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Abstract

We present extensions to a continuous-
state dependency parsing method that
makes it applicable to morphologically
rich languages. Starting with a high-
performance transition-based parser that
uses long short-term memory (LSTM) re-
current neural networks to learn repre-
sentations of the parser state, we replace
lookup-based word representations with
representations constructed from the or-
thographic representations of the words,
also using LSTMs. This allows statistical
sharing across word forms that are simi-
lar on the surface. Experiments for mor-
phologically rich languages show that the
parsing model benefits from incorporating
the character-based encodings of words.

1 Introduction

At the heart of natural language parsing is the chal-
lenge of representing the “state” of an algorithm—
what parts of a parse have been built and what
parts of the input string are not yet accounted for—
as it incrementally constructs a parse. Traditional
approaches rely on independence assumptions, de-
composition of scoring functions, and/or greedy
approximations to keep this space manageable.
Continuous-state parsers have been proposed, in
which the state is embedded as a vector (Titov
and Henderson, 2007; Stenetorp, 2013; Chen and
Manning, 2014; Dyer et al., 2015; Zhou et al.,
2015; Weiss et al., 2015). Dyer et al. reported
state-of-the-art performance on English and Chi-
nese benchmarks using a transition-based parser
whose continuous-state embeddings were con-
structed using LSTM recurrent neural networks
(RNNs) whose parameters were estimated to max-
imize the probability of a gold-standard sequence
of parse actions.

The primary contribution made in this work is to
take the idea of continuous-state parsing a step fur-
ther by making the word embeddings that are used
to construct the parse state sensitive to the mor-
phology of the words.1 Since it it is well known
that a word’s form often provides strong evidence
regarding its grammatical role in morphologically
rich languages (Ballesteros, 2013, inter alia), this
has promise to improve accuracy and statistical ef-
ficiency relative to traditional approaches that treat
each word type as opaque and independently mod-
eled. In the traditional parameterization, words
with similar grammatical roles will only be em-
bedded near each other if they are observed in
similar contexts with sufficient frequency. Our
approach reparameterizes word embeddings using
the same RNN machinery used in the parser: a
word’s vector is calculated based on the sequence
of orthographic symbols representing it (§3).

Although our model is provided no supervision
in the form of explicit morphological annotation,
we find that it gives a large performance increase
when parsing morphologically rich languages in
the SPMRL datasets (Seddah et al., 2013; Seddah
and Tsarfaty, 2014), especially in agglutinative
languages and the ones that present extensive case
systems (§4). In languages that show little mor-
phology, performance remains good, showing that
the RNN composition strategy is capable of cap-
turing both morphological regularities and arbi-
trariness in the sense of Saussure (1916). Finally,
a particularly noteworthy result is that we find that
character-based word embeddings in some cases
obviate explicit POS information, which is usually
found to be indispensable for accurate parsing.

A secondary contribution of this work is to
show that the continuous-state parser of Dyer et al.
(2015) can learn to generate nonprojective trees.
We do this by augmenting its transition operations

1Software for replicating the experiments is available
from https://github.com/clab/lstm-parser.
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with a SWAP operation (Nivre, 2009) (§2.4), en-
abling the parser to produce nonprojective depen-
dencies which are often found in morphologically
rich languages.

2 An LSTM Dependency Parser

We begin by reviewing the parsing approach of
Dyer et al. (2015) on which our work is based.

Like most transition-based parsers, Dyer et al.’s
parser can be understood as the sequential manip-
ulation of three data structures: a buffer B initial-
ized with the sequence of words to be parsed, a
stack S containing partially-built parses, and a list
A of actions previously taken by the parser. In
particular, the parser implements the arc-standard
parsing algorithm (Nivre, 2004).

At each time step t, a transition action is ap-
plied that alters these data structures by pushing
or popping words from the stack and the buffer;
the operations are listed in Figure 1.

