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Abstract

Semi-supervised bootstrapping techniques
for relationship extraction from text iter-
atively expand a set of initial seed rela-
tionships while limiting the semantic drift.
We research bootstrapping for relationship
extraction using word embeddings to find
similar relationships. Experimental results
show that relying on word embeddings
achieves a better performance on the task
of extracting four types of relationships
from a collection of newswire documents
when compared with a baseline using TF-
IDF to find similar relationships.

1 Introduction

Relationship Extraction (RE) transforms unstruc-
tured text into relational triples, each represent-
ing a relationship between two named-entities. A
bootstrapping system for RE starts with a collec-
tion of documents and a few seed instances. The
system scans the document collection, collecting
occurrence contexts for the seed instances. Then,
based on these contexts, the system generates ex-
traction patterns. The documents are scanned
again using the patterns to match new relation-
ship instances. These newly extracted instances
are then added to the seed set, and the process is
repeated until a certain stop criteria is met.

The objective of bootstrapping is thus to expand
the seed set with new relationship instances, while
limiting the semantic drift, i.e. the progressive de-
viation of the semantics for the extracted relation-
ships from the semantics of the seed relationships.

State-of-the-art approaches rely on word vec-
tor representations with TF-IDF weights (Salton
and Buckley, 1988). However expanding the seed
set by relying on TF-IDF representations to find
similar instances has limitations, since the similar-
ity between any two relationship instance vectors
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of TF-IDF weights is only positive when the in-
stances share at least one term. For instance, the
phrases was founded by and is the co-founder of
do not have any common words, but they have the
same semantics. Stemming techniques can aid in
these cases, but only for variations of the same root
word (Porter, 1980).

We propose to address this challenge with an
approach based on word embeddings (Mikolov et
al., 2013a). By relying on word embeddings, the
similarity of two phrases can be captured even
if no common words exist. The word embed-
dings for co-founder and founded should be sim-
ilar, since these words tend to occur in the same
contexts. Word embeddings can nonetheless also
introduce semantic drift. When using word em-
beddings, phrases like studied history at can, for
instance, have a high similarity with phrases like
history professor at. In our approach, we control
the semantic drift by ranking the extracted rela-
tionship instances, and by scoring the generated
extraction patterns.

We implemented these ideas in BREDS, a boot-
strapping system for RE based on word embed-
dings. BREDS was evaluated with a collection of
1.2 million sentences from news articles. The ex-
perimental results show that our method outper-
forms a baseline bootstrapping system based on
the ideas of Agichtein and Gravano (2000) which
relies on TF-IDF representations.

2 Bootstrapping Relationship Extractors

Brin (1999) developed DIPRE, the first system to
apply bootstrapping for RE, which represents the
occurrences of seeds as three contexts of strings:
words before the first entity (BEF), words between
the two entities (BET), and words after the second
entity (AFT). DIPRE generates extraction patterns
by grouping contexts based on string matching,
and controls semantic drift by limiting the number
of instances a pattern can extract.
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Agichtein and Gravano (2000) developed
Snowball, which is inspired on DIPRE’s method
of collecting three contexts for each occurrence,
but computing a TF-IDF representation for each
context. The seed contexts are clustered with a
single-pass algorithm based on the cosine similar-
ity between contexts using the three vector repre-
sentations:

Sim(Sy, Sj) = o - cos(BEF;, BEF})
+ 8- cos(BET;, BET))
+ v - cos(AFT;, AF'T))

)

In the formula, the parameters «, § and v weight
each vector. An extraction pattern is represented
by the centroid of the vectors that form a cluster.
The patterns are used to scan the text again, and
for each segment of text where any pair of enti-
ties with the same semantic types as the seeds co-
occur, three vectors are generated. If the similarity
from the context vectors towards an extraction pat-
tern is greater than a threshold 7;,,, the instance
is extracted.

Snowball scores the patterns and ranks the ex-
tracted instances to control the semantic drift. A
pattern is scored based on the instances that it ex-
tracted, which can be included in three sets: P,
N, and U. If an extracted instance contains an
entity e, which is part of a seed, and if the asso-
ciated entity e, in the instance is the same as in
in the seed, then the extraction is considered pos-
itive (included in set P). If the relationship con-
tradicts a relationship in the seed set (i.e., e; does
not match), then the extraction is considered neg-
ative (included in a set N). If the relationship is
not part of the seed set, the extraction is consid-
ered unknown (included in a set U). A score is
assigned to each pattern p according to:

_ 1P|

Conf,(p) (2)

Whgt and Wy, are weights associated to the neg-
ative and unknown extractions, respectively. The
confidence of an instance is calculated based on
the similarity scores towards the patterns that ex-
tracted it, weighted by the pattern’s confidence:

€|
Conf, (i) =1— H(l — Conf,(&;) x Sim(Cj, &5))
§=0

3)
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where, £ is the set of patterns that extracted ¢, and
C; is the textual context where i occurred. In-
stances with a confidence above a threshold 7 are
used as seeds in the next iteration.

