
Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pages 250–255,
Lisbon, Portugal, 17-21 September 2015. c©2015 Association for Computational Linguistics.

Modeling Tweet Arrival Times using Log-Gaussian Cox Processes

Michal Lukasik,1 P.K. Srijith,1 Trevor Cohn,2 and Kalina Bontcheva1

1Department of Computer Science,
The University of Sheffield

2Department of Computing and Information Systems,
The University of Melbourne

{m.lukasik, pk.srijith, k.bontcheva}@shef.ac.uk
t.cohn@unimelb.edu.au

Abstract

Research on modeling time series text cor-
pora has typically focused on predicting
what text will come next, but less well
studied is predicting when the next text
event will occur. In this paper we ad-
dress the latter case, framed as modeling
continuous inter-arrival times under a log-
Gaussian Cox process, a form of inhomo-
geneous Poisson process which captures
the varying rate at which the tweets ar-
rive over time. In an application to ru-
mour modeling of tweets surrounding the
2014 Ferguson riots, we show how inter-
arrival times between tweets can be ac-
curately predicted, and that incorporating
textual features further improves predic-
tions.

1 Introduction

Twitter is a popular micro-blogging service which
provides real-time information on events happen-
ing across the world. Evolution of events over time
can be monitored there with applications to dis-
aster management, journalism etc. For example,
Twitter has been used to detect the occurrence of
earthquakes in Japan through user posts (Sakaki
et al., 2010). Modeling the temporal dynamics of
tweets provides useful information about the evo-
lution of events. Inter-arrival time prediction is a
type of such modeling and has application in many
settings featuring continuous time streaming text
corpora, including journalism for event monitor-
ing, real-time disaster monitoring and advertising
on social media. For example, journalists track
several rumours related to an event. Predicted ar-
rival times of tweets can be applied for ranking
rumours according to their activity and narrow the
interest to investigate a rumour with a short inter-
arrival time over that of a longer one.

Modeling the inter-arrival time of tweets is a
challenging task due to complex temporal patterns
exhibited. Tweets associated with an event stream
arrive at different rates at different points in time.
For example, Figure 1a shows the arrival times
(denoted by black crosses) of tweets associated
with an example rumour around Ferguson riots in
2014. Notice the existence of regions of both high
and low density of arrival times over a one hour
interval. We propose to address inter-arrival time
prediction problem with log-Gaussian Cox pro-
cess (LGCP), an inhomogeneous Poisson process
(IPP) which models tweets to be generated by an
underlying intensity function which varies across
time. Moreover, it assumes a non-parametric form
for the intensity function allowing the model com-
plexity to depend on the data set. We also pro-
vide an approach to consider textual content of
tweets to model inter-arrival times. We evaluate
the models using Twitter rumours from the 2014
Ferguson unrest, and demonstrate that they pro-
vide good predictions for inter-arrival times, beat-
ing the baselines e.g. homogeneous Poisson Pro-
cess, Gaussian Process regression and univariate
Hawkes Process. Even though the central appli-
cation is rumours, one could apply the proposed
approaches to model the arrival times of tweets
corresponding to other types of memes, e.g. dis-
cussions about politics.

This paper makes the following contributions:
1. Introduces log-Gaussian Cox process to predict
tweet arrival times. 2. Demonstrates how incor-
porating text improves results of inter-arrival time
prediction.

2 Related Work

Previous approaches to modeling inter-arrival
times of tweets (Perera et al., 2010; Sakaki et al.,
2010; Esteban et al., 2012; Doerr et al., 2013) were
not complex enough to consider their time vary-
ing characteristics. Perera et al. (2010) modeled
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Figure 1: Intensity functions and corresponding predicted arrival times for different methods across
example Ferguson rumours. Arrival times predicted by LGCP are denoted by red pluses, LGCPTXT by
blue dots, and ground truth by black crosses. Light regions denote uncertainty of predictions.

inter-arrival times as independent and exponen-
tially distributed with a constant rate parameter. A
similar model is used by Sakaki et al. (2010) to
monitor the tweets related to earthquakes. The re-
newal process model used by Esteban et al. (2012)
assumes the inter-arrival times to be independent
and identically distributed. Gonzalez et al. (2014)
attempts to model arrival times of tweets using a
Gaussian process but assumes the tweet arrivals to
be independent every hour. These approaches do
not take into account the varying characteristics of
arrival times of tweets.

Point processes such as Poisson and Hawkess
process have been used for spatio-temporal model-
ing of meme spread in social networks (Yang and
Zha, 2013; Simma and Jordan, 2010). Hawkes
processes (Yang and Zha, 2013) were also found
to be useful for modeling the underlying network
structure. These models capture relevant network
information in the underlying intensity function.
We use a log-Gaussian cox process which provides
a Bayesian method to capture relevant information
through the prior. It has been found to be use-
ful e.g. for conflict mapping (Zammit-Mangion
et al., 2012) and for frequency prediction in Twit-
ter (Lukasik et al., 2015).