Along with the discrete transitions above, the
parser calculates a vector representation of the
states of B, S, and A; at time step t these are de-
noted by bt, st, and at, respectively. The total
parser state at t is given by

pt = max {0,W[st;bt;at] + d} (1)

where the matrix W and the vector d are learned
parameters. This continuous-state representation
pt is used to decide which operation to apply next,
updating B, S, and A (Figure 1).

We elaborate on the design of bt, st, and at us-
ing RNNs in §2.1, on the representation of partial
parses in S in §2.2, and on the parser’s decision
mechanism in §2.3. We discuss the inclusion of
SWAP in §2.4.

2.1 Stack LSTMs

RNNs are functions that read a sequence of vectors
incrementally; at time step t the vector xt is read in
and the hidden state ht computed using xt and the
previous hidden state ht−1. In principle, this al-
lows retaining information from time steps in the
distant past, but the nonlinear “squashing” func-
tions applied in the calcluation of each ht result
in a decay of the error signal used in training with
backpropagation. LSTMs are a variant of RNNs
designed to cope with this “vanishing gradient”
problem using an extra memory “cell” (Hochreiter
and Schmidhuber, 1997; Graves, 2013).

Past work explains the computation within an
LSTM through the metaphors of deciding how
much of the current input to pass into memory
(it) or forget (ft). We refer interested readers to
the original papers and present only the recursive
equations updating the memory cell ct and hidden
state ht given xt, the previous hidden state ht−1,
and the memory cell ct−1:

it = σ(Wixxt + Wihht−1 + Wicct−1 + bi)
ft = 1− it
ct = ft � ct−1+

it � tanh(Wcxxt + Wchht−1 + bc)
ot = σ(Woxxt + Wohht−1 + Wocct + bo)
ht = ot � tanh(ct),

where σ is the component-wise logistic sig-
moid function and � is the component-wise
(Hadamard) product. Parameters are all repre-
sented using W and b. This formulation differs
slightly from the classic LSTM formulation in that
it makes use of “peephole connections” (Gers et
al., 2002) and defines the forget gate so that it sums
with the input gate to 1 (Greff et al., 2015). To im-
prove the representational capacity of LSTMs (and
RNNs generally), they can be stacked in “layers.”
In these architectures, the input LSTM at higher
layers at time t is the value of ht computed by the
lower layer (and xt is the input at the lowest layer).

The stack LSTM augments the left-to-right se-
quential model of the conventional LSTM with a
stack pointer. As in the LSTM, new inputs are
added in the right-most position, but the stack
pointer indicates which LSTM cell provides ct−1

and ht−1 for the computation of the next iterate.
Further, the stack LSTM provides a pop opera-
tion that moves the stack pointer to the previous
element. Hence each of the parser data structures
(B, S, and A) is implemented with its own stack
LSTM, each with its own parameters. The values
of bt, st, and at are the ht vectors from their re-
spective stack LSTMs.

2.2 Composition Functions

Whenever a REDUCE operation is selected, two
tree fragments are popped off of S and combined
to form a new tree fragment, which is then popped
back onto S (see Figure 1). This tree must be em-
bedded as an input vector xt.

To do this, Dyer et al. (2015) use a recursive
neural network gr (for relation r) that composes
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Stackt Buffert Action Stackt+1 Buffert+1 Dependency
(u, u), (v, v), S B REDUCE-RIGHT(r) (gr(u,v), u), S B u

r→ v

(u, u), (v, v), S B REDUCE-LEFT(r) (gr(v,u), v), S B u
r← v

S (u, u), B SHIFT (u, u), S B —
(u, u), (v, v), S B SWAP (u, u), S (v, v), B —

Figure 1: Parser transitions indicating the action applied to the stack and buffer and the resulting stack and
buffer states. Bold symbols indicate (learned) embeddings of words and relations, script symbols indicate
the corresponding words and relations. Dyer et al. (2015) used the SHIFT and REDUCE operations in their
continuous-state parser; we add SWAP.

the representations of the two subtrees popped
from S (we denote these by u and v), resulting in
a new vector gr(u,v) or gr(v,u), depending on
the direction of attachment. The resulting vector
embeds the tree fragment in the same space as the
words and other tree fragments. This kind of com-
position was thoroughly explored in prior work
(Socher et al., 2011; Socher et al., 2013b; Her-
mann and Blunsom, 2013; Socher et al., 2013a);
for details, see Dyer et al. (2015).