3 Bootstrapping Relationship Extractors
with Word Embeddings

BREDS follows the architecture of Snowball,
having the same processing phases: find seed
matches, generating extraction patterns, finding
relationship instances, and detecting semantic
drift. It differs, however, in that it attempts to find
similar relationships using word embeddings, in-
stead of relying on TF-IDF representations.

3.1 Find Seed Matches

BREDS scans the document collection and, if both
entities of a seed instance co-occur in a text seg-
ment within a sentence, then that segment is con-
sidered and BREDS extracts the three textual con-
texts as in Snowball: BEF, BET, and AFT.

In the BET context, BREDS tries to identify
a relational pattern based on a shallow heuristic
originally proposed in ReVerb (Fader et al., 2011).
The pattern limits a relation context to a verb (e.g.,
invented), a verb followed by a preposition (e.g.,
located in), or a verb followed by nouns, adjec-
tives, or adverbs ending in a preposition (e.g., has
atomic weight of). These patterns will nonetheless
only consider verb mediated relationships. If no
verbs exist between two entities, BREDS extracts
all the words between the two entities, to build the
representations for the BET context.

Each context is transformed into a single vec-
tor by a simple compositional function that starts
by removing stop-words and adjectives and then
sums the word embedding vectors of each indi-
vidual word. Representing small phrases by sum-
ming each individual word’s embedding results in
good representations for the semantics in small
phrases (Mikolov et al., 2013b).

A relationship instance ¢ is represented by three
embedding vectors: Vpgr, Vppr, and Vypr.
Considering the sentence:

The tech company Soundcloud is based in Berlin,
capital of Germany.

BREDS generates the relationship instance with:
Veer = E(“tech”) + E(“company”)
Veer = E(“is”) + E(“based”)

Vapr = E(“capital”)



where, E(x) is the word embedding for word .

BREDS also tries to identify the passive voice
using part-of-speech (PoS) tags, which can help
to detect the correct order of the entities in a rela-
tional triple. BREDS identifies the presence of the
passive voice by considering any form of the verb
to be, followed by a verb in the past tense or the
past participle, and ending in the word by.

For instance, the seed <Google, owns,
DoubleClick> states that the organisation
Google owns the organisation DoubleClick.
Using this seed, if BREDS detects a pattern like
agreed to be acquired by it will swap the order of
the entities when producing a relational triple, out-
putting the triple <ORG,, owns, ORG1>, instead
of the triple <ORGy, owns, ORG,>.

3.2 Extraction Patterns Generation

As Snowball, BREDS generates extraction pat-
terns by applying a single-pass clustering algo-
rithm to the relationship instances gathered in the
previous step. Each resulting cluster contains a
set of relationship instances, represented by their
three context vectors.

Algorithm 1 describes the clustering approach
taken by BREDS, which takes as input a list of
relationship instances and assigns the first instance
to anew empty cluster. Next, it iterates through the
list of instances, computing the similarity between
an instance 7,, and every cluster C';. The instance
in, 1s assigned to the first cluster whose similarity
is higher or equal to a threshold 7g;,,. If all the
clusters have a similarity lower than a threshold
Tsim» @ new cluster O, is created, containing the
instance %y,.

The similarity function Sim(i,,, Cl;), between
an instance 7,, and a cluster Cl;, returns the max-
imum of the similarities between an instance i,,
and any of the instances in a cluster Cl;, if the
majority of the similarity scores is higher than a
threshold 74;,. A value of zero is returned oth-
erwise. The similarity between two instances is
computed according to Formula (1). As a result,
clustering in Algorithm 1 differs from the original
Snowball method, which instead computes simi-
larities towards cluster centroids.

