipeline model, the
integrated model improves the entity recognition
F-score from 43.84% to 55.67% (significant with
p < 10−5 by pair-wise t-test) as compared to the
discrete baseline, namely Mitchell et al. (2013).
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Model
English Spanish

Entity SA Entity SA
P R F P R F P R F P R F

Pipeline
discrete 59.37 34.83 43.84 42.97 25.21 31.73 70.77 47.75 57.00 46.55 31.38 37.47
neural 53.64 44.87 48.67 37.53 31.38 34.04 65.59 47.82 55.27 41.50 30.27 34.98

integrated 60.69 51.63 55.67 43.71 37.12 40.06 70.23 62.00 65.76 45.99 40.57 43.04

Joint
discrete 59.55 34.06 43.30 43.09 24.67 31.35 71.08 47.56 56.96 46.36 31.02 37.15
neural 54.45 42.12 47.17 37.55 28.95 32.45 65.05 47.79 55.07 40.28 29.58 34.09

integrated 61.47 49.28 54.59 44.62 35.84 39.67 71.32 61.11 65.74 46.67 39.99 43.02

Collapsed
discrete 64.16 26.03 36.95 48.35 19.64 27.86 73.18 35.11 47.42 49.85 23.91 32.30
neural 58.53 37.25 45.30 43.12 27.44 33.36 67.43 43.2 52.64 42.61 27.27 33.25

integrated 63.55 44.98 52.58 46.32 32.84 38.36 73.51 53.3 61.71 47.69 34.53 40.00

Table 3: Main results.
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Figure 7: Effect of fine-tuning (+T — with fine-
tuning; -T — without fine-tuning).

The overall SA score is improved from 31.73% to
40.06% (p < 10−5). Similar improvements are
achieved to the other test datasets.

7.4 Fine-tuning Word Embeddings

In the experiments above, word embeddings are
fine-tuned for the neural models, but not for the
integrated models. By fine-tuning, embeddings of
in-vocabulary words are treated as model parame-
ters, and updated with other parameters in super-
vised training. This can improve the accuracy of
the model by significantly enlarging the parameter
space. However, it can make the embeddings of
OOV words less useful to the model, because the
hidden layers are tuned with adjusted embeddings.

Figure 7 shows the effectiveness of fine-tuning
on the neural and integrated models using the
Spanish data. Similar findings apply to the En-
glish data. The neural model heavily relies on
fine-tuning of embeddings, and a likely reason is
that manual discrete features offer sufficient pa-
rameters for capturing in-vocabulary patterns. On

the other hand, thanks to the rich discrete features
in parameter space, the integrated model does not
rely on fine-tuning of word embeddings, which
even caused slight overfitting and reduced the per-
formances. This makes the non-fine-tuned inte-
grated model potentially advantageous in handling
test data with many OOV words.

7.5 Comparing pipeline, joint and collapsed
models

Mitchell et al. (2013) find that for discrete CRF,
the pipeline task gives competitive overall perfor-
mances compared with the joint task. This sug-
gests a relatively weak connection between entity
boundary information and sentiment classes. We
re-examine the comparisons under the neural net-
work setting, where automatic feature combina-
tions can be useful in capturing more subtle cor-
relations between two sources of information.

As shown in Table 3, the overall results are sim-
ilar to those of Mitchell et al. (2013), with both
the neural and the integrated models demonstrat-
ing the same trends as the discrete baselines. A
more detail analysis, however, shows some rela-
tive strengths of the joint task. Table 4 give the
precision, recall and F-scores of subjectivity, and
those of SA excluding neutral sentiment labels on
the Spanish data. Findings on the English dataset
are consistent.

The latter metrics highlight sentiment polarities,
which can be relatively more useful. The joint task
gives better F-scores on both metrics, which sug-
gest that is a considerable choice for open targeted
sentiment. When there is external resource for en-
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Model
Subjectivity SA/0

P R F P R F
pipeline 47.92 42.26 44.84 42.93 18.02 25.14

joint 49.17 42.13 45.32 40.93 21.62 27.93
collapsed 49.63 35.94 41.63 42.10 15.62 22.49

Table 4: Results on subjectivity and polarity.

tity recognition, the pipeline can be a favorable
choice. On the other hand, although useful for
some joint sequence labeling task (Ng and Low,
2004), the collapsed task does not seem to address
the joint sentiment task as effectively. We find this
result empirical, but consistent across our datasets.

8 Conclusion

We explored open domain targeted sentiment
analysis using neural network models, which
gave competitive results when evaluated against
a strong discrete CRF baseline, with relatively
higher recalls. Given complementary error dis-
tributions by the discrete and neural CRFs, we
proposed a novel combination which significantly
outperformed both models. Under the neural set-
ting, we find that it is preferable to solve open tar-
geted sentiment as a pipeline or joint multi-label
task, but not as a joint task with collapsed labels.
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