2.3 Predicting Parser Decisions
The parser uses a probabilistic model of parser de-
cisions at each time step t. Letting A(S,B) de-
note the set of allowed transitions given the stack
S and buffer S (i.e., those where preconditions
are met; see Figure 1), the probability of action
z ∈ A(S,B) defined using a log-linear distribu-
tion:

p(z | pt) =
exp

(
g>z pt + qz

)∑
z′∈A(S,B) exp

(
g>z′pt + qz′

) (2)

(where gz and qz are parameters associated with
each action type z).

Parsing proceeds by always choosing the most
probable action from A(S,B). The probabilistic
definition allows parameter estimation for all of
the parameters (W∗, b∗ in all three stack LSTMs,
as well as W, d, g∗, and q∗) by maximizing the
conditional likelihood of each correct parser deci-
sions given the state.

2.4 Adding the SWAP Operation
Dyer et al. (2015)’s parser implemented the most
basic version of the arc-standard algorithm, which
is capable of producing only projective parse trees.
In order to deal with nonprojective trees, we also
add the SWAP operation which allows nonprojec-
tive trees to be produced.

The SWAP operation, first introduced by Nivre
(2009), allows a transition-based parser to produce

nonprojective trees. Here, the inclusion of the
SWAP operation requires breaking the linearity of
the stack by removing tokens that are not at the top
of the stack. This is easily handled with the stack
LSTM. Figure 1 shows how the parser is capable
of moving words from the stack (S) to the buffer
(B), breaking the linear order of words. Since a
node that is swapped may have already been as-
signed as the head of a dependent, the buffer (B)
can now also contain tree fragments.

3 Word Representations

The main contribution of this paper is to change
the word representations. In this section, we
present the standard word embeddings as in Dyer
et al. (2015), and the improvements we made gen-
erating word embeddings designed to capture mor-
phology based on orthographic strings.

3.1 Baseline: Standard Word Embeddings

Dyer et al.’s parser generates a word representation
for each input token by concatenating two vectors:
a vector representation for each word type (w)
and a representation (t) of the POS tag of the to-
ken (if it is used), provided as auxiliary input to the
parser.2 A linear map (V) is applied to the result-
ing vector and passed through a component-wise
ReLU:

x = max {0,V[w; t] + b}

For out-of-vocabulary words, the parser uses an
“UNK” token that is handled as a separate word
during parsing time. This mapping can be shown
schematically as in Figure 2.

2Dyer et al. (2015), included a third input representation
learned from a neural language model (w̃LM). We do not in-
clude these pretrained representations in our experiments, fo-
cusing instead on character-based representations.
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Figure 2: Baseline model word embeddings for an
in-vocabulary word that is tagged with POS tag
NN (right) and an out-of-vocabulary word with
POS tag JJ (left).

3.2 Character-Based Embeddings of Words
Following Ling et al. (2015), we compute
character-based continuous-space vector embed-
dings of words using bidirectional LSTMs (Graves
and Schmidhuber, 2005). When the parser initi-
ates the learning process and populates the buffer
with all the words from the sentence, it reads the
words character by character from left to right and
computes a continuous-space vector embedding
the character sequence, which is the h vector of
the LSTM; we denote it by

→
w. The same process

is also applied in reverse (albeit with different pa-
rameters), computing a similar continuous-space
vector embedding starting from the last character
and finishing at the first (

←
w); again each character

is represented with an LSTM cell. After that, we
concatenate these vectors and a (learned) represen-
tation of their tag to produce the representation w.
As in §3.1, a linear map (V) is applied and passed
through a component-wise ReLU.

x = max
{
0,V[

→
w;
←
w; t] + b

}
This process is shown schematically in Figure 3.