3 Data & Problem

In this section we describe the data and we formal-
ize the problem of modeling tweet arrival times.

Data We consider the Ferguson rumour data set
(Zubiaga et al., 2015), consisting of tweets on ru-

mours around 2014 Ferguson unrest. It consists
of conversational threads that have been manually
labeled by annotators to correspond to rumours1.
Since some rumours have few posts, we consider
only those with at least 15 posts in the first hour as
they express interesting behaviour (Lukasik et al.,
2015). This results in 114 rumours consisting of a
total of 4098 tweets.

Problem Definition Let us consider a time in-
terval [0, 2] measured in hours, a set of rumours
R = {Ei}ni=1, where rumour Ei consists of a
set of mi posts Ei = {pi

j}mi
j=1. Posts are tuples

pi
j = (xi

j , t
i
j), where xi

j is text (in our case a vec-
tor of Brown clusters counts, see section 5) and tij
is time of occurrence of post pi

j , measured in time
since the first post on rumour Ei.

We introduce the problem of predicting the ex-
act time of posts in the future unobserved time in-
terval, which is studied as inter-arrival time pre-
diction. In our setting, we observe posts over
a target rumour i for one hour and over refer-
ence rumours (other than i) for two hours. Thus,
the training data set is RO = {EO

i }ni=1, where

EO
i = {pi

j}m
O
i

1 (mO
i represents number of posts

observed for ith rumour). We query the model for
a complete set of times {tij}mi

mO
i +1

of posts about
rumour i in the future one hour time interval.

1For a fully automated approach, a system for early detec-
tion of rumours (Zhao et al., 2015) could be run first and our
models then applied to the resulting rumours.
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4 Model

The problem of modeling the inter-arrival times of
tweets can be solved using Poisson processes (Per-
era et al., 2010; Sakaki et al., 2010). A homo-
geneous Poisson process (HPP) assumes the in-
tensity to be constant (with respect to time and
the rumour statistics). It is not adequate to model
the inter-arrival times of tweets because it assumes
constant rate of point arrival across time. Inhomo-
geneous Poisson process (IPP) (Lee et al., 1991)
can model tweets occurring at a variable rate by
considering the intensity to be a function of time,
i.e. λ(t). For example, in Figure 1a we show in-
tensity functions learnt for two different IPP mod-
els. Notice how the generated arrival times vary
according to the intensity function values.

Log-Gaussian Cox process We consider a
log-Gaussian Cox process (LGCP) (Møller and
Syversveen, 1998), a special case of IPP, where
the intensity function is assumed to be stochas-
tic. The intensity function λ(t) is modeled using
a latent function f(t) sampled from a Gaussian
process (Rasmussen and Williams, 2005). To en-
sure positivity of the intensity function, we con-
sider λ(t) = exp (f(t)). This provides a non-
parametric Bayesian approach to model the inten-
sity function, where the complexity of the model
is learnt from the training data. Moreover, we can
define the functional form of the intensity function
through appropriate GP priors.

Modeling inter-arrival time Inhomogeneous
Poisson process (unlike HPP) uses a time vary-
ing intensity function and hence, the distribution
of inter-arrival times is not independent and iden-
tically distributed (Ross, 2010). In IPP, the number
of tweets y occurring in an interval [s, e] is Poisson
distributed with rate

∫ e
s λ(t)dt.

p(y|λ(t), [s, e]) = Poisson(y|
∫ e

s
λ(t)dt)

=
(
∫ e
s λ(t)dt)y exp(− ∫ e

s λ(t)dt)
y!

(1)

Assume that nth tweet occurred at time En = s
and we are interested in the inter-arrival time Tn

of the next tweet. The arrival time of next tweet
En+1 can be obtained as En+1 = En + Tn. The
cumulative distribution for Tn, which provides the
probability that a tweet occurs by time s + u can

be obtained as2

p(Tn ≤ u) = 1− p(Tn > u|λ(t), En = s)
= 1− p(0 events in [s, s+ u]|λ(t))

= 1− exp(−
∫ s+u

s
λ(t)dt)

= 1− exp(−
∫ u

0
λ(s+ t)dt) (2)

The derivation is obtained by considering a
Poisson probability for 0 counts with rate parame-
ter given by

∫ s+u
s λ(t)dt and applying integration

by substitution to obtain (2). The probability den-
sity function of the random variable Tn is obtained
by taking the derivative of (2) with respect to u:

p(Tn = u) = λ(s+ u) exp(−
∫ u

0
λ(s+ t)dt).