3.3 Find Relationship Instances

After the generation of extraction patterns,
BREDS finds relationship instances with Algo-
rithm 2. It scans the documents once again, col-
lecting all segments of text containing entity pairs
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Algorithm 1: Single-Pass Clustering.
9 Zn }

Input: Instances = {i1, 12,13, ...
Output: Patterns = {}
Cly ={i1}
Patterns = {Cl; }
for i,, € Instances do
for Cl; € Patterns do
if Slm(Zn, Cl]) >= Tgm then
‘ Clj = Clj U {’Ln}
else

L

whose semantic types are the same as those in the
seed instances. For each segment, an instance %
is generated as described in Section 3.1, and the
similarity towards all previously generated extrac-
tion patterns (i.e., clusters) is computed. If the
similarity between ¢ and a pattern Cl; is equal
or above T, then ¢ is considered a candidate
instance, and the confidence score of the pattern
is updated, according to Formula (2). The pat-
tern which has the highest similarity (patternyes:)
is associated with ¢, along with the correspond-
ing similarity score (simpest). This information
is kept in a history of Candidates. Note that the
histories of C'andidates and Patterns are kept
through all the bootstrap iterations, and new pat-
terns or instances can be added, or the scores of
existing patterns or instances can change.

Cly, = {in}
Patterns = Patterns U {Cly,}

Algorithm 2: Find Relationship Instances.

Input: Sentences = {s1, s2, 83, ..., Sn }
Input: Patterns = {Cly,Cla,...,Cl, }
Output: Candidates
for s; € Sentences do
i = create_instance(s;)
SiMpest = 0
Dbest = None
for Cl; € Patterns do
sim = Sim(, Cl;)
if stm >= 74, then
Conf,(C;)
if sim >= simp.s then
STMpest = SIM

Pbest = Cl'L

C;ndidates[i].patterns [Dbest] = SiMpest




3.4 Semantic Drift Detection

As Snowball, BREDS ranks the candidate in-
stances at the end of each iteration, based on the
scores computed with Formula (3). Instances with
a score equal or above the threshold 7 are added
to the seed set, for use in the next iteration of the
bootstrapping algorithm.

4 Evaluation

In our evaluation we used a set of 5.5 million news
articles from AFP and APW (Parker et al., 2011).
Our pre-processing pipeline is based on the
models provided by the NLTK toolkit (Bird et
al., 2009): sentence segmentationl, tokenisa-
tion?, PoS-tagging’ and named-entity recognition
(NER). The NER module in NLTK is a wrapper
over the Stanford NER toolkit (Finkel et al., 2005).
We performed weak entity-linking by matching
entity names in sentences with FreebaseEasy (Bast
et al., 2014). FreebaseEasy is a processed version
of Freebase (Bollacker et al., 2008), which con-
tains a unique meaningful name for every entity,
together with canonical binary relations. For our
experiments, we selected only the sentences con-
taining at least two entities linked to FreebaseEasy,
which corresponded to 1.2 million sentences.
With the full articles set, we computed word
embeddings with the skip-gram model* using
the word2vec® implementation from Mikolov et.
al. (2013a). The TF-IDF representations used by
Snowball were calculated over the same articles
set. We adopted a previously proposed framework
for the evaluation of large-scale RE systems by
Bronzi et al. (2012), to estimate precision and re-
call, using FreebaseEasy as the knowledge base.
We considered entity pairs no further away than
6 tokens, and a window of 2 tokens for the BEF
and AFT contexts, ignoring the remaining of the
sentence. We discarded the clusters with only one
relationship instances, and ran a maximum of 4
bootstrapping iterations. The W, and W, pa-
rameters were set to 0.1 and 2, respectively, based
on the results reported by Yu et al. (2003).
We compared BREDS against Snowball in four
relationship types, shown in Table 1. For each re-
lationship type we considered several bootstrap-

'nltk.tokenize.punkt.PunktSentence Tokenizer
2nltk.tokenize.treebank. Treebank Word Tokenizer
*taggers/maxent_treebank_pos_tagger/english.pickle
4skip length of 5 tokens and vectors of 200 dimensions
Shttps://code.google.com/p/word2vec/
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Relationship Seeds
acauired {Adidas, Reebok }

q {Google, DoubleClick}

{CNN, Ted Turner}
founder-of {Amazon, Jeff Bezos}
{Nokia, Espoo}

headquartered {Pfizer, New York}
affiliation {Google, Marissa Mayer}

{Xerox, Ursula Burns}

Table 1: Relationship types and used seeds.

ping configurations by combining different values
for the 75;,, and 7; thresholds, all within the inter-
val [0.5,1.0].

We bootstrapped each relationship with two
context weighting configurations in Formula (1):

e Confi: «=0.0,6=1.0,v=0.0
e Confy: « =0.2,6=0.6,y=0.2

where Conf; only considers the BET context and
Conf, uses the three contexts, while giving more
importance to the BET context.