Note that under this representation, out-of-
vocabulary words are treated as bidirectional
LSTM encodings and thus they will be “close” to
other words that the parser has seen during train-
ing, ideally close to their more frequent, syntacti-
cally similar morphological relatives. We conjec-
ture that this will give a clear advantage over a sin-
gle “UNK” token for all the words that the parser
does not see during training, as done by Dyer et
al. (2015) and other parsers without additional re-
sources. In §4 we confirm this hypothesis.

4 Experiments

We applied our parsing model and several varia-
tions of it to several parsing tasks and report re-
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Figure 3: Character-based word embedding of the
word party. This representation is used for both
in-vocabulary and out-of-vocabulary words.

sults below.

4.1 Data

In order to find out whether the character-based
representations are capable of learning the mor-
phology of words, we applied the parser to mor-
phologically rich languages specifically the tree-
banks of the SPMRL shared task (Seddah et
al., 2013; Seddah and Tsarfaty, 2014): Arabic
(Maamouri et al., 2004), Basque (Aduriz et al.,
2003), French (Abeillé et al., 2003), German
(Seeker and Kuhn, 2012), Hebrew (Sima’an et al.,
2001), Hungarian (Vincze et al., 2010), Korean
(Choi, 2013), Polish (Świdziński and Woliński,
2010) and Swedish (Nivre et al., 2006b). For all
the corpora of the SPMRL Shared Task we used
predicted POS tags as provided by the shared task
organizers.3 For these datasets, evaluation is cal-
culated using eval07.pl, which includes punc-
tuation.

We also experimented with the Turkish de-
pendency treebank4 (Oflazer et al., 2003) of the
CoNLL-X Shared Task (Buchholz and Marsi,
2006). We used gold POS tags, as is common with
the CoNLL-X data sets.

To put our results in context with the most re-
cent neural network transition-based parsers, we
run the parser in the same Chinese and English

3The POS tags were calculated with the MarMot tag-
ger (Müller et al., 2013) by the best performing system of
the SPMRL Shared Task (Björkelund et al., 2013). Arabic:
97.38. Basque: 97.02. French: 97.61. German: 98.10. He-
brew: 97.09. Hungarian: 98.72. Korean: 94.03. Polish:
98.12. Swedish: 97.27.

4Since the Turkish dependency treebank does not have a
development set, we extracted the last 150 sentences from the
4996 sentences of the training set as a development set.
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setups as Chen and Manning (2014) and Dyer et
al. (2015). For Chinese, we use the Penn Chi-
nese Treebank 5.1 (CTB5) following Zhang and
Clark (2008b),5 with gold POS tags. For En-
glish, we used the Stanford Dependency (SD) rep-
resentation of the Penn Treebank6 (Marcus et al.,
1993; Marneffe et al., 2006).7. Results for Turk-
ish, Chinese, and English are calculated using the
CoNLL-X eval.pl script, which ignores punc-
tuation symbols.

4.2 Experimental Configurations
In order to isolate the improvements provided by
the LSTM encodings of characters, we run the
stack LSTM parser in the following configura-
tions:

• Words: words only, as in §3.1 (but without
POS tags)

• Chars: character-based representations of
words with bidirectional LSTMs, as in §3.2
(but without POS tags)

• Words + POS: words and POS tags (§3.1)

• Chars + POS: character-based representa-
tions of words with bidirectional LSTMs plus
POS tags (§3.2)

None of the experimental configurations in-
clude pretrained word-embeddings or any addi-
tional data resources. All experiments include the
SWAP transition, meaning that nonprojective trees
can be produced in any language.