(3)
The computational difficulties arising from inte-
gration are dealt by assuming the intensity func-
tion to be constant in an interval and approximat-
ing the inter-arrival time density as (Møller and
Syversveen, 1998; Vanhatalo et al., 2013)

p(Tn = u) = λ(s+ u) exp(−uλ(s+
u

2
)). (4)

We associate a distinct intensity function
λi(t) = exp(fi(t)) with each rumour Ei as
they have varying temporal profiles. The la-
tent function fi is modelled to come from a
zero mean Gaussian process (GP) (Rasmussen
and Williams, 2005) prior with covariance de-
fined by a squared exponential (SE) kernel over
time, ktime(t, t′) = a exp(−(t− t′)2/l). We con-
sider the likelihood of posts EO

i over the entire
training period to be product of Poisson distri-
bution (1) over equal length sub-intervals with
the rate in a sub-interval [s, e] approximated as
(e− s) exp(fi(1

2(s+ e))). The likelihood of posts
in the rumour data is obtained by taking the prod-
uct of the likelihoods over individual rumours.

The distribution of the posterior p(fi|EO
i ) is

intractable and a Laplace approximation (Ras-
mussen and Williams, 2005) is used to obtain the
posterior. The predictive distribution fi(ti∗) at time
ti∗ is obtained using the approximated posterior.
The intensity function value at the point ti∗ is then
obtained as

λi(ti∗|EO
i ) =

∫
exp

(
fi(ti∗)

)
p
(
fi(ti∗)|EO

i

)
dfi(ti∗).

2We suppress the conditioning variables for brevity.
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Algorithm 1 Importance sampling for predicting
the next arrival time

1: Input: Intensity function λ(t), previous ar-
rival time s, proposal distribution
q(t) = exp(t; 2), number of samples N

2: for i = 1 to N do
3: Sample ui ∼ q(t).
4: Obtain weights wi = p(ui)

q(ui)
,

where p(t) is given by (4).
5: end for
6: Predict expected inter-arrival time as
ū =

∑N
i=1 ui

wi∑N
j=1 wj

7: Predict the next arrival time as t̄ = s+ ū.
8: Return: t̄

Importance sampling We are interested in pre-
dicting the next arrival time of a tweet given the
time at which the previous tweet was posted. This
is achieved by sampling the inter-arrival time of
occurrence of the next tweet using equation (4).
We use the importance sampling scheme (Gelman
et al., 2003) where an exponential distribution is
used as the proposal density. We set the rate pa-
rameter of this exponential distribution to 2 which
generates points with a mean value around 0.5.
Assuming the previous tweet occurred at time s,
we obtain the arrival time of next tweet as outlined
in Algorithm 1. We run this algorithm sequen-
tially, i.e. the time t̄ returned from Algorithm 1
becomes starting time s in the next iteration. We
stop at the end of the interval of interest, for which
a user wants to find times of post occurrences.

Incorporating text We consider adding the
kernel over text from posts to the previously
introduced kernel over time. We join text
from the observed posts together, so a dif-
ferent component is added to kernel values
across different rumours. The full kernel then
takes form kTXT((t, i), (t′, i′)) = ktime(t, t′) +
ktext

(∑
pi

j∈EO
i

xi
j ,
∑

pi′
j ∈EO

i′
xi′

j

)
. We compare

text via linear kernel with additive underlying base
similarity, expressed by ktext(x,x′) = b+ cxTx′.

Optimization All model parameters (a, l, b, c)
are obtained by maximizing the marginal likeli-
hood p(EO

i ) =
∫
p(EO

i |fi)p(fi)dfi over all ru-
mour data sets.

5 Experiments

Data preprocessing In our experiments, we
consider the first two hours of each rumour lifes-
pan. The posts from the first hour of a target ru-
mour is considered as observed (training data) and
we predict the arrival times of tweets in the sec-
ond hour. We consider observations over equal
sized time intervals of length six minutes in the
rumour lifespan for learning the intensity func-
tion. The text in the tweets is represented by using
Brown cluster ids associated with the words. This
is obtained using 1000 clusters acquired on a large
scale Twitter corpus (Owoputi et al., 2013).

Evaluation metrics Let the arrival times pre-
dicted by a model be (t̂1, . . . , t̂M ) and let the
actual arrival times be (t1, . . . , tN ). We intro-
duce two metrics based on root mean squared er-
ror (RMSE) for evaluating predicted inter-arrival
times. First is aligned root mean squared er-
ror (ARMSE), where we align the initial K =
min(M,N) arrival times and calculate the RMSE
between such two subsequences. The sec-
ond is called penalized root mean squared error
(PRMSE). In this metric we penalize approaches
which predict a different number of inter-arrival
times than the actual number. The PRMSE met-
ric is defined as the square root of the following
expression.