Table 2 shows, for each relationship type, the
best F; score and the corresponding precision and
recall, for all combinations of 7y, and 7 val-
ues, and considering only extracted relationship
instances with confidence scores equal or above
0.5. Table 2a shows the results for the BREDS sys-
tem, while Table 2b shows the results for Snow-
ball (ReVerb), a modified Snowball in which a re-
lational pattern based on ReVerb is used to select
the words for the BET context. Finally, Table 2c
shows the results for Snowball, implemented as
described in the original paper.

Overall, BREDS achieves better F; scores than
both versions of Snowball. The F; score of
BREDS is higher, mainly as a consequence of
much higher recall scores, which we believe to be
due to the relaxed semantic matching caused by
using the word embeddings. For some relation-
ship types, the recall more than doubles when us-
ing word embeddings instead of TF-IDFE. For the
acquired relationship, when considering Confj,
the precision of BREDS drops compared with the
other versions of Snowball, but without affecting
the F; score, since the higher recall compensates
for the small loss in precision.

Regarding the context weighting configura-
tions, Conf, produces a lower recall when com-
pared to Conf;. This might be caused by the



sparsity of both BEF and AFT, which contain
many different words that do not contribute to
capture the relationship between the two enti-
ties. Although, sometimes, the phrase or word
that indicates a relationship occurs on the BEF or
AFT contexts, it is more often the case that these
phrases or words occur in the BET context.

The performance results of Snowball (Clas-
sic) and Snowball (ReVerb) suggest that selecting
words based on a relational pattern to represent the
BET context, instead of using all the words, works
better for TF-IDF representations.

The results also show that word embeddings
can generate more extraction patterns. For in-
stance, for the founder-of relationship, BREDS
learns patterns based on words such as founder, co-
founder, co-founders or founded, while Snowball
only learns patterns that have the word founder,
like CEO and founder or founder and chairman.

The implementations of BREDS and Snowball,
as described in this paper, are available on-line®.

5 Conclusions and Future Work

This paper reports on a novel bootstrapping sys-
tem for relation extraction based on word em-
beddings. In our experiments, bootstrapped RE
achieved better results when using word embed-
dings to find similar relationships than with simi-
larities between TF-IDF weighted vectors.

We have identified two main sources of errors:
NER problems and incorrect relational patterns
extraction due to the use of a shallow heuristic that
only captures local relationships.

In future work, more robust entity-linking ap-
proaches, as proposed by Hoffart et al. (2011),
could be included in our pre-processing pipeline.
This could alleviate NER errors and enable exper-
imentation with other relationship types.

Gabbard et al. (2011) have shown that co-
reference resolution can increase bootstrapping
RE performance, and the method of Durrett and
Klein (2014) could also be included in our pre-
processing pipeline.

Finally, we could explore richer compositional
functions, combining word embeddings with syn-
tactic dependencies (SD) (Yu et al., 2014). The
shortest path between two entities in an SD tree
supports the extraction of local and long-distance
relationships (Bunescu and Mooney, 2005).

*https://github.com/davidsbatista/
BREDS
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BREDS
Relationship Precision Recall F;
COIlf]
acquired 0.73 0.77  0.75
founder-of 0.98 0.86 0.91
headquartered 0.63 0.69 0.66
affiliation 0.85 091 0.88
COHfz
acquired 1.00 0.15 0.26
founder-of 0.97 0.79  0.87
headquartered 0.64 0.61 0.62
affiliation 0.84 0.60 0.70

(a) Precision, Recall and F; results obtained with different
configurations of BREDS.

Snowball (ReVerb)

Relationship Precision Recall F;
Conf;

acquired 0.83 0.61 0.70

founder-of 0.96 0.77  0.86

headquartered 0.48 0.63  0.55

affiliation 0.52 0.29 0.37
Conf2

acquired 0.73 022 034

founder-of 0.97 0.75 0.85

headquartered 0.55 042 047

affiliation 0.36 0.05 0.08

(b) Precision, Recall and F; results obtained with different
configurations of Snowball (ReVerb).

Snowball (Classic)

Relationship Precision Recall F;
Conf;

acquired 0.87 0.54  0.67

founder-of 0.97 0.76  0.85

headquartered 0.52 0.61 0.57

affiliation 0.49 0.29 0.36
Conf,

acquired 0.77 0.54 0.63

founder-of 0.98 0.73 0.84

headquartered 0.53 0.54 0.54

affiliation 0.42 0.08 0.13

(c) Precision, Recall and F; results obtained with different
configurations of Snowball (Classic).

Table 2: Precision, Recall and F; scores over the
four relationships for the three different systems.
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