Dimensionality. The full version of our parsing
model sets dimensionalities as follows. LSTM
hidden states are of size 100, and we use two
layers of LSTMs for each stack. Embeddings of
the parser actions used in the composition func-
tions have 20 dimensions, and the output embed-
ding size is 20 dimensions. The learned word
representations embeddings have 32 dimensions
when used, while the character-based representa-
tions have 100 dimensions, when used. Part of
speech embeddings have 12 dimensions. These di-
mensionalities were chosen after running several
tests with different values, but a more careful se-
lection of these values would probably further im-
prove results.

5Training: 001–815, 1001–1136. Development: 886–
931, 1148–1151. Test: 816–885, 1137–1147.

6Training: 02–21. Development: 22. Test: 23.
7The POS tags are predicted by using the Stanford Tagger

(Toutanova et al., 2003) with an accuracy of 97.3%.

4.3 Training Procedure

Parameters are initialized randomly—refer to
Dyer et al. (2015) for specifics—and optimized
using stochastic gradient descent (without mini-
batches) using derivatives of the negative log like-
lihood of the sequence of parsing actions com-
puted using backpropagation. Training is stopped
when the learned model’s UAS stops improving
on the development set, and this model is used to
parse the test set. No pretraining of any parameters
is done.

4.4 Results and Discussion

Tables 1 and 2 show the results of the parsers for
the development sets and the final test sets, respec-
tively. Most notable are improvements for agglu-
tinative languages—Basque, Hungarian, Korean,
and Turkish—both when POS tags are included
and when they are not. Consistently, across all
languages, Chars outperforms Words, suggest-
ing that the character-level LSTMs are learning
representations that capture similar information to
parts of speech. On average, Chars is on par with
Words + POS, and the best average of labeled at-
tachment scores is achieved with Chars + POS.

It is common practice to encode morphological
information in treebank POS tags; for instance, the
Penn Treebank includes English number and tense
(e.g., NNS is plural noun and VBD is verb in past
tense). Even if our character-based representations
are capable of encoding the same kind of informa-
tion, existing POS tags suffice for high accuracy.
However, the POS tags in treebanks for morpho-
logically rich languages do not seem to be enough.

Swedish, English, and French use suffixes for
the verb tenses and number,8 while Hebrew uses
prepositional particles rather than grammatical
case. Tsarfaty (2006) and Cohen and Smith (2007)
argued that, for Hebrew, determining the correct
morphological segmentation is dependent on syn-
tactic context. Our approach sidesteps this step,
capturing the same kind of information in the vec-
tors, and learning it from syntactic context. Even
for Chinese, which is not morphologically rich,
Chars shows a benefit over Words, perhaps by
capturing regularities in syllable structure within
words.

8Tense and number features provide little improvement in
a transition-based parser, compared with other features such
as case, when the POS tags are included (Ballesteros, 2013).
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UAS

Language Words Chars Words Chars
+ POS + POS

Arabic 86.14 87.20 87.44 87.07
Basque 78.42 84.97 83.49 85.58
French 84.84 86.21 87.00 86.33
German 88.14 90.94 91.16 91.23
Hebrew 79.73 79.92 81.99 80.76
Hungarian 72.38 80.16 78.47 80.85
Korean 78.98 88.98 87.36 89.14
Polish 73.29 85.69 89.32 88.54
Swedish 73.44 75.03 80.02 78.85
Turkish 71.10 74.91 77.13 77.96
Chinese 79.43 80.36 85.98 85.81
English 91.64 91.98 92.94 92.49
Average 79.79 83.86 85.19 85.38