1
K

K∑
i=1

(t̂i − ti)2 + I[M > N ]
M∑

i=N+1

(T − t̂i)2

+I[M < N ]
N∑

i=M+1

(T − ti)2 (5)

The second and third term in (5) respectively pe-
nalize for the excessive or insufficient number of
points predicted by the model.

Baselines We consider a homogeneous Poisson
process (HPP) (Perera et al., 2010) as a baseline
which results in exponentially distributed inter-
arrival times with rate λ. The rate parameter is
set to the maximum likelihood estimate, the recip-
rocal of the mean of the inter-arrival times in the
training data. The second baseline is a GP with
a linear kernel (GPLIN), where the inter-arrival
time is modeled as a function of time of occur-
rence of last tweet. This model tends to predict
small inter-arrival times yielding a huge number
of points. We limit the number of predicted points

253



method ARMSE PRMSE

GPLIN 20.60±22.01? 1279.78±903.90?
HPP 21.85±22.82? 431.4±96.5?
HP 15.94±18.20 363.70±59.01?

LGCP 13.31±14.28 261.26±92.97?
LGCP Pooled 19.18±20.36? 183.25±102.20?

LGCPTXT 15.52±18.79 154.05±115.70

Table 1: ARMSE and PRMSE between the true
event times and the predicted event times ex-
pressed in minutes (lower is better) over the 114
Ferguson rumours, showing mean ± std. dev.
Key ? denotes significantly worse than LGCPTXT
method according to one-sided Wilcoxon signed
rank test (p < 0.05). In case of ARMSE, LGCP is
not significantly better than LGCP TXT according
to Wilcoxon test.

to 1000 (above the maximum count yielded by any
rumour from our dataset), thus reducing the error
from this method.

We also compare against Hawkes Process
(HP) (Yang and Zha, 2013), a self exciting point
process where an occurrence of a tweet increases
the probability of tweets arriving soon after-
wards. We consider a univariate Hawkes pro-
cess where the intensity function is modeled as
λi(t) = µ+

∑
tij<t ktime(tij , t). The kernel pa-

rameters and µ are learnt by maximizing the like-
lihood. We apply the importance sampling algo-
rithm discussed in Algorithm 1 for generating ar-
rival times for Hawkess process. We consider this
baseline only in the single-task setting, where ref-
erence rumours are not considered.

LGCP settings In the case of LGCP, the model
parameters of the intensity function associated
with a rumour are learnt from the observed inter-
arrival times from that rumour alone. LGCP
Pooled and LGCPTXT consider a different setting
where this is learnt additionally using the inter-
arrival times of all other rumours observed over
the entire two hour life-span.

Results Table 1 reports the results of predicting
arrival times of tweets in the second hour of the
rumour lifecycle. In terms of ARMSE, LGCP is
the best method, performing better than LGCP-
TXT (though not statistically significantly) and
outperforming other approaches. However, this
metric does not penalize for the wrong number
of predicted arrival times. Figure 1b depicts an
example rumour, where LGCP greatly overesti-

mates the number of points in the interval of inter-
est. Here, the three points from the ground truth
(denoted by black crosses) and the initial three
points predicted by the LGCP model (denoted by
red pluses), happen to lie very close, yielding a
low ARMSE error. However, LGCP predicts a
large number of arrivals in this interval making it a
bad model compared to LGCPTXT which predicts
only four points (denoted by blue dots). ARMSE
fails to capture this and hence we use PRMSE.
Note that Hawkes Process is performing worse
than the LGCP approach.

According to PRMSE, LGCPTXT is the most
successful method, significantly outperforming all
other according to Wilcoxon signed rank test. Fig-
ure 1a depicts the behavior of LGCP and LGCP-
TXT on rumour 39 with a larger number of points
from the ground truth. Here, LGCPTXT predicts
relatively less number of arrivals than LGCP. The
performance of Hawkes Process is again worse
than the LGCP approach. The self excitory nature
of Hawkes process may not be appropriate for this
dataset and setting, where in the second hour the
number of points tends to decrease as time passes.

We also note, that GPLIN performs very poorly
according to PRMSE. This is because the inter-
arrival times predicted by GPLIN for several ru-
mours become smaller as time grows resulting in
a large number of arrival times.

6 Conclusions

This paper introduced the log-Gaussian Cox pro-
cesses for the problem of predicting the inter-
arrival times of tweets. We showed how text from
posts helps to achieve significant improvements.
Evaluation on a set of rumours from Ferguson ri-
ots showed efficacy of our methods comparing to
baselines. The proposed approaches are generaliz-
able to problems other than rumours, e.g. disaster
management and advertisement campaigns.
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