LAS

Language Words Chars Words Chars
+ POS + POS

Arabic 82.73 84.34 84.81 84.36
Basque 67.08 78.22 74.31 79.52
French 80.32 81.70 82.71 81.51
German 85.36 88.68 89.04 88.83
Hebrew 69.42 70.58 74.11 72.18
Hungarian 62.14 75.61 69.50 76.16
Korean 67.48 86.80 83.80 86.88
Polish 65.13 78.23 81.84 80.97
Swedish 64.77 66.74 72.09 69.88
Turkish 53.98 62.91 62.30 62.87
Chinese 75.64 77.06 84.36 84.10
English 88.60 89.58 90.63 90.08
Average 71.89 78.37 79.13 79.78

Table 1: Unlabeled attachment scores (left) and labeled attachment scores (right) on the development
sets (not a standard development set for Turkish). In each table, the first two columns show the results of
the parser with word lookup (Words) vs. character-based (Chars) representations. The last two columns
add POS tags. Boldface shows the better result comparing Words vs. Chars and comparing Words +
POS vs. Chars + POS.

UAS

Language Words Chars Words Chars
+ POS + POS

Arabic 85.21 86.08 86.05 86.07
Basque 77.06 85.19 82.92 85.22
French 83.74 85.34 86.15 85.78
German 82.75 86.80 87.33 87.26
Hebrew 77.62 79.93 80.68 80.17
Hungarian 72.78 80.35 78.64 80.92
Korean 78.70 88.39 86.85 88.30
Polish 72.01 83.44 87.06 85.97
Swedish 76.39 79.18 83.43 83.24
Turkish 71.70 76.32 75.32 76.34
Chinese 79.01 79.94 85.96 85.30
English 91.16 91.47 92.57 91.63
Average 79.01 85.36 84.41 84.68

LAS

Language Words Chars Words Chars
+ POS + POS

Arabic 82.05 83.41 83.46 83.40
Basque 66.61 79.09 73.56 78.61
French 79.22 80.92 82.03 81.08
German 79.15 84.04 84.62 84.49
Hebrew 68.71 71.26 72.70 72.26
Hungarian 61.93 75.19 69.31 76.34
Korean 67.50 86.27 83.37 86.21
Polish 63.96 76.84 79.83 78.24
Swedish 67.69 71.19 76.40 74.47
Turkish 54.55 64.34 61.22 62.28
Chinese 74.79 76.29 84.40 83.72
English 88.42 88.94 90.31 89.44
Average 71.22 78.15 78.43 79.21

Table 2: Unlabeled attachment scores (left) and labeled attachment scores (right) on the test sets. In
each table, the first two columns show the results of the parser with word lookup (Words) vs. character-
based (Chars) representations. The last two columns add POS tags. Boldface shows the better result
comparing Words vs. Chars and comparing Words + POS vs. Chars + POS.

4.4.1 Learned Word Representations

Figure 4 visualizes a sample of the character-
based bidirectional LSTMs’s learned representa-
tions (Chars). Clear clusters of past tense verbs,
gerunds, and other syntactic classes are visible.
The colors in the figure represent the most com-
mon POS tag for each word.

4.4.2 Out-of-Vocabulary Words

The character-based representation for words is
notably beneficial for out-of-vocabulary (OOV)
words. We tested this specifically by comparing
Chars to a model in which all OOVs are replaced
by the string “UNK” during parsing. This always
has a negative effect on LAS (average−4.5 points,

−2.8 UAS). Figure 5 shows how this drop varies
with the development OOV rate across treebanks;
most extreme is Korean, which drops 15.5 LAS. A
similar, but less pronounced pattern, was observed
for models that include POS.

Interestingly, this artificially impoverished
model is still consistently better than Words for
all languages (e.g., for Korean, by 4 LAS). This
implies that not all of the improvement is due to
OOV words; statistical sharing across orthograph-
ically close words is beneficial, as well.

4.4.3 Computational Requirements
The character-based representations make the
parser slower, since they require composing the
character-based bidirectional LSTMs for each
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Figure 5: On the x-axis is the OOV rate in development data, by treebank; on the y-axis is the difference
in development-set LAS between Chars model as described in §3.2 and one in which all OOV words are
given a single representation.
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Figure 4: Character-based word representations
of 30 random words from the English develop-
ment set (Chars). Dots in red represent past tense
verbs; dots in orange represent gerund verbs; dots
in black represent present tense verbs; dots in blue
represent adjectives; dots in green represent ad-
verbs; dots in yellow represent singular nouns;
dots in brown represent plural nouns. The visu-
alization was produced using t-SNE; see http:
//lvdmaaten.github.io/tsne/.

word of the input sentence; however, at test time
these results could be cached. On average, Words
parses a sentence in 44 ms, whileChars needs 130
ms.9 Training time is affected by the same cons-

9We are using a machine with 32 Intel Xeon CPU E5-
2650 at 2.00GHz; the parser runs on a single core.

tant, needing some hours to have a competitive
model. In terms of memory, Words requires on
average 300 MB of main memory for both train-
ing and parsing, while Chars requires 450 MB.

4.4.4 Comparison with State-of-the-Art

Table 3 shows a comparison with state-of-the-
art parsers. We include greedy transition-based
parsers that, like ours, do not apply a beam
search (Zhang and Clark, 2008b) or a dynamic
oracle (Goldberg and Nivre, 2013). For all the
SPMRL languages we show the results of Balles-
teros (2013), who reported results after carrying
out a careful automatic morphological feature se-
lection experiment. For Turkish, we show the re-
sults of Nivre et al. (2006a) which also carried
out a careful manual morphological feature se-
lection. Our parser outperforms these in most
cases. Since those systems rely on morphological
features, we believe that this comparison shows
even more that the character-based representations
are capturing morphological information, though
without explicit morphological features. For En-
glish and Chinese, we report (Dyer et al., 2015)
which is Words + POS but with pretrained word
embeddings.

We also show the best reported results on
these datasets. For the SPMRL data sets, the
best performing system of the shared task is ei-
ther Björkelund et al. (2013) or Björkelund et al.
(2014), which are consistently better than our sys-
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This Work Best Greedy Result Best Published Result
Language UAS LAS System UAS LAS System UAS LAS System
Arabic 86.08 83.41 Chars 84.57 81.90 B’13 88.32 86.21 B+’13
Basque 85.22 78.61 Chars + POS 84.33 78.58 B’13 89.96 85.70 B+’14
French 86.15 82.03 Words + POS 83.35 77.98 B’13 89.02 85.66 B+’14
German 87.33 84.62 Words + POS 85.38 82.75 B’13 91.64 89.65 B+’13
Hebrew 80.68 72.70 Words + POS 79.89 73.01 B’13 87.41 81.65 B+’14
Hungarian 80.92 76.34 Chars + POS 83.71 79.63 B’13 89.81 86.13 B+’13
Korean 88.39 86.27 Chars 85.72 82.06 B’13 89.10 87.27 B+’14
Polish 87.06 79.83 Words + POS 85.80 79.89 B’13 91.75 87.07 B+’13
Swedish 83.43 76.40 Words + POS 83.20 75.82 B’13 88.48 82.75 B+’14
Turkish 76.32 64.34 Chars 75.82 65.68 N+’06a 77.55 n/a K+’10
Chinese 85.96 84.40 Words + POS 87.20 85.70 D+’15 87.20 85.70 D+’15
English 92.57 90.31 Words + POS 93.10 90.90 D+’15 94.08 92.19 W+’15

Table 3: Test-set performance of our best results (according to UAS or LAS, whichever has the larger
difference), compared to state-of-the-art greedy transition-based parsers (“Best Greedy Result”) and best
results reported (“Best Published Result”). All of the systems we compare against use explicit mor-
phological features and/or one of the following: pretrained word embeddings, unlabeled data and a
combination of parsers; our models do not. B’13 is Ballesteros (2013); N+’06a is Nivre et al. (2006a);
D+’15 is Dyer et al. (2015); B+’13 is Björkelund et al. (2013); B+’14 is Björkelund et al. (2014); K+’10
is Koo et al. (2010); W+’15 is Weiss et al. (2015).

tem for all languages. Note that the comparison
is harsh to our system, which does not use unla-
beled data or explicit morphological features nor
any combination of different parsers. For Turkish,
we report the results of Koo et al. (2010), which
only reported unlabeled attachment scores. For
English, we report (Weiss et al., 2015) and for Chi-
nese, we report (Dyer et al., 2015) which is Words
+ POS but with pretrained word embeddings.

5 Related Work

Character-based representations have been ex-
plored in other NLP tasks; for instance, dos San-
tos and Zadrozny (2014) and dos Santos and
Guimarães (2015) learned character-level neural
representations for POS tagging and named entity
recognition, getting a large error reduction in both
tasks. Our approach is similar to theirs. Others
have used character-based models as features to
improve existing models. For instance, Chrupała
(2014) used character-based recurrent neural net-
works to normalize tweets.

Botha and Blunsom (2014) show that stems,
prefixes and suffixes can be used to learn useful
word representations but relying on an external
morphological analyzer. That is, they learn the
morpheme-meaning relationship with an additive
model, whereas we do not need a morphological
analyzer. Similarly, Chen et al. (2015) proposed
joint learning of character and word embeddings
for Chinese, claiming that characters contain rich
information.

Methods for joint morphological disambigua-
tion and parsing have been widely explored Tsar-
faty (2006; Cohen and Smith (2007; Goldberg
and Tsarfaty (2008; Goldberg and Elhadad (2011).
More recently, Bohnet et al. (2013) presented an
arc-standard transition-based parser that performs
competitively for joint morphological tagging and
dependency parsing for richly inflected languages,
such as Czech, Finnish, German, Hungarian, and
Russian. Our model seeks to achieve a simi-
lar benefit to parsing without explicitly reasoning
about the internal structure of words.

Zhang et al. (2013) presented efforts on Chinese
parsing with characters showing that Chinese can
be parsed at the character level, and that Chinese
word segmentation is useful for predicting the cor-
rect POS tags (Zhang and Clark, 2008a).

To the best of our knowledge, previous work has
not used character-based embeddings to improve
dependency parsers, as done in this paper.

6 Conclusion

We have presented several interesting findings.
First, we add new evidence that character-based
representations are useful for NLP tasks. In this
paper, we demonstrate that they are useful for
transition-based dependency parsing, since they
are capable of capturing morphological informa-
tion crucial for analyzing syntax.

The improvements provided by the character-
based representations using bidirectional LSTMs
are strong for agglutinative languages, such as
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Basque, Hungarian, Korean, and Turkish, compar-
ing favorably to POS tags as encoded in those lan-
guages’ currently available treebanks. This out-
come is important, since annotating morphologi-
cal information for a treebank is expensive. Our
finding suggests that the best investment of anno-
tation effort may be in dependencies, leaving mor-
phological features to be learned implicitly from
strings.

The character-based representations are also a
way of overcoming the out-of-vocabulary prob-
lem; without any additional resources, they en-
able the parser to substantially improve the per-
formance when OOV rates are high. We expect
that, in conjunction with a pretraing regime, or in
conjunction with distributional word embeddings,
further improvements could be realized.
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wards a bank of constituent parse trees for Polish.
In Proc of TSD.

Ivan. Titov and James. Henderson. 2007. A latent vari-
able model for generative dependency parsing. In
Proc of IWPT.

Kristina Toutanova, Dan Klein, Christopher D. Man-
ning, and Yoram Singer. 2003. Feature-rich part-of-
speech tagging with a cyclic dependency network.
In Proc of NAACL.

358



Reut Tsarfaty. 2006. Integrated morphological and
syntactic disambiguation for Modern Hebrew. In
Proc of ACL Student Research Workshop